Supporting Information

For

Synthesis of indolizines from pyridiniium 1,4-zwitterionic thiolates and propiolic acid derivatives via a formal [4 + 1] pathway

Bin Cheng,^{*a,b} Hui Li,^{‡a,b} Shengguo Duan,^{‡a,c} Xinping Zhang,^{a,b} Yixuan He,^{a,b} Yuntong Li,^a Yun Li,^a Taimin Wang,^{*b} and Hongbin Zhai^{*a,b,d}

^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

^b Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; e-mail: chengbin@szpt.edu.cn; wangtm@szpt.edu.cn ^c Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China

^d State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China; e-mail: zhaihb@pkusz.edu.cn

[‡] These authors contributed equally to this work

List of contents

1. General Information ·····	·····S2
2. Experimental Procedure	·····\$2-\$4
3. References ·····	······S4
4. Optimization Table of the Reaction Conditions	······85
5. Characterization Data ·····	······S6-S12
6. Copies of NMR spectra ·····	·······S13-S38

1. General Information

All isolated compounds were characterized on Varian 300, Bruker 400, JEOL 400 MHz spectrometers in CDCl₃ or (CD₃)₂SO. Chemical shifts were reported as δ values relative to internal CHCl₃ (δ 7.26 for ¹H NMR and 77.16 for ¹³C NMR) and (CH₃)₂SO (δ 2.50 for ¹H NMR and δ 39.52 for ¹³C NMR). High-resolution mass spectra (HRMS) were obtained on a 4G mass spectrometer by using electrospray ionization (ESI) analyzed by quadrupole time-of-flight (QTof). All melting points were measured with the samples after column chromatography and uncorrected. Column chromatography was performed on silica gel. Pyridinium 1,4-zwitterionic thiolates were prepared according to the literature.¹ **12s–16s** are new compounds as shown below.

2. Experimental Procedure

(1) General Experimental Procedure for Indolizines 3–21. To a solution of pyridinium 1,4-zwitterionic thiolate (0.5 mmol) and propiolic acid derivative (2.0 mmol, 4 equiv) in CH_2Cl_2 (5 mL) were added TEA (1.0 mmol, 2 equiv), 4 Å MS (150 mg) and K_2CO_3 (1.0 mmol, 2 equiv) at RT. Then the mixture was stirred at 30 °C. After completion as monitored by TLC, the crude reaction mixture was directly purified by column chromatography on silica gel to give the corresponding indolizine.

(2) Experimental Procedure of Indolizine 22. To a solution of pyridinium 1,4-zwitterionic thiolate 14s (164 mg, 0.500 mmol) and methyl propiolate (0.18 mL, 2.0 mmol, 4 equiv) in CH_2Cl_2 (5 mL) were added TEA (0.14 mL, 1.0 mmol, 2 equiv), 4Å MS (150 mg) and K₂CO₃ (138 mg, 1.00 mmol, 2 equiv) at RT. Then the mixture was stirred at 30 °C. After completion of the cascade annulation reaction as monitored by TLC, TFA (0.37 mL, 5.0 mmol, 10 equiv) was added slowly at RT. After completion of hydrolysis reaction (checked by TLC), the excess of TFA was neutralized with saturated solution of NaHCO₃ and then the mixture was extracted with CH_2Cl_2 . The combinded organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the indolizine product 22 (112 mg, 67% for 2 steps) as a yellow solid.

Scale-up experiment of 22: To a solution of pyridinium 1,4-zwitterionic thiolate **14s** (2.0 g, 6.1 mmol) and methyl propiolate (2.17 mL, 24.4 mmol, 4 equiv) in DCM (60 mL) were added TEA

(1.70 mL, 12.2 mmol, 2 equiv), 4Å MS (1.8 g) and K_2CO_3 (1.69 g, 12.2 mmol, 2 equiv) at RT. Then the mixture was stirred at 30 °C. After completion of pyridinium 1,4-zwitterionic thiolate **14s** as monitored by TLC, TFA (4.4 mL, 60 mmol, 10.0 equiv) was added slowly at RT, after completion of reaction (checked by TLC), the excess of TFA was neutralized with saturated solution of NaHCO₃ and then the mixture was extracted with CH₂Cl₂. The combinded organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified purified by column chromatography on silica gel to afford the indolizine product **22** (1.3 g, 64% for 2 steps) as a yellow solid.

