Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

BINOL derivatives-catalyzsed enantioselective allylboration of isatins: application to the synthesis of (*R*)-chimonamidine

Julien Braire, Vincent Dorcet, Joëlle Vidal^{*}, Claudia Lalli^{*} and François Carreaux^{*} Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France

Supporting information

Table of contents

1.	General information	2
2.	General Procedure for the asymmetric allylboration of isatins 9 and indanone	2
3.	General procedure for the preparation of racemic 3-allyl-3-hydroxy-2-oxindoles.	3
4.	Analytical data of compounds 10 and 11	3
5.	HPLC chromatograms of compounds 10 and 11	12
6.	Copies of NMR Spectra of compounds 10	32
7.	X-Ray of 10h and 10i	68
8.	Synthesis of (<i>R</i>) chimonamidine 5	72
9.	Chiral HPLC chromatogram for (R)-chimonamidine	75
10.	Copies of NMR spectra of chimonamidine derivatives	76
11.	Bibliography for the experimental section	85

1. General information

Molecular sieves were activated by flame heating under Ar and vacuum. TLC analyses were performed using precoated Merck TLC Silica Gel 60 F254 plates. Purifications by column chromatography on silica gel were performed with an Interchim Puriflash 450 apparatus using packed columns (30 µm granulometry). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 300 instrument. Chemical shifts (δ) are reported in part per million (ppm) relatively to TMS and residual solvent as internal standard.^[1] The following abbreviations are used for multiplicities: s, singlet; d, doublet; t, triplet; dd, doublet of doublets; td, triplet of doublets; m, multiplet and bs (broad singlet). Coupling constants (*J*) are reported in Hertz (Hz). HRMS analyses were obtained on a Bruker Maxis 4G instrument. X-ray crystallographic data were collected on a D8 VENTURE Bruker AXS diffractometer. Optical rotations (α) were recorded on a Perkin Elmer Model 341 polarimeter at 589 nm, in a 1 dm cell and at temperature T (°C). Specific rotations [α]_D^T were determined from the following formula [α]_D^T = $\alpha \times 100 / c$ (c concentration, g/100 mL). Melting points were obtained on a hot bench. HPLC analysis were performed on a Shimadzu Prominence system, using Daicel chiral columns (CHIRALPAK[®] IB, IC or ID (5 µm)).

Reagents **7a**, **7b**, **9e**, **9f**, **9i** and catalysts (*R*)-**8a**, (*S*)-**8a**, (*R*)-**8c** were commercially available (enantiomeric ratios were greater than 98:2).

Isatins 9a (or 9g),^[2] 9b (or 9h),^[3] 9c,^[4] 9d,^[4] 9j,^[5] 9k,^[6] 9l,^[7] 9m^[8], 9n,^[9] 9o,^[8] 9p,^[10] 9q,^[11] 9r^[8], 9s^[12], allylboronate reagents 7c,^[13] 7d,^[13] 7e^[14]and catalysts (*R*)-8b,^[15] (*R*)-8d,^[16] (*R*)-8e,^[17] (*R*)-8f^[18] were prepared according to known procedures. All spectra of known compounds were in agreement with reported data.

Abbreviations: DCM dichloromethane, IPA *iso*-propyl alcohol, MS molecular sieves, LC liquid chromatography.

2. General Procedure for the asymmetric allylboration of isatins 9 and indanone

To a dried tube (5 mL) flushed with Ar, were successively added activated 5 Å molecular sieves (400 mg/mmol), toluene (0.7 mL), enantiopure (*R*)-**8a** (4.5 mg, 0.01 mmol, 0.05 eq) *t*-BuOH (93 μ L, 5 eq) and allylboronate **7c** (1 M solution in toluene, 0.3 mL, 0.3 mmol, 1.5 eq). The resulting mixture was stirred at room temperature for 5 minutes, then cooled to -10 °C and stirred for 15 min before the isatin derivative **9** or indanone (0.2 mmol) was added. After stirring for 24 h (except starting from **9f**), the reaction mixture was quenched at -10°C with aqueous HCl (1 M solution, 1 mL). After stirring at room temperature for 15 min, distilled water (1 mL) and of DCM (3 mL) were added. The organic layer was separated and the aqueous phase was extracted with DCM (3 x 2 mL). The combined organic phases were washed with distilled water (2 mL), dried over MgSO4 and concentrated under vacuum. A purification was performed *via* preparative liquid chromatography over silica gel (100% DCM to 80% DCM, 20% acetone). The pure fractions were collected and the solvent was evaporated until dryness to give the expected enantio-enriched 3-allyl-3-hydroxy-2-oxindole **10** or 1-allylindan-1-ol **11**.

3. General procedure for the preparation of racemic 3allyl-3-hydroxy-2-oxindoles.

To a 5 mL round-bottom flask equipped with a stirring bar and flushed with argon was added isatin **9** (0.2 mmol) and toluene (1.0 mL). The mixture was stirred under Ar at room temperature for 15 minutes. Allyl-dioxaborolane **7** c (1 M solution in toluene, 0.6mL, 0.6 mmol, 3 eq) was added at once. The reaction mixture was stirred at room temperature for 24 h and quenched with an aqueous HCl solution (1 M, 1.0 mL). The biphasic mixture was stirred at room temperature for 15 minutes. The organic layer was separated, dried over MgSO₄ and concentrated under vacuum. The purification was performed *via* preparative liquid chromatography over silica gel (100 % DCM to 80 % DCM, 20% acetone). The pure fractions were collected and the solvent was evaporated until dryness to give the expected racemic 3-allyl-3-hydroxy-2-oxindole **10** as a white solid.

