Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Synthesis of *N*-acetylglucosamine and *N*-acetylallosamine resorcinarenebased multivalent β-thio-glycoclusters: unexpected affinity of *N*acetylallosamine ligands towards Wheat Germ Agglutinin

Alejandro E. Cristófalo,^{a,b} Alejandro J. Cagnoni^c and María Laura Uhrig^{a,b*}

 ^a Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica, Intendente Güiraldes 2160 (C1428EHA), Buenos Aires, Argentina.
^b CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.

^c Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina.

* Corresponding author. María L. Uhrig, e-mail: mluhrig@qo.fcen.uba.ar; phone: +54 011 528 58535, ORCID: <u>https://orcid.org/0000-0002-6980-4141</u>.

Keywords: *N*-acetylglucosamine, *N*-acetylallosamine, thioglycoside, resorcinarene, glycoresorcinarene, glycocalixarene, glycocluster, multivalent ligand, lectin, WGA

Table of contents

General experimental methods	Page S3
Synthetic procedures for compounds 8–12	Pages S4 to S5
Figure S1	Page S5
Figure S2	Page S5
Figure S3	Page S6
Figure S4	Page S6
References	Page S7
HRMS spectra of compounds 15–20	Pages S8 to S10
NMR spectra of compounds 2–20	Pages S11 to S39

General methods

Solvents were distilled before use. Thin layer chromatography (TLC) was performed on silica gel 60 F254 plates (Merck). The compounds were detected with 5% (v/v) sulfuric acid in EtOH, containing 0.5% *p*-anisaldehyde. Column chromatography was performed on silica gel 60 from Merck, by elution with the solvents indicated in each case. 2-Propynyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-thio- β -D-glucopyranoside (1) was prepared by our reported method.¹ Calix[4]resorcinarenes **8**² and **9**³ were synthesized following previously reported methods and their structures confirmed by NMR and HRMS. Reactions under microwave irradiation were carried out in an Anton-Paar Monowave 300 instrument with a System Internal IR probe type (T = 110 °C, t = 50 min). ¹H and ¹³C{¹H} Nuclear Magnetic Resonance (NMR) spectra were recorded at 25 °C at 500 and 125.7 MHz, respectively, in a Bruker Avance Neo 500 spectrometer. ¹H and ¹³C chemical shifts are reported in parts per million relative to tetramethylsilane or the residual solvent peak (CHCl₃: ¹H: δ 7.26 ppm, ¹³C: δ 77.2 ppm). J values are given in Hz. Assignments of ¹H, ¹³C were determined by analysis of coupling constants and assisted by 2D ¹H COSY and ¹H-¹³C HSQC experiments. High resolution mass spectra (HRMS) were obtained by Electrospray Ionization (ESI) and Q-TOF in a Bruker micrOTOF-Q II spectrometer. Optical rotations were determined in a Perkin-Elmer 343 polarimeter, at 20 °C in a 1 dm cell. Turbidimetric assay was performed in an HP8452-A diode array spectrophotometer. Fluorescence spectra were recorded with a Cary Eclipse spectrophotometer equipped with two Czerny-Turner monochromators and a 15 W Xe pulse lamp (pulse width: 2–3 µs, power: 60–75 kW). Isothermal Titration Calorimetry experiments were carried out in a NanoITC calorimeter (TA Instruments) equipped with 200 µL cells and a 50 µL syringe, and data fitting was performed with Nano Analyze software.

Compound 8

Compound **8** was synthesized from resorcinol and dodecanal as previously described.² ¹H NMR (500 MHz, CDCl₃) δ 9.83–9.15 (8 H, m, 8 × OH), 7.21 (4 H, s, 4 × b-H), 6.11 (4 H, s, 4 × a-H), 4.30 (4 H, t, *J*_{CHAr2,CH2} = 7.4, *CHAr*₂), 2.21 (8 H, m, *CH*₂(CH₂)₉CH₃), 1.44–1.18 (72 H, m, *CH*₂), 0.88 (12 H, t, *J*_{CH3,CH2} = 6.9, *CH*₃). ¹³C{¹H} NMR (125.7 MHz, CDCl₃) δ 150.7 (C-c), 125.0 (C-d), 124.0 (C-b), 102.9 (C-a), 33.4 (*C*HAr₂), 33.3 (*C*H₂(CH₂)₉CH₃), 32.1, 30.0, 29.9 (× 3), 29.8, 29.6, 28.2, 22.8 (*C*H₂) 14.3 (*C*H₃). ESI-HRMS: *m*/*z* [M+H]⁺ calcd for C₇₂H₁₁₃O₈: 1105.8430, found: 1105.8430.