(3) Experimental Procedure for the Preparation of 23a. To a solution of compound 22 (100 mg, 0.300 mmol) in anhydrous MeOH (5.0 mL), benzylamine was added (45 mg, 0.42 mmol, 1.4 equiv) under argon at RT. After stirring for 6 h at RT, the reaction mixture was allowed to cool to 0 $^{\circ}$ C and NaBH₄ (16 mg, 0.42 mmol, 1.4 equiv) was added. After an additional 1 h at 0 $^{\circ}$ C, the reaction was quenched with aqueous NH₄Cl (10 mL) and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to gave product 23a (119 mg, 94%) as a yellow oil.

(4) Experimental Procedure for the Preparation of 23b. To a solution of compound 22 (100 mg, 0.300 mmol) in MeOH (5 mL), NaBH₄ (17 mg, 0.45 mmol, 1.5 equiv) was added at -40 °C. The reaction mixture was warmed to 0 °C and stirred for 1 h. The reaction was quenched with aqueous NH₄Cl and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the product **23b** (80 mg, 80%) as a yellow solid.

(5) Experimental Procedure for the Preparation of 24.To a solution of compound 22 (100 mg, 0.300 mmol) in MeOH (4 mL) was added a solution of KOH (44 mg, 0.78 mmol, 2.6 equiv) and iodine (99 mg, 0.39 mmol, 1.3 equiv) in MeOH (2 mL) at 0 °C. After completion of reaction (checked by TLC), the reaction was quenched with aqueous NH_4Cl and extracted with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na_2SO_4 and concentrated in vacuo. The

residue was purified by column chromatography on silica gel to give the product **24** (61 mg, 56%) as a yellow solid.

(6) Experimental Procedure for the Preparation of 25d. To a solution of methyltriphenylphosphonium iodide (182 mg, 0.450 mmol, 1.5 equiv) in THF (5 mL) was added potassium *tert*-butoxide (50 mg, 0.45 mmol, 1.5 equiv) at 0 °C. The canary yellow mixture was stirred vigorously for 30 min. The compound **22** (100 mg, 0.300 mmol) was added and stirring was continued for 15 min at 0 °C. The reaction was quenched with aqueous NH₄Cl and extracted with EtOAc. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **25d** (75 mg, 76%) as a yellow solid.

(7) Experimental Procedure for the Preparation of 25e. To a solution of compound 22 (100 mg, 0.300 mmol) in toluene (5 mL), ethyl 2-(triphenyl- λ^5 -phosphanylidene)acetate (136 mg, 0.390 mmol, 1.3 equiv) was added. The mixture was heated and stirred at 110 °C until completion of the reaction (checked by TLC). After cooling, the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel to give the product 25e (108 mg, 89%) as a yellow solid.

(8) Experimental Procedure for the Preparation of 26. A mixture of *o*-phenylenediamine (32 mg, 0.30 mmol), compound 22 (100 mg, 0.300 mmol), L-proline (41 mg, 0.36 mmol, 1.2 equiv), and 4Å MS (100 mg) in MeCN (2 mL) was stirred under reflux for 8 h. After completion of the reaction (checked by TLC), the reaction mixture was diluted with large amount of CH_2Cl_2 and washed with brine. The organic phase was dried over Na_2SO_4 and concentrated under vacuum. The resulting crude product was purified by column chromatography on silica gel to give the product 26 (93 mg, 74%) as a yellow solid.

3. References

(1) L. Moafi, S. Ahadi, H. R. Khavasi, A. Bazgir, Synthesis 2011, 1399.

4. Optimization Table of the Reaction Conditions

Table S1

Entry	1:2':TEA	Additive	Solvent	Time	4 Å MS	Yield ^b (%)
1	1:4:2	/	DCM	11 h	-	56
2	1:4:2	/	DCM	11 h	+	59
3	1:4:2	CsF	DCM	24 h	+	55
4	1:4:2	KF	DCM	24 h	+	54
5	1:4:2	DBU	DCM	24 h	+	30
6	1:4:2	DABCO	DCM	24 h	+	31
7	1:4:2	pyridine	DCM	11 h	+	61
8	1:4:2	(^t Bu)₃N	DCM	24 h	+	64
9	1:4:2	DMAP	DCM	24 h	+	43
10	1:4:2	Na ₂ CO ₃	DCM	24 h	+	64
11	1:4:2	K ₂ CO ₃	DCM	<24 h	+	67
12	1:4:2	Cs ₂ CO ₃	DCM	24 h	+	57
13	1:4:2	NaHCO ₃	DCM	24 h	+	59
14	1:4:2	КОАс	DCM	24 h	+	62
15	1:4:2	КОН	DCM	24 h	+	55
16	1:4:2	NaOH	DCM	24 h	+	60