4. Analytical data of compounds 10 and 11

(S)-3-Allyl-1-benzyl-3-hydroxyindolin-2-one (10a)^{[10],[19]}

Yield: 56 mg (99%), White solid, mp: 64-66 °C, $[\alpha]_D^{20} = -15.2$ (c 1.00, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 7.15 min, $t_{(S)}$ = 11.48 min (for the chromatogram refer to page S14), e.r.: 3:97.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.45 – 7.36 (m, 1H), 7.35 – 7.24 (m, 5H), 7.24 – 7.16 (m, 1H), 7.11 – 7.00 (m, 1H), 6.73 – 6.65 (m, 1H), 5.73 – 5.54 (m, 1H), 5.22 – 5.06 (m, 2H), 5.02 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H), 3.11 (bs, 1H), 2.88 – 2.61 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.9, 142.6, 135.5, 130.6, 129.8, 129.7, 128.9, 127.8, 127.4, 124.3, 123.2, 120.8, 109.6, 76.0, 44.0, 43.2

(S)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10b)^{[20],[21]}

Yield: 39 mg (98%), white solid, mp: 119-121 °C ; $[\alpha]_D^{20}$ = -40.3 (c 1.00, CHCl₃) The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, t_(R) = 9.02 min, t_(S) = 11.15 min ((for the chromatogram refer to page S15), e.r.: 3.5:96.5. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.42 – 7.35 (m, 1H), 7.35 – 7.28 (m, 1H), 7.13 – 7.05 (m, 1H), 6.85 – 6.78 (m, 1H), 5.73 – 5.53 (m, 1H), 5.14 – 5.03 (m, 2H), 3.28 (bs, 1H), 3.15 (s, 3H), 2.79 – 2.57 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.8, 143.4, 130.6, 129.8, 129.8, 124.2, 123.2, 120.6, 108.5, 76.0, 43.0, 26.3

(S)-3-Allyl-3-hydroxy-1-(4-methoxybenzyl)indolin-2-one (10c)^[22]

Yield = 54mg (94%), colorless syrup, $[\alpha]_{D}^{20}$ = -13.9 (c 0.92, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 10.90 min, $t_{(S)}$ = 18.85 min (for the chromatogram refer to page S16, e.r.: 3:97.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.43 – 7.35 (m, 1H), 7.25 – 7.16 (m, 3H), 7.09 – 7.01 (m, 1H), 6.87 – 6.78 (m, 2H), 6.76 – 6.67 (m, 1H), 5.70 – 5.52 (m, 1H), 5.18 – 5.06 (m, 2H), 4.94 (d, J = 15.4 Hz, 1H), 4.66 (d, J = 15.4 Hz, 1H), 3.76 (s, 3H), 3.26 (bs, 1H), 2.88 – 2.63 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.9, 159.2, 142.6, 130.7, 129.8, 129.7, 128.8, 127.6, 124.2, 123.1, 120.7, 114.2, 109.6, 76.0, 55.4, 43.4, 43.2

(S)-3-Allyl-3-hydroxy-1-(methoxymethyl)indolin-2-one (10d)

Yield: 45 mg (96%), colourless syrup, $[\alpha]_{D}^{20} = -36.9$ (c 1.01, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 6.91 min, $t_{(S)}$ = 8.87 min (for the chromatogram refer to page S17), e.r.: 4.5:95.5.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.45 – 7.38 (m, 1H), 7.37 – 7.28 (m, 1H), 7.18 – 7.08 (m, 1H), 7.07 – 6.96 (m, 1H), 5.68 – 5.52 (m, 1H), 5.17 – 5.01 (m, 4H), 3.31 (s, 3H), 2.99 (bs, 1H), 2.82 – 2.59 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.3, 141.7, 130.5, 130.0, 129.2, 124.3, 123.7, 120.8, 110.0, 76.4, 71.7, 56.5, 43.2

HRMS (ESI) m/z. calcd. for C₁₃H₁₅NO₃Na [M+Na]⁺ 256.0944; found 256.0946.

(S)-3-Allyl-3-hydroxy-1-phenylindolin-2-one (10e)^[23]

Yield: 49 mg (92%), coloruless syrup, $[\alpha]_{D}^{20} = -50.1$ (c 0.94, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IB column, heptane/IPA = 95/5, flow rate = 0.7 mL/min, 254 nm, $t_{(R)}$ = 17.11 min, $t_{(S)}$ = 19.08 min (for the chromatogram refer to page S18), e.r.: 4.5:95.5.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.57 – 7.37 (m, 6H), 7.30 – 7.24 (m, 1H), 7.19 – 7.12 (m, 1H), 6.84 – 6.79 (m, 1H), 5.76 – 5.61 (m, 1H), 5.23 – 5.12 (m, 2H), 3.37 (bs, 1H), 2.92 – 2.70 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.3, 143.4, 134.1, 130.5, 129.8, 129.7, 129.4, 128.3, 126.6, 124.5, 123.6, 120.7, 109.8, 76.2, 43.6

(S)-1-Acetyl-3-allyl-3-hydroxyindolin-2-one (10f)

Reaction time: 6 days at -10 °C, Yield: 39 mg (84%), white solid, mp: 94-98 °C, $[\alpha]_{D}^{20} = -8.5$ (c 1.00, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 90/10, flow rate = 1.0 mL/min, 235 nm, $t_{(R)}$ = 6.95 min, $t_{(S)}$ = 7.51 min (for the chromatogram refer to page S19), e.r.: 42.5:57.5.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 8.26 – 8.13 (m, 1H), 7.45 – 7.35 (m, 2H), 7.31 – 7.19 (m, 1H), 5.61 – 5.46 (m, 1H), 5.16 – 5.09 (m, 2H), 3.04 (bs, 1H), 2.79 – 2.64 (m, 2H), 2.63 (s, 3H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.6, 170.7, 139.7, 130.3, 129.8, 128.9, 125.8, 123.85, 121.4, 116.9, 76.0, 43.9, 26.6

HRMS (ESI) m/z. calcd. for C₁₃H₁₃NO₃Na [M+Na]⁺ 254.0788; found 254.0792.

(R)-3-Allyl-1-benzyl-3-hydroxyindolin-2-one (10g) ^[10, 19]

Prepared using commercially available **(S)-8a**. Yield: 56 mg (99%), white solid, mp: 65-68 °C, $[\alpha]_D^{20}$ = +14.8 (c 1.00, CHCl₃) The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 7.53 min, $t_{(S)}$ = 12.58 min (for the chromatogram refer to page S20), e.r.: 97:3.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.45 – 7.36 (m, 1H), 7.35 – 7.24 (m, 5H), 7.24 – 7.16 (m, 1H), 7.11 – 7.00 (m, 1H), 6.73 – 6.65 (m, 1H), 5.73 – 5.54 (m, 1H), 5.22 – 5.06 (m, 2H), 5.02 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H), 3.11 (bs, 1H), 2.88 – 2.61 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.9, 142.6, 135.5, 130.6, 129.8, 129.7, 128.9, 127.8, 127.4, 124.3, 123.2, 120.8, 109.6, 76.0, 44.0, 43.2

(R)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10h) ^[21]

Prepared using commercially available (S)-8a.

Yield: 1.30 g (98%), white solid, mp: 120-122 °C, $[\alpha]_D^{20}$ = +39.8 (c 1.00, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 8.70 min, $t_{(S)}$ = 10.79 min (for the chromatogram refer to page S21), e.r.: 97:3.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.42 – 7.35 (m, 1H), 7.35 – 7.28 (m, 1H), 7.13 – 7.05 (m, 1H), 6.85 – 6.78 (m, 1H), 5.73 – 5.53 (m, 1H), 5.14 – 5.03 (m, 2H), 3.28 (bs, 1H), 3.15 (s, 3H), 2.79 – 2.57 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.8, 143.4, 130.6, 129.8, 129.8, 124.2, 123.2, 120.6, 108.5, 76.0, 43.0, 26.3

(S)-3-Allyl-3-hydroxyindolin-2-one (10i)^[24]

Reaction time: 6 days at -10 °C. Yield : 33 mg (87%), white solid, mp : 164-166 °C, $[\alpha]_D^{20} = -51.6$ (c 0.50, CHCl₂).

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column heptane/IPA = 90/10, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 16.09 min, $t_{(S)}$ = 17.92 min (for the chromatogram refer to page S22), e.r.: 3:97.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.95 (bs, 1H), 7.41 – 7.34 (m, 1H), 7.31 – 7.22 (m, 1H), 7.12 – 7.04 (m, 1H), 6.91 – 6.84 (m, 1H), 5.76 – 5.62 (m, 1H), 5.18 – 5.08 (m, 2H), 3.07 (bs, 1H), 2.79 – 2.53 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 179.7, 140.3, 130.4, 130.2, 129.9, 124.7, 123.2, 120.8, 110.3, 76.2, 43.0

(S)-3-Allyl-1-benzyl-5-bromo-3-hydroxyindolin-2-one (10j) ^[10]

Yield: 71 mg (99%), white solid, mp: 97-99 °C, $[\alpha]_D^{20}$ = -15.0 (c 1.00, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 6.04 min, $t_{(S)}$ = 9.56 (for the chromatogram refer to page S23), e.r.: 2.5:97.5.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.52 (d, J = 2.0 Hz, 1H), 7.36 – 7.21 (m, 6H), 6.55 (d, J = 8.3 Hz, 1H), 5.69 – 5.54 (m, 1H), 5.21 – 5.11 (m, 2H), 4.98 (d, J = 15.7 Hz, 1H), 4.69 (d, J = 15.7 Hz, 1H), 3.50 (bs, 1H), 2.85 – 2.67 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.5, 141.5, 135.0, 132.5, 131.8, 130.1, 129.0, 128.0, 127.6, 127.3, 121.3, 116.0, 111.1, 76.0, 44.0, 43.1

(S)-3-Allyl-1-benzyl-5-chloro-3-hydroxyindolin-2-one (10k)^[21]

Yield: 62 mg (99%), colourless syrup, $[\alpha]_D^{20} = -6.5$ (c 0.97, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 6.15 min, $t_{(S)}$ = 8.88 min (for the chromatogram refer to page S24), e.r.: 2:98.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.38 (d, J = 2.1 Hz, 1H), 7.35 – 7.21 (m, 5H), 7.19 – 7.14 (m, 1H), 6.60 (d, J = 8.4 Hz, 1H), 5.70 – 5.56 (m, 1H), 5.20 – 5.11 (m, 2H), 4.99 (d, J = 15.7 Hz, 1H), 4.71 (d, J = 15.7 Hz, 1H), 3.16 (bs, 1H), 2.83 – 2.64 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.5, 141.1, 135.1, 131.4, 130.1, 129.7, 129.0, 128.8, 128.0, 127.4, 124.9, 121.3, 110.7, 76.0, 44.1, 43.2

(S)-3-Allyl-1-benzyl-5-fluoro-3-hydroxyindolin-2-one (10l)^[23]

Yield: 56 mg (94%), white solid, mp: 104-106 °C, $[\alpha]_D^{20}$ = -19.2 (c 1.00, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 6.22 min, $t_{(S)}$ = 8.73 min (for the chromatogram refer to page S25), e.r.: 3:97.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.35 – 7.21 (m, 5H), 7.19 – 7.10 (m, 1H), 6.95 – 6.82 (m, 1H), 6.65 – 6.54 (m, 1H), 5.74 – 5.51 (m, 1H), 5.20 – 5.08 (m, 2H), 4.99 (d, J = 15.7 Hz, 1H), 4.70 (d, J = 15.7 Hz, 1H), 3.44 (bs, 1H), 2.85 – 2.63 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.9 (d, J = 1.1 Hz), 159.6 (d, J = 242.2 Hz), 138.4 (d, J = 2.1 Hz), 135.2, 131.4 (d, J = 7.8 Hz), 130.2, 129.0, 128.0, 127.44, 121.1, 115.9 (d, J = 23.5 Hz), 112.5 (d, J = 24.9 Hz), 110.3 (d, J = 8.0 Hz), 76.3 (d, J = 1.7 Hz), 44.1, 43.2

(S)-3-Allyl-1-benzyl-3-hydroxy-5-nitroindolin-2-one (10m)^[23]

Yield: 60 mg (93%), colourless syrup, $[\alpha]_{D}^{20} = -14.8$ (c 1.08, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 13.09 min, $t_{(S)}$ = 16.01 min (for the chromatogram refer to page S26), e.r.: 4:96.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.31 – 8.25 (m, 1H), 8.21 – 8.12 (m, 1H), 7.38 – 7.21 (m, 5H), 6.82 – 6.75 (m, 1H), 5.69 – 5.54 (m, 1H), 5.22 – 5.12 (m, 2H), 5.03 (d, J = 15.7 Hz, 1H), 4.79 (d, J = 15.7 Hz, 1H), 3.47 (bs, 1H), 2.92 – 2.68 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.2, 148.1, 143.9, 134.4, 130.7, 129.4, 129.2, 128.3, 127.4, 126.7, 121.9, 120.3, 109.4, 75.7, 44.3, 43.0

(S)-3-Allyl-1-benzyl-3-hydroxy-5-methoxyindolin-2-one (10n)^[10]

Yield: 60 mg (97%), colouless syrup, $[\alpha]_{D}^{20} = -8.6$ (c 0.98, CHCl₃).