^{*a*} Reaction conditions: **1** (0.2 mmol), **2'**, TEA, additive (2 equiv), 4 Å MS (90 mg), Solvent (2 mL), 30 ^oC, in air. ^{*b*}The yields were determined by ¹H-NMR using 1,3,5-trimethoxybenzene as the internal standard.

5. Characterization Data

3 (102 mg, Y = 64%, $R_f = 0.57$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 46–47 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.32 (d, *J* = 7.2 Hz, 1H), 7.51 (d, *J* = 9.2 Hz, 1H), 7.04 (ddd, *J* = 9.2, 6.8, 1.2 Hz, 1H), 6.84 (td, *J* = 7.0, 1.6 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 3.78 (s, 2H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 165.5, 160.0, 134.2, 126.1, 126.0, 121.6, 116.7, 113.5, 110.4, 106.4, 60.2, 51.5, 50.8, 29.3, 13.5; ESI-HRMS *m*/*z* calcd for C₁₆H₁₈NO₆ [M + H]⁺ 320.1129, found 320.1123.

4 (104 mg, Y = 68%, R_f = 0.36 (PE:EA = 2:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (d, *J* = 7.2 Hz, 1H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.09–7.02 (m, 1H), 6.85 (t, *J* = 7.2 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 3.80 (s, 2H), 3.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 166.5, 161.0, 135.1, 127.3, 126.9, 122.6, 117.5, 114.4, 111.1, 106.7, 52.5, 52.2, 51.6, 30.0; ESI-HRMS *m*/*z* calcd for C₁₅H₁₆NO₆ [M + H]⁺ 306.0972, found 306.0966.

5 (104 mg, Y = 60%, $R_f = 0.25$ (PE:EA = 5:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (d, J = 6.8 Hz, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.06 (t, J = 7.4 Hz,1H), 6.84 (t, J = 6.4 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 3H), 3.69 (s, 2H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 166.6, 161.0, 135.2, 127.3, 127.0, 122.4, 117.8, 114.3, 111.0, 107.6, 81.2, 52.4, 51.6, 31.5, 28.1; ESI-HRMS m/z calcd for C₁₈H₂₂NO₆ [M + H]⁺ 348.1442, found 348.1435.

6 (120 mg, Y = 63%, $R_f = 0.37$ (PE:EA = 2:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (d, *J* = 7.2 Hz, 1H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.41–7.26 (m, 5H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.85 (t, *J* = 7.0 Hz, 1H), 5.10 (s, 2H), 3.88 (s, 3H), 3.86 (s, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 166.4, 161.0, 135.8, 135.1, 128.5, 128.3, 128.3, 127.2, 127.0, 122.6, 117.6, 114.4, 111.2, 106.7, 66.9, 52.4, 51.6, 30.2; ESI-HRMS *m*/*z* calcd for C₂₁H₂₀NO₆ [M + H]⁺ 382.1285, found 382.1278.

7 (123 mg, Y = 57%, $R_f = 0.25$ (PE:EA = 5:1)) was isolated as a yellow solid; mp 47–48 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, *J* = 7.2 Hz, 1H), 7.84–7.77 (m, 3H), 7.75 (s, 1H), 7.53–7.47 (m, 3H), 7.40 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.06–7.00 (m, 1H), 6.86 (td, *J* = 7.2, 1.6 Hz, 1H), 5.27 (s, 2H), 3.89 (s, 2H), 3.89 (s, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 166.5, 161.1, 135.2, 133.3, 133.2, 128.4, 128.1, 127.8, 127.4, 127.3, 127.0, 126.4 (2C), 125.9, 122.7, 117.7, 114.4, 111.3, 106.7, 67.0, 52.5, 51.7, 30.3, (1C peak is merged with other peaks); ESI-HRMS *m*/*z* calcd for C₂₅H₂₂NO₆ [M + H]⁺ 432.1442, found 432.1435.