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 10.32 min, $t_{(S)}$ = 18.26 min (for the chromatogram refer to page S27), e.r.: 3:97.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.37 – 7.19 (m, 5H), 7.08 – 6.96 (m, 1H), 6.80 – 6.67 (m, 1H), 6.64 – 6.53 (m, 1H), 5.74 – 5.51 (m, 1H), 5.23 – 5.05 (m, 2H), 4.99 (d, *J* = 15.7 Hz, 1H), 4.69 (d, *J* = 15.7 Hz, 1H), 3.76 (s, 3H), 3.52 (bs, 1H), 2.89 – 2.64 (m, 2H)

¹³C NMR (**75** MHz, CDCl₃) δ (ppm) 177.8, 156.4, 135.8, 135.6, 131.0, 130.6, 128.9, 127.8, 127.4, 120.7, 114.2, 111.3, 110.1, 76.4, 55.9, 44.0, 43.3

(S)-3-Allyl-1-benzyl-6-bromo-3-hydroxyindolin-2-one (10o)^[10]

Yield: 70 mg (98%), colourless syrup, $[\alpha]_{D}^{20} = -6.5$ (c 0.89, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 5.76 min, $t_{(S)}$ = 7.88 min (for the chromatogram refer to page S28), e.r.: 2:98.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.37 – 7.18 (m, 7H), 6.84 (d, J = 1.6 Hz, 1H), 5.67 – 5.52 (m, 1H), 5.18 – 5.08 (m, 2H), 4.98 (d, J = 15.8 Hz, 1H), 4.66 (d, J = 15.8 Hz, 1H), 3.41 (bs, 1H), 2.84 – 2.61 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.9, 143.9, 134.9, 130.2, 129.0, 128.7, 128.0, 127.3, 126.1, 125.6, 123.4, 121.1, 113.0, 75.8, 44.0, 43.0

(S)-3-Allyl-1-benzyl-6-chloro-3-hydroxyindolin-2-one (10p)^[10]

Yield 59 mg (94%), colorless syrup, $[\alpha]_{D}^{20}$ = -24.7 (c 1.01, CHCl₂).

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 6.90 min, $t_{(S)}$ = 9.70 min (for the chromatogram refer to page S29), e.r.: 2.5:97.5.

¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.37 – 7.23 (m, 6H), 7.07 – 7.00 (m, 1H), 6.69 (d, *J* = 1.8 Hz, 1H), 5.70 – 5.50 (m, 1H), 5.18 – 5.07 (m, 2H), 4.99 (d, *J* = 15.8 Hz, 1H), 4.67 (d, *J* = 15.8 Hz, 1H), 3.42 (bs, 1H), 2.85 – 2.58 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.9, 143.8, 135.6, 135.0, 130.2, 129.1, 128.1, 127.4, 125.3, 123.2, 121.1, 110.3, 75.7, 44.1, 43.1

(S)-3-Allyl-1-benzyl-3-hydroxy-6-methoxyindolin-2-one (10q)

Colorless syrup, Yield: 61 mg (99%), colourless syrup, $[\alpha]_D^{20} = -17.7$ (c 1.02, CHCl₃) The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)} = 9.65$ min, $t_{(S)} = 19.72$ min (for the chromatogram refer to page S30), e.r.: 3.5:96.5. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.02 (m, 6H), 6.53 (dd, J = 8.2, 2.2 Hz, 1H), 6.27 (d, J = 2.2 Hz, 1H), 5.70 – 5.47 (m, 1H), 5.17 – 5.03 (m, 2H), 4.97 (d, J = 15.7 Hz, 1H), 4.65 (d, J = 15.7 Hz, 1H), 3.70 (s, 3H), 3.66 (bs, 1H), 2.86 – 2.63 (m, 2H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.5, 161.1, 143.9, 135.5, 130.9, 128.8, 127.7, 127.4, 125.0, 121.8, 120.4, 106.5, 97.8, 75.8, 55.5, 43.9, 43.1

HRMS (ESI) m/z. calcd. for C₁₉H₁₉NO₃Na [M+Na]⁺ 332.1257; found 332.1255.

(S)-3-Allyl-1-benzyl-7-bromo-3-hydroxyindolin-2-one (10r)^[21]

Yield: 71 mg (99%), white solid, mp: 113-115 °C, $[\alpha]_D^{20} = -1.9$ (c 1.00, CHCl₃).

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 6.38 min, $t_{(S)}$ = 13.81 min (for the chromatogram refer to page S31), e.r.: 5:95.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.42 – 7.37 (m, 1H), 7.37 – 7.35 (m, 1H), 7.00 – 6.91 (m, 1H), 5.71 – 5.53 (m, 1H), 5.34 (s, 2H), 5.16 – 5.07 (m, 2H), 3.54 (bs, 1H), 2.85 – 2.64 (m, 2H) ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.9, 140.1, 137.1, 135.6, 133.1, 130.2, 128.6, 127.2, 126.5, 124.6, 123.5, 121.2, 102.9, 75.3, 44.7, 43.4

(S)-3-Allyl-1-benzyl-5,7-dibromo-3-hydroxyindolin-2-one (10s)

Yield: 87 mg (99%), white solid, mp: 138-140 °C, $[\alpha]_D^{20} = -31.0$ (c 1.00, CHCl₃)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 5.18 min, $t_{(S)}$ = 8.50 min (for the chromatogram refer to page S32), e.r.: 4.5:95.5.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.58 – 7.52 (m, 1H), 7.51 – 7.46 (m, 1H), 7.34 – 7.20 (m, 3H), 7.19 – 7.13 (m, 2H), 5.67 – 5.52 (m, 1H), 5.30 (s, 2H), 5.19 – 5.10 (m, 2H), 3.63 (bs, 1H), 2.81 – 2.65 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.5, 139.3, 137.4, 136.7, 134.7, 129.6, 128.7, 127.4, 126.8, 126.4, 121.7, 116.4, 103.4, 75.4, 44.7, 43.4

HRMS (ESI): m/z. calcd. for C₁₈H₁₅NO₂Br₂Na [M+Na]⁺ 457.9362; found 457.9366.

(R)-1-Allyl-2,3-dihydro-1H-inden-1-one (11)^[25]

The reaction was performed at room temperature instead of -10 °C. The crude product was purified by flash chromatography with elution by 5-10% AcOEt in cyclohexane.

Yield: 35 mg (80%), colorless oil, $[\alpha]_{D}^{20} = + 8.1$ (c 1.0, CHCl₃).

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] IC column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(R)}$ = 8.39 min, $t_{(S)}$ = 9.79 min (for the chromatogram refer to page S33), e.r.: 99.3:0.7.

¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.41 – 7.21 (m, 4H), 6.01 – 5.73 (m, 1H), 5.30 – 5.09 (m, 2H), 3.11 - 2.94 (m, 1H), 2.93 - 2.76 (m, 1H), 2.74 - 2.60 (m, 1H), 2.60 - 2.49 (m, 1H), 2.42 (bs, 1H), 2.40 - 2.28 (m, 1H), 2.18 - 1.96 (m, 1H)

¹³C NMR (75 MHz, CDCl₃) δ (ppm) 147.2, 143.1, 133.9, 128.4, 126.8, 125.1, 123.0, 119.0, 82.9, 45.1, 39.8, 29.6

5. HPLC chromatograms of compounds 10 and 11

The chromatogram of the racemic reference compound is followed by that of the enantioenriched **10** and **11**.

(S)-3-Allyl-1-benzyl-3-hydroxyindolin-2-one (10a)

(S)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10b)

14 min

			Peak Table	
PDA Ch1	254nm			
Peak#	Ret. Time	Height	Area	Area%
1	8.812	874647	14217692	49.829
2	10.875	738661	14315543	50.171
Total		1613307	28533235	100.000

(S)-3-Allyl-3-hydroxy-1-(4-methoxybenzyl)indolin-2-one (10c)

(S)-3-Allyl-3-hydroxy-1-(methoxymethyl)indolin-2-one (10d)

(S)-3-Allyl-3-hydroxy-1-phenylindolin-2-one (10e)

Sample Information
: jbr 371 p 01 IB 95 5 0.7mL 21deg
: 05/04/2019 16:33:06
: IB hept-IPA 95-5 0.7mL.lcm

Sample Name Date Acquired Method File

	Sample Information
Sample Name	: jbr 379 p 01 IC 90 10 1mL 24deg
Date Acquired	: 19/06/2019 15:03:52
Method File	: IC hept-IPA 90-10.1cm

Peak#	Ret. Time	Height	Area	Area%		
1	6.956	713171	8096626	42.476		
2	7.512	808711	10964849	57.524		
Total		1521882	19061474	100.000		

(R)-3-Allyl-1-benzyl-3-hydroxyindolin-2-one (10g)

Sample Name Date Acquired Method File	Sample Information : jbr 407 p 01 IC 80 20 1mL 20 deg : 29/08/2019 18:25:06 : IC hept-IPA 80-20.lcm
---	--

Peak#	Ret. Time	Height	Area	Area%
1	7.533	1470858	25156483	96.815
2	12.583	34570	827711	3.185
Total		1505428	25984193	100.000

(R)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10h)

(S)-3-Allyl-3-hydroxyindolin-2-one (10i)

DDA Chi c	54000		Peak Table	
Peak#	Ret. Time	Height	Area	Area%
1	6.038	91794	1280110	2.661
2	9.561	2460159	46822341	97.339
Total		2551954	48102451	100.000

6

10

11

12

min

(S)-3-Allyl-1-benzyl-5-chloro-3-hydroxyindolin-2-one (10k)

865435

Total

14510555

100.000

(S)-3-Allyl-1-benzyl-3-hydroxy-5-methoxyindolin-2-one (10n)

Sample Information

(S)-3-Allyl-1-benzyl-6-bromo-3-hydroxyindolin-2-one (10o)

(S)-3-Allyl-1-benzyl-6-chloro-3-hydroxyindolin-2-one (10p)

24679863

25279288

1175925

1211328

2 Total 97.629

100.000

10381128

20286166

51.173

100.000

	Sample Information
Sample Name	; jbr 251 p 01 IC 80 20 1mL 22deg
Date Acquired	: 05/12/2018 14:07:43
Method File	: IC hept-IPA 80-20.1cm

272545

739815

18.233

2 Total

(S)-3-Allyl-1-benzyl-7-bromo-3-hydroxyindolin-2-one (10r)

(S)-3-Allyl-1-benzyl-5,7-dibromo-3-hydroxyindolin-2-one (10s)

(R)-1-Allyl-2,3-dihydro-1H-inden-1-ol (11)

Sample Name

PDA Ch1	254nm			
Peak#	Ret. Time	Height	Area	Area%
1	8.284	18779	208895	51.731
2	9.625	15883	194918	48.269
Total		34662	403813	100.000

6. Copies of NMR Spectra of compounds 10

(S)-3-Allyl-1-benzyl-3-hydroxyindolin-2-one (10a) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10b) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10b) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-(4-methoxybenzyl)indolin-2-one 10c (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-(4-methoxybenzyl)indolin-2-one 10c (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-(methoxymethyl)indolin-2-one (10d) (¹H NMR, 300 MHz, CDCl₃) + 4200

(S)-3-Allyl-3-hydroxy-1-(methoxymethyl)indolin-2-one (10d) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-phenylindolin-2-one (10e) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxy-1-phenylindolin-2-one (10e) (¹³C NMR, 75 MHz, CDCl₃)

(S)-1-Acetyl-3-allyl-3-hydroxyindolin-2-one (10f) (¹H NMR, 300 MHz, CDCl₃)

(S)-1-Acetyl-3-allyl-3-hydroxyindolin-2-one (10f) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxyindolin-2-one (10i) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-3-hydroxyindolin-2-one (10i) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5-bromo-3-hydroxyindolin-2-one (10j) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5-bromo-3-hydroxyindolin-2-one (10j) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5-chloro-3-hydroxyindolin-2-one (10k) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5-chloro-3-hydroxyindolin-2-one (10k) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5-fluoro-3-hydroxyindolin-2-one (10l) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5-fluoro-3-hydroxyindolin-2-one (10l) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-3-hydroxy-5-nitroindolin-2-one (10m) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-3-hydroxy-5-nitroindolin-2-one (10m) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-3-hydroxy-5-methoxyindolin-2-one (10n) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-3-hydroxy-5-methoxyindolin-2-one (10n) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-6-bromo-3-hydroxyindolin-2-one (10o) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-6-bromo-3-hydroxyindolin-2-one (10o) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-6-chloro-3-hydroxyindolin-2-one (10p) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-6-chloro-3-hydroxyindolin-2-one (10p) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-3-hydroxy-6-methoxyindolin-2-one (10q) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-3-hydroxy-6-methoxyindolin-2-one (10q) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-7-bromo-3-hydroxyindolin-2-one (10r) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-7-bromo-3-hydroxyindolin-2-one (10r) (¹³C NMR, 75 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5,7-dibromo-3-hydroxyindolin-2-one (10s) (¹H NMR, 300 MHz, CDCl₃)