8 (130 mg, Y = 70%, $R_f = 0.26$ (PE:EA = 3:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (d, *J* = 7.2 Hz, 1H), 7.48 (d, *J* = 9.2 Hz, 1H), 7.40 (s, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.86 (t, *J* = 6.8 Hz, 1H), 6.40–6.32 (m, 2H), 5.05 (s, 2H), 3.87 (s, 6H), 3.83 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 166.4, 161.0, 149.4, 143.3, 135.2, 127.3, 127.0, 122.6, 117.6, 114.4, 111.3, 110.9, 110.7, 106.5, 58.7, 52.5, 51.7, 30.0; ESI-HRMS *m*/*z* calcd for C₁₉H₁₈NO₇ [M + H]⁺ 372.1078, found 372.1087.

10 (57 mg, Y = 30%, $R_f = 0.30$ (PE:EA = 1:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.30 (d, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.38–7.29 (m, 2H), 7.22 (d, *J* = 7.2 Hz, 2H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.81 (t, *J* = 6.8 Hz, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.63 (s, 2H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 166.7, 161.1, 144.1, 135.3, 130.0, 128.0, 127.5, 127.1, 127.0, 122.1, 118.0, 114.2, 110.9, 108.3, 52.4, 51.6, 37.9, 29.9; ESI-HRMS *m*/*z* calcd for C₂₁H₂₁N₂O₅ [M + H]⁺ 381.1445, found 381.1441.

11 (107 mg, Y = 64%, $R_f = 0.25$ (PE:EA = 5:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (d, *J* = 7.2 Hz, 1H), 7.49 (d, *J* = 9.0 Hz, 1H), 7.03 (t, *J* = 6.8 Hz, 1H), 6.82 (t, *J* = 6.8 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.78 (s, 2H), 3.63 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 166.0, 160.6, 135.0, 127.2, 122.5, 117.4, 114.2, 111.1, 106.3, 61.4, 60.3, 52.1, 29.9, 14.3, 14.2, (1C peak is merged with other peaks); ESI-HRMS *m*/*z* calcd for C₁₇H₂₀NO₆ [M + H]⁺ 334.1285, found 334.1280.

12 (114 mg, Y = 63%, $R_f = 0.29$ (PE:EA = 5:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (d, *J* = 7.2 Hz, 1H), 7.49 (d, *J* = 9.2 Hz, 1H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.80 (t, *J* = 6.8 Hz, 1H), 5.31–5.18 (m, 2H), 3.76 (s, 2H), 3.63 (s, 3H), 1.39 (d, *J* = 6.4 Hz, 6H), 1.33 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 165.3, 160.1, 135.0, 127.8, 127.2, 122.4, 117.4, 114.0, 111.2, 105.7, 69.2, 68.1, 52.1, 30.0, 22.0, 21.9; ESI-HRMS *m*/*z* calcd for C₁₉H₂₄NO₆ [M + H]⁺ 362.1598, found 362.1591.

13 (140 mg, Y = 74%, $R_f = 0.24$ (PE:EA = 5:1)) was isolated as a yellow solid; mp 76–77 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, *J* = 7.2 Hz, 1H), 7.57 (s, 1H), 6.91 (dd, *J* = 7.6, 1.2 Hz, 1H), 5.76 (s, 1H), 4.09–3.97 (m, 4H), 3.89 (s, 3H), 3.84 (s, 3H), 3.79 (s, 2H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 166.2, 160.8, 134.3, 132.8, 127.2, 127.0, 115.1, 112.4, 111.6, 107.7, 102.4, 65.4, 52.4, 52.1, 51.6, 29.8; ESI-HRMS *m*/*z* calcd for C₁₈H₂₀NO₈ [M + H]⁺ 378.1183, found 378.1176.

14 (142 mg, Y = 75%, $R_f = 0.33$ (PE:EA = 2:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, *J* = 7.2 Hz, 1H), 7.58 (s, 1H), 6.90 (d, *J* = 7.2 Hz, 1H), 5.36 (s, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 3.80 (s, 2H), 3.63 (s, 3H), 3.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 166.3, 160.9, 134.6, 133.0, 127.1, 127.0, 115.3, 113.0, 111.5, 107.5, 101.3, 52.6, 52.4, 52.2, 51.6, 29.8; ESI-HRMS *m*/*z* calcd for C₁₈H₂₂NO₈ [M + H]⁺ 380.1340, found 380.1335.