(S)-3-Allyl-1-benzyl-5,7-dibromo-3-hydroxyindolin-2-one (10s) (¹³C NMR, 75 MHz, CDCl₃)

(R)-1-Allyl-2,3-dihydro-1H-inden-1-ol (11) (¹H NMR, 300 MHz, CDCl₃)

(R)-1-Allyl-2,3-dihydro-1H-inden-1-ol (11) (¹³C NMR, 75 MHz, CDCl₃)

7. X-Ray of 10h and 10i

D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector, [*], Cu-K α radiation (λ = 1.54178 Å, multilayer monochromator), T = 150(2) K; orthorhombic P 21 21 21 (I.T.#19), a = 7.5291(8), b = 7.4902(8), c = 17.0281(19) Å, V = 960.29(18) Å3. Z = 4, d = 1.309 g.cm-3, μ = 0.740 mm-1. The structure was solved by dual-space algorithm using the SHELXT program,^[26] and then refined with full-matrix least-squares methods based on F2 (SHELXL).^[27] All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Except H1N and H2O hydrogen atoms that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters.

10i: A final refinement on F2 with 1916 unique intensities and 134 parameters converged at ω RF2 = 0.1034 (RF = 0.0376) for 1865 observed reflections with I > 2 σ (I).

10h: A final refinement on F2 with 1990 unique intensities and 139 parameters converged at ω RF2 = 0.2006 (RF = 0.0830) for 1408 observed reflections with I > 2 σ (I).

(S)-3-Allyl-3-hydroxyindolin-2-one (10i)

Empirical formula	C ₁₁ H ₁₁ NO ₂
Formula weight	189.21 g/mol
Temperature	150(2) К
Wavelength	1.54178 Å
Crystal system, space group	orthorhombic, P $2_1 2_1 2_1$

Unit cell dimensions	a = 7.5291(8) Å
	b = 7.4902(8) Å
	c = 17.0281(19) Å
	α = 90 °
	β = 90 °
	γ = 90 °
Volume	960.29(18) Å3
Z, Calculated density	4, 1.309 g.cm-3
Absorption coefficient	0.740 mm-1
F(000)	400
Crystal size	0.600 x 0.270 x 0.200 mm
Crystal color	colourless
Theta range for data collection	6.456 to 74.104 °
h_min, h_max	-9, 9
k_min, k_max	-8, 9
I_min, I_max	-18, 21
Reflections collected / unique	7285 / 1916 [R(int)a = 0.0430]
Reflections [I>2o]	1865
Completeness to theta_max	0.981
Absorption correction type	multi-scan
Max. and min. transmission	0.862, 0.586
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	1916 / 0 / 134
Flack parameter	0.00(12)
bS (Goodness-of-fit)	1.146
Final R indices [I>2o]	R1c = 0.0376, wR2d = 0.1034
R indices (all data)	R1c = 0.0385, wR2d = 0.1042
Largest diff. peak and hole	0.298 and -0.320 eÅ-3

(R)-3-Allyl-3-hydroxy-1-methylindolin-2-one (10h)

Empirical formula	C ₁₂ H ₁₃ NO ₂
Formula weight	203.23 g/mol
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal system, space group	orthorhombic, P $2_1 2_1 2_1$
Unit cell dimensions	a = 7.3607(8) Å
	b = 8.0406(11) Å
	c = 17.598(2) Å
	α = 90 °
	β = 90 °
	γ = 90 °
Volume	1041.5(2) Å3
Z, Calculated density	4, 1.296 g.cm-3
Absorption coefficient	0.718 mm-1
F(000)	432
Crystal size	0.600 x 0.240 x 0.220 mm
Crystal color	colourless
Crystal description	prism
Theta range for data collection	6.519 to 74.603 °
h_min, h_max	-9, 6
k_min, k_max	-9, 9
I_min, I_max	-18, 22
Reflections collected / unique	4737 / 1990 [R(int)a = 0.0566]

Reflections [I>2o]	1408
Completeness to theta_max	0.968
Absorption correction type	multi-scan
Max. and min. transmission	0.854, 0.693
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1990 / 0 / 139
Flack parameter	0.0(4)
bS (Goodness-of-fit)	1.015
Final R indices [I>2σ]	R1c = 0.0830, wR2d = 0.2006
R indices (all data)	R1c = 0.1305, wR2d = 0.2428
Largest diff. peak and hole	0.310 and -0.314 eÅ-3

8. Synthesis of (R) chimonamidine 5

(R)-3-(2-Hydroxyethyl)-3-hydroxy-1-methylindolin-2-one (12)^[28]

(*R*)-3-Allyl-3-hydroxy-1-methylindolin-2-one **(10h)** (81 mg, 0.4 mmol) was dissolved in methanol (2 mL) and water (1 mL) contained in a 10 mL flask. NaIO₄ (214 mg, 1.0 mmol) was introduced, followed by osmium tetroxide (30 μ L, 2.5 wt. % solution in *tert*-butanol). The reaction mixture was stirred vigorously for 6 h, treated with Celite[®], and agitated for an additional 10 minutes prior to filtration. The filtrate was concentrated to 1/3 of its volume under reduced pressure, then extracted with EtOAc (3 × 3 mL). The combined organic phases were washed with brine (2 mL), dried over MgSO₄, and concentrated under reduced pressure. The crude compound was used in the next step without further purification.

To a solution of the above crude compound in MeOH (3 mL) at 0 °C was added NaBH₄ (22.4 mg, 2.0 mmol). After stirring for 1h at this temperature, water (3 mL) was added and the major part of methanol was removed under vacuum. The resulting aqueous solution was extracted with EtOAc (3 x 5 mL). The combined organic phases were washed with brine, dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash column chromatography (Eluent 100 DCM to 80/20 DCM/Acetone) to afford (R)-3-(2-hydroxyethyl)-3-hydroxy-1-methylindolin-2-one **12** (33 mg, 40% yield overall yield from **10h**) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.37 (m, 1H), 7.37 – 7.29 (m, 1H), 7.17 – 7.07 (m, 1H), 6.88 – 6.80 (m, 1H), 4.05 – 3.91 (m, 2H), 3.19 (s, 3H), 2.62 - 252 (m, 2H), 2.31 – 2.16 (m, 1H), 2.07 – 1.96 (m, 1H).