15 (135 mg, Y = 69%, $R_f = 0.32$ (PE:EA = 2:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, *J* = 7.6 Hz, 1H), 7.58 (s, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 4.06–4.00 (m, 2H), 3.90 (s, 3H), 3.85 (s, 3H), 3.80 (s, 2H), 3.79–3.74 (m, 2H), 3.64 (s, 3H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 166.3, 160.9, 138.1, 134.6, 127.3, 127.2, 113.2, 112.5, 111.3, 108.0, 107.3, 64.7, 52.4, 52.2, 51.6, 29.8, 26.8; ESI-HRMS *m*/z calcd for C₁₉H₂₂NO₈ [M + H]⁺ 392.1340, found 392.1340.

16 (25 mg, Y = 15%, $R_f = 0.27$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 64–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, *J* = 7.6 Hz, 1H), 6.70 (d, *J* = 2.4 Hz, 1H), 6.58 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.93 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 3.73 (s, 2H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 166.7, 160.9, 156.0, 136.8, 128.7, 127.9, 109.8, 109.2, 104.5, 94.5, 55.6, 52.5, 52.2, 51.5, 30.1; ESI-HRMS *m*/*z* calcd for C₁₆H₁₈NO₇ [M + H]⁺ 336.1078, found 336.1077.

21 (57 mg, Y = 37%, $R_f = 0.35$ (PE:EA = 1:1)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.29–8.22 (m, 1H), 7.82 (d, *J* = 9.2 Hz, 1H), 6.73 (dd, *J* = 9.2, 4.4 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 2H), 3.88 (s, 3H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 164.8, 161.0, 144.8, 126.8, 126.7, 120.3, 120.2, 112.8, 107.6, 52.6, 52.3, 52.2, 29.7; ESI-HRMS *m*/*z* calcd for C₁₄H₁₅N₂O₆ [M + H]⁺ 307.0921, found 307.0921.

22 (112 mg, Y = 67%, $R_f = 0.33$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 137–138 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 9.26 (d, *J* = 7.6 Hz, 1H), 8.04–8.00 (m, 1H), 7.29 (dd, *J* = 7.6, 1.6 Hz, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 3.90 (s, 2H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 170.7, 165.5, 160.6, 133.3, 130.0, 127.4 (2C), 124.4, 114.8, 112.5, 110.1, 52.7, 52.5, 52.2, 30.1; ESI-HRMS *m*/*z* calcd for C₁₆H₁₆NO₇ [M + H]⁺ 334.0921, found 334.0919.

23a (119 mg, Y = 94%, $R_f = 0.33$ (EA)) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.30 (d, *J* = 7.6 Hz, 1H), 7.46 (s, 1H), 7.34 (d, *J* = 4.4 Hz, 4H), 7.29–7.25 (m, 1H), 6.91 (dd, *J* = 7.6, 2.0 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.82 (s, 4H), 3.81 (s, 2H), 3.67 (s, 3H), 1.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 166.6, 161.0, 139.9, 135.8, 135.3, 128.6, 128.3, 127.3, 127.2, 115.3, 111.0, 106.4, 53.2, 52.5, 52.3, 52.2, 51.6, 30.0, (2C peak is merged with other peaks); ESI-HRMS *m*/*z* calcd for C₂₃H₂₅N₂O₆ [M + H]⁺ 425.1707, found 425.1706.

23b (80 mg, Y = 80%, $R_f = 0.21$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 107–108 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 7.2 Hz, 1H), 7.35 (s, 1H), 6.67 (d, J = 7.6 Hz, 1H), 4.61 (s, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 3.72 (s, 2H), 3.65 (s, 3H), 2.92 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 166.8, 160.9, 136.7, 135.0, 127.0, 126.8, 113.3 (2C), 110.9, 106.6, 63.7, 52.6, 52.2, 51.7, 29.8; ESI-HRMS *m*/*z* calcd for C₁₆H₁₈NO₇ [M + H]⁺ 336.1078, found 336.1079.

24 (61 mg, Y = 56%, $R_f = 0.19$ (PE:EA = 3:1)) was isolated as a yellow soild; mp 128–129 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.28 (d, *J* = 7.6 Hz, 1H), 8.28–8.23 (m, 1H), 7.38 (dd, *J* = 7.2, 1.6 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.90 (s, 3H), 3.88 (s, 2H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 165.9, 165.5, 160.8, 133.7, 127.4, 126.7, 123.7, 120.7, 113.7, 113.2, 111.0, 52.7, 52.6, 52.4, 52.1, 30.0; ESI-HRMS *m*/*z* calcd for C₁₇H₁₈NO₈ [M + H]⁺ 364.1027, found 364.1029.