(R)-2-(3-Hydroxy-1-methyl-2-oxoindolin-3-yl)ethyl 4-methylbenzenesulfonate (13)^[28]

To a solution of compound **12** (33 mg, 0.16 mmol) in dry pyridine (2.0 mL) was added ptoluenesulfonyl chloride (46 mg, 0.24 mmol). After stirring for 14 h at room temperature, the reaction mixture was quenched with aqueous HCl solution (1M solution, 5 mL) and AcOEt (5 mL) was added. After stirring at room temperature for 10 min, the organic layer was separated and the aqueous phase was extracted with EtOAc (3 x 5 mL). The combined organic phases were washed with a saturated aqueous K_2CO_3 solution (5 mL), washed with brine (5 mL), dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash
column chromatography (Eluent 100 DCM to 90/10 DCM/Acetone) to afford (*R*)-2-(3-hydroxy-1-methyl-2-oxoindolin-3-yl)ethyl 4-methylbenzenesulfonate **13** (35 mg, 61% yield) as a colorless oil.^[28]

¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.61 (m, 2H), 7.39 – 7.24 (m, 4H), 7.13 – 7.01 (m, 1H), 6.88 – 6.76 (m, 1H), 4.15 – 3.98 (m, 2H), 3.11 (s, 3H), 2.41 (s, 3H), 2.41 – 2.18 (m, 2H).

(*R*)-Chimonamidine (5)^[28-29]

A mixture of compound **13** (35 mg, 0.10 mmol) and a methylamine solution (2 mL, 33 wt % in absolute ethanol) was stirred at 75 °C for 1h30. After concentration of the mixture under vacuum, the resulting crude product was purified by flash column chromatography (Eluent 100 DCM to 85/15 DCM/Acetone) to afford (*R*)-chimonamidine **5** (16mg, 77% yield) as a white solid. $\left[\alpha\right]_{D}^{20} = -43.3$ (c 0.10, CHCl₃), $\left[\alpha\right]_{D}^{20} = -150.2$ (c 0.10, EtOH)

The enantiomeric ratio was determined by HPLC using a Daicel CHIRALPAK[®] ID column, heptane/IPA = 80/20, flow rate = 1.0 mL/min, 254 nm, $t_{(S)}$ = 15.88 min, $t_{(R)}$ = 17.30 min (for the chromatogram refer to page S80), e.r.: 3:97.

¹H NMR (300 MHz, CHCl₃) δ 7.22 (td, J = 8.3, 1.6 Hz, 1H), 6.82 (dd, J = 7.5, 1.6 Hz, 1H), 6.72 (d, J = 8.3 Hz, 1H), 6.64 (td, J = 7.5, 1.2 Hz, 1H), 5.75 (bs, 1H), 3.33-27 (m, 1H), 3.22 (td, J = 9.7, 6.2 Hz, 1H), 2.97 (s, 3H), 2.84 (s, 3H), 2.71 (ddd, J = 12.8, 6.1, 1.4 Hz, 1H), 2.40 (dt, J = 12.8, 9.2 Hz, 1H) ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 148.4, 129.6, 125.6, 124.7, 116.8, 111.8, 79.9, 45.9, 33.2, 30.4, 30.1

After 95 h at room temperature in $CDCl_3$ (c = 0.04 M), we observed by ¹H NMR the apparition of a new defined compound in a 80:20 ratio in favor of **5**. The structure of this compound was unambiguously attributed to **14** by the reaction below.

(R)-3-Hydroxy-1-methyl-3-(2-(methylamino)ethyl)indolin-2-one (14)

(*R*)-Chimonamidine (5 mg, 0. 23 mmol) was treated by a solution of TFA in toluene (1 mL, 1 M) for 30 min at room temperature. The reaction mixture was heated to 60 °C for 5 min and concentrated under vacuum at this temperature during 30 min. The reaction mixture is cooled at room temperature and DCM (2 mL) was added followed by an aqueous solution of K_2CO_3 (2 mL, 1 M). The biphasic mixture was stirred at room temperature for 30 min. The organic layer was separated and the aqueous phase was extracted with DCM (3 x 2 mL). The combined organic phases were washed with distilled water (2 mL), dried over MgSO₄ and concentrated under vacuum to afford 4.0 mg (80% yield) of **14** as a colorless syrup.

 $[\alpha]_{D}^{20}$ = + 23.2 (c 0.10, EtOH)

¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.35 (m, 1H), 7.32 – 7.26 (m, 1H), 7.11 – 7.04 (m, 1H), 6.82 – 6.77 (m, 1H), 3.57 - 3.48 (m, 1H), 3.17 (s, 3H), 2.94 - 2.87 (m, 1H), 2.54 (s, 3H), 2.09 - 1.99 (m, 1H), 1.81 - 1.73 (m, 1H)

¹³C NMR (**75** MHz, CDCl₃) δ 178.7, 142.9, 132.2, 129.3, 123.7, 123.0, 108.3, 46.8, 36.1, 34.7, 29.9, 26.2

HRMS (ESI): m/z. calcd. for C₁₂H₁₆N₂O₂Na [M+Na]⁺ 243.1104; found 243.1102

Upon standing for 30 days at room temperature in $CDCl_3$ (c = 0.04M), an equilibrium between **5** and **14** was reached in a 72:28 ratio in favor of **5**.