25d (75 mg, Y = 76%, $R_f = 0.31$ (PE:EA = 3:1)) was isolated as a yellow soild; mp 106–107 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, *J* = 7.6 Hz, 1H), 7.34 (s, 1H), 7.00 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.66 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.78 (d, *J* = 17.6 Hz, 1H), 5.36 (d, *J* = 10.8 Hz, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.79 (s, 2H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 166.3, 160.9, 135.1, 134.8, 132.3, 127.3, 127.0, 116.0, 115.5, 111.7, 111.4, 107.7, 52.5, 52.2, 51.7, 30.0; ESI-HRMS *m*/*z* calcd for C₁₇H₁₈NO₆ [M + H]⁺ 332.1129, found 332.1123.

25e (108 mg, Y = 89%, $R_f = 0.32$ (PE:EA = 2:1)) was isolated as a yellow solid; mp 147–148 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.20 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 16.0 Hz, 1H), 7.54 (s, 1H), 6.98 (d, J = 7.2 Hz, 1H), 6.41 (d, J = 16 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.92 (s, 3H), 3.87 (s, 3H), 3.81 (s, 2H), 3.66 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 166.6, 165.9, 160.8, 141.9, 134.4, 128.9, 127.4, 127.2, 119.8, 119.3, 113.0, 111.2, 109.6, 60.8, 52.5, 52.3, 51.9, 30.0, 14.4; ESI-HRMS *m*/*z* calcd for C₂₀H₂₂NO₈ [M + H]⁺ 404.1340, found 404.1337.

26 (93 mg, Y = 74%, $R_f = 0.17$ (PE:EA = 1:1)) was isolated as a yellow solid; mp 107–108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 7.2 Hz, 1H), 7.97 (s, 1H), 7.50 (br s, 1H), 7.28–7.13 (m, 4H), 3.89 (s, 3H), 3.83 (s, 3H), 3.75 (s, 2H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 166.2, 159.9, 149.0, 134.3, 126.8 (2C), 123.8, 123.0, 114.7, 112.4, 112.1, 108.5, 52.8, 52.6, 51.6, 29.7, (5C peak is merged with other peaks); ESI-HRMS *m/z* calcd for C₂₂H₂₀N₃O₆ [M + H]⁺ 422.1347, found 422.1344.

12s ($R_f = 0.33$ (EA)) was obtained as a yellow solid; mp 142–143 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.92–8.85 (m, 2H), 8.64–8.56 (m, 1H), 8.15–8.08 (m, 2H), 5.04–4.95 (m, 1H), 4.93–4.84 (m, 1H), 1.27 (d, J = 6.4 Hz, 6H), 1.12 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 178.1, 167.8, 159.2, 148.8, 145.7, 127.5, 125.0, 67.6, 67.4, 21.6, 21.4; ESI-HRMS m/z calcd for C₁₅H₂₀NO₄S [M + H]⁺ 310.1108, found 310.1107.

13s ($R_f = 0.33$ (EA)) was obtained as a yellow solid; mp 195–196 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.94 (d, J = 6.8 Hz, 2H), 8.15 (d, J = 6.8 Hz, 2H), 6.14 (s, 1H), 4.12–4.04 (m, 4H), 3.72 (s, 3H), 3.56 (s, 3H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 178.2, 168.9, 160.0, 156.2, 149.2, 125.0, 124.6, 99.8, 65.5, 51.9, 51.5; ESI-HRMS *m*/*z* calcd for C₁₄H₁₆NO₆S [M + H]⁺ 326.0693, found 326.0692.

14s ($R_f = 0.40$ (EA)) was obtained as a yellow solid; mp 155–156 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.91 (d, J = 6.4 Hz, 2H), 8.08 (d, J = 6.8 Hz, 2H), 5.74 (s, 1H), 3.72 (s, 3H), 3.56 (s, 3H), 3.39 (s, 6H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 178.3, 168.9, 160.0, 156.1, 149.0, 125.3, 124.5, 100.2, 54.0, 51.9, 51.5; ESI-HRMS m/z calcd for C₁₄H₁₈NO₆S [M + H]⁺ 328.0849, found 328.0846.