9. Chiral HPLC chromatogram for (R)-chimonamidine

Sample NameSample InformationSample Name: jbr chimo ID_80_20_1mL_20degDate Acquired: 21/11/2019 15:56:13Method File: ID hept-IPA 80-20.lcm

Peak#	Ret. Time	Height	Area	Area%
1	15.883	18391	565834	2.900
2	17.305	490407	18945944	97.100
Total		508798	19511778	100.000

10. Copies of NMR spectra of chimonamidine derivatives

(R)-3-hydroxy-3-(2-hydroxyethyl)-1-methylindolin-2-one (12) (¹H NMR, 300 MHz, CDCl₃)

(R)-2-(3-hydroxy-1-methyl-2-oxoindolin-3-yl)ethyl 4-methylbenzenesulfonate (13) (¹H NMR, 300 MHz, CDCl₃)

Chimonamidine (5) (¹H NMR, 300 MHz, CDCl₃)

Chimonamidine (5) (¹³C NMR, 300 MHz, CDCl₃)

(R)-3-hydroxy-1-methyl-3-(2-(methylamino)ethyl)indolin-2-one (14) (¹H NMR, 300 MHz, CDCl₃)

(R)-3-hydroxy-1-methyl-3-(2-(methylamino)ethyl)indolin-2-one (14) (¹³C NMR, 300 MHz, CDCl₃)

Chimonamidine (5) after 95h at room temperature (c = 0.04 M, CDCl₃) (¹H NMR, 300 MHz, CDCl₃)

Chimonamidine (5) after 95h at room temperature (c = 0.04 M, CDCl₃) (¹H NMR, 300 MHz, CDCl₃)

Chimonamidine (5) after 95h at room temperature (c = 0.04 M, CDCl₃) (¹³C NMR, 300 MHz, CDCl₃)

11. Bibliography for the experimental section

- [1] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. **1997**, 62, 7512-7515.
- [2] J. M. Ellis, L. E. Overman, H. R. Tanner, J. Wang, J. Org. Chem. 2008, 73, 9151-9154.
- [3] M. Ošeka, M. Kimm, S. Kaabel, I. Järving, K. Rissanen, T. Kanger, Org. Lett. 2016, 18, 1358-1361.
- [4] Y.-C. Lee, S. Patil, C. Golz, C. Strohmann, S. Ziegler, K. Kumar, H. Waldmann, *Nat. Commun.* **2017**, *8*, 14043.
- [5] K. C. Majumdar, A. K. Kundu, P. Chatterjee, J. Chem. Res., Synop. **1996**, 460-461.
- [6] R. Shintani, M. Inoue, T. Hayashi, Angew. Chem. Int. Ed. 2006, 45, 3353-3356.
- [7] D. J. Vyas, R. Fröhlich, M. Oestreich, J. Org. Chem. **2010**, 75, 6720-6723.
- [8] K. Aikawa, S. Mimura, Y. Numata, K. Mikami, *Eur. J. Org. Chem.* **2011**, *2011*, 62-65.
- [9] C. Fischer, C. Meyers, E. M. Carreira, *Helv. Chim. Acta* **2000**, *83*, 1175-1181.
- [10] J. Itoh, S. B. Han, M. J. Krische, Angew. Chem. Int. Ed. **2009**, 48, 6313-6316.
- [11] A. Lerchner, E. M. Carreira, J. Am. Chem. Soc. 2002, 124, 14826-14827.
- [12] K. L. Vine, J. M. Locke, M. Ranson, S. G. Pyne, J. B. Bremner, J. Med. Chem. 2007, 50, 5109-5117.
- [13] H. C. Brown, U. S. Racherla, P. J. Pellechia, J. Org. Chem. **1990**, 55, 1868-1874.
- [14] C. G. Watson, A. Balanta, T. G. Elford, S. Essafi, J. N. Harvey, V. K. Aggarwal, J. Am. Chem. Soc. 2014, 136, 17370-17373.
- [15] T. R. Wu, L. Shen, J. M. Chong, Org. Lett. 2004, 6, 2701-2704.
- [16] aD. Uraguchi, K. Sorimachi, M. Terada, J. Am. Chem. Soc. 2004, 126, 11804-11805; bT.
 Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. Int. Ed. Engl. 2004, 43, 1566-1568.
- [17] G. Pousse, A. Devineau, V. Dalla, L. Humphreys, M.-C. Lasne, J. Rouden, J. Blanchet, *Tetrahedron* **2009**, *65*, 10617-10622.
- [18] M. Rueping, B. J. Nachtsheim, R. M. Koenigs, W. Ieawsuwan, *Chem. Eur. J.* **2010**, *16*, 13116-13126.
- [19] M. D. Greenhalgh, S. M. Smith, D. M. Walden, J. E. Taylor, Z. Brice, E. R. T. Robinson, C. Fallan, D. B. Cordes, A. M. Z. Slawin, H. C. Richardson, M. A. Grove, P. H.-Y. Cheong, A. D. Smith, Angew Chem Int Ed Engl **2018**, *57*, 3200-3206.
- [20] X.-C. Qiao, S.-F. Zhu, Q.-L. Zhou, *Tetrahedron Asymmetry* **2009**, *20*, 1254-1261.
- [21] T. Wang, X.-Q. Hao, J.-J. Huang, K. Wang, J.-F. Gong, M.-P. Song, *Organometallics* **2014**, *33*, 194-205.
- [22] D. Sano, K. Nagata, T. Itoh, Org. Lett. 2008, 10, 1593-1595.
- [23] D. Ghosh, N. Gupta, S. H. R. Abdi, S. Nandi, N.-u. H. Khan, R. I. Kureshy, H. C. Bajaj, Eur. J. Org. Chem. 2015, 2015, 2801-2806.
- [24] D. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner, A. H. Hoveyda, *Nature* **2013**, *494*, 216-221.
- [25] aD. S. Barnett, P. N. Moquist, S. E. Schaus, Angew. Chem. Int. Ed. 2009, 48, 8679-8682;
 bE. Canales, K. G. Prasad, J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 11572-11573;
 cM. Wadamoto, H. Yamamoto, J. Am. Chem. Soc. 2005, 127, 14556-14557.
- [26] G. M. Sheldrick, *Acta cryst. A* **2015**, *71*, 3-8.
- [27] G. M. Sheldrick, Acta cryst. C 2015, 71, 3-8.

- [28] aW.-B. Chen, X.-L. Du, L.-F. Cun, X.-M. Zhang, W.-C. Yuan, *Tetrahedron* 2010, 66, 1441-1446; bU. V. Subba Reddy, M. Chennapuram, K. Seki, C. Seki, B. Anusha, E. Kwon, Y. Okuyama, K. Uwai, M. Tokiwa, M. Takeshita, H. Nakano, *Eur. J. Org. Chem.* 2017, 2017, 3874-3885.
- [29] aM. Moskowitz, C. Wolf, *Angew. Chem., Int. Ed.* **2019**, *58*, 3402-3406; bH. Takayama, Y. Matsuda, K. Masubuchi, A. Ishida, M. Kitajima, N. Aimi, *Tetrahedron* **2004**, *60*, 893-900.