15s ($R_f = 0.40$ (EA)) was obtained as a yellow solid; mp 175–176 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.90 (d, J = 6.8 Hz, 2H), 8.12 (d, J = 6.8 Hz, 2H), 4.14–4.06 (m, 2H), 3.85–3.79 (m, 2H), 3.72 (s, 3H), 3.56 (s, 3H), 1.68 (s, 3H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 178.3, 168.9, 160.8, 160.1, 149.1, 124.4, 124.1, 106.7, 65.1, 51.9, 51.6, 25.8; ESI-HRMS m/z calcd for C₁₅H₁₈NO₆S [M + H]⁺ 340.0849, found 340.0849.

1' ($R_f = 0.17$ (EA)) was obtained as a yellow solid; mp 175–176 °C. ¹H NMR (400 MHz, (CD₃)₂SO) δ 9.90 (d, J = 6.0 Hz, 1H), 9.71 (d, J = 4.4 Hz, 1H), 8.77–8.70 (m, 1H), 8.64–8.57 (m, 1H), 3.73 (s, 3H), 3.56 (s, 3H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 178.3, 168.7, 159.9, 155.1, 154.3, 136.8, 135.4, 127.0, 52.1, 51.5; ESI-HRMS *m*/*z* calcd for C₁₀H₁₁N₂O₄S [M + H]⁺ 255.0434, found 255.0435.

Fig. S2 ¹³C NMR of compound 3 (75 MHz, CDCl₃)

Fig. S4 ¹³C NMR of compound 4 (100 MHz, CDCl₃)

Fig. S6 ¹³C NMR of compound 5 (100 MHz, CDCl₃)

Fig. S8 ¹³C NMR of compound 6 (100 MHz, CDCl₃)

Fig. S10¹³C NMR of compound 7 (100 MHz, CDCl₃)

Fig. S12 ¹³C NMR of compound 8 (100 MHz, CDCl₃)

Fig. S14 ¹³C NMR of compound 10 (100 MHz, CDCl₃)

Fig. S16¹³C NMR of compound 11 (100 MHz, CDCl₃)

Fig. S18 ¹³C NMR of compound 12 (100 MHz, CDCl₃)

$\left. \begin{array}{c} & < 9.286 \\ & < 9.260 \\ & -7.567 \\ & -7.567 \\ & -7.560 \\ & 6.903 \\ & 6.903 \\ & 6.903 \\ & 6.903 \\ & 6.903 \\ & 6.903 \\ & 6.903 \\ & 6.903 \\ & -5.76$

Fig. S20¹³C NMR of compound 13 (100 MHz, CDCl₃)

Fig. S22 ¹³C NMR of compound 14 (100 MHz, CDCl₃)

Fig. S24 ¹³C NMR of compound 15 (100 MHz, CDCl₃)

Fig. S26¹³C NMR of compound 16 (100 MHz, CDCl₃)

Fig. S28 ¹³C NMR of compound 21 (100 MHz, CDCl₃)

Fig. S30 ^{13}C NMR of compound 22 (100 MHz, CDCl₃)

Fig. S32 ¹³C NMR of compound 23a (100 MHz, CDCl₃)

Fig. S34 ¹³C NMR of compound 23b (100 MHz, CDCl₃)

Fig. S36 ^{13}C NMR of compound 24 (100 MHz, CDCl_3)

Fig. S38 ¹³C NMR of compound 25d (100 MHz, CDCl₃)

Fig. S40 ¹³C NMR of compound 25e (100 MHz, CDCl₃)

Fig. S42 ¹³C NMR of compound 26 (100 MHz, CDCl₃)

Fig. S43 ¹H NMR of compound 12s (400 MHz, (CD₃)₂SO)

Fig. S44 ¹³C NMR of compound **12s** (100 MHz, (CD₃)₂SO)

Fig. S46 ¹³C NMR of compound 13s (100 MHz, (CD₃)₂SO)

Fig. S47 $^1\!\mathrm{H}$ NMR of compound 14s (400 MHz, (CD_3)_2SO)

Fig. S48 ^{13}C NMR of compound 14s (100 MHz, (CD_3)_2SO)

Fig. S50 13 C NMR of compound 15s (100 MHz, (CD₃)₂SO)

Fig. S52 ¹³C NMR of compound **1'** (100 MHz, (CD₃)₂SO).