Compound 9

Compound **9** was synthesized from resorcinol and acetaldehyde as previously described.³ ¹H NMR (500 MHz, DMSO-d₆) δ 8.55 (8 H, s, 8 × OH), 6.77 (4 H, s, 4 × b-H), 6.14 (4 H, s, 4 × a-H), 4.45 (4 H, q, *J*_{CHAr2,CH3} = 7.2, *CHAr*₂), 1.30 (12 H, d, *J*_{CHAr2,CH3} = 7.2, *CH*₃); ¹³C{¹H} NMR (125.7 MHz, CDCl₃) δ 151.9 (C-c), 125.3 (C-b), 123.2 (C-d), 102.2 (C-a), 28.6 (*C*HAr₂), 21.7 (*C*H₃). ESI-HRMS: *m/z* [M+H]⁺ calcd for C₃₂H₃₃O₈: 545.2170, found: 545.2136.

2-(2-azidoethoxy)ethanol (11)

To a solution of commercial 2-(2-cloroethoxy)ethanol (2.0 mL, 18.6 mmol) in anh. DMF (25 mL), NaN₃ (3.60 g, 55.6 mmol) was added. The resulting suspension was heated to 90 °C for 18 h. Then, the solvent was evaporated under vacuum and the residue was dissolved in EtOAc (30 mL). The solution was extracted with LiCl 5% (3 \times 10 mL) and water (2 \times 10 mL). The organic layer was dried (MgSO₄) and concentrated under reduced pressure, giving 2.27 g of product **11** (93%) as a colorless liquid. Spectral data was coincident with that of the bibliography.⁴

2-(2-azidoethoxy)-1-iodoethane (12)

To a solution of compound **11** (2.27 g, 17.3 mmol) in DCM (130 mL) at 0 °C, imidazole (1.53 g, 22.5 mmol), Ph_3P (5.88 g, 22.5 mmol) and I_2 (5.70 g, 22.5 mmol) were sequentially added. The reaction mixture was stirred at 0 °C for 30 min. Then, it was allowed to reach room temperature and stirred for an additional 1 h. A solution of NaHSO₃ 10% (150 mL) was added and the mixture was vigorously stirred for 5 min.

Layers were separated and the aqueous phase was extracted with DCM (3 × 40 mL). The organic extracts were combined and concentrated under vacuum. The residue was purified through column chromatography (hexane/EtOAc 1:0 \rightarrow 8:2), obtaining 3.48 g of **12** as a pale-yellow liquid (84%). Spectral data was coincident with that of the bibliography.⁵

Figure S1. Schematic representation of the resorcinarene aromatic core in its flattened boat conformation with C_{2v} symmetry.

Figure S2. Fluorescence emission spectra of pyrene solutions with increasing amounts of glycoresorcinarene **19**. I₁ and I₃ corresponds to the intensity values at λ = 373 nm and λ = 383 nm respectively.

Figure S3. I_1/I_3 plotted against concentration for each addition of glycoresorcinarene **19**. The CMC value was obtained from the intersection of the represented curves.

Figure S4. Interaction analysis of synthetic glycoresorcinarenes with WGA by ITC. Integrated heats of interaction between WGA and (*a*) GlcNAc, (*b*) **18**, (*c*) **19** and (*d*) **20** at 298 K. The independent model was implemented using NanoAnalyze software to obtain the fitting curve for the experimental data.

References

- 1 A. E. Cristófalo, H. O. Montenegro, M. E. Cano, J. P. Colomer and M. L. Uhrig, *Carbohydr. Chem. Proven Synth. Methods Vol.* 5.
- 2 L. Abis, E. Dalcanale, A. Du vosel and S. Sperala, *J. Org. Chem.*, 1988, **53**, 5475–5475.
- 3 A. G. S. Högberg, J. Org. Chem., 1980, **45**, 4498–4500.
- 4 W. Gan, X. Cao, Y. Shi and H. Gao, *J. Polym. Sci.*, 2020, **58**, 84–90.
- 5 Y. S. Wang, S. Bai, Y. Y. Wang and Y. F. Han, *Chem. Commun.*, 2019, **55**, 13689–13692.

HRMS Spectra for compounds 15–20

Compound 15

Compound 16

Compound 17

Compound 18

Compound 19

Compound 20

174.6	 	
HOJONS NHAC 2		

-173.7									—79.9 —76.2		—66.5	61.1	51.8			-21.9	—16.8
н) S NHAc															
												1					
hadiçes fişinge firm pişikadır.	n for a for the second second	alogigi dalah jing kang	1.alfratilgeologist	alay hay hay hay hay hay hay hay hay hay h		alalisy kysis syntyft blir yr	antin and a second second	feister Bharladhiga	nalyhydd yddiadau	hymph they ddyy	hing and his	ynldigenaarskie	ladat videation for	and the forth of the fight	alualaria) (qishla da faqadid	matin and to	in an
170	160	150	140	130	120	110	100 f1 (p	90 ppm)	80	70		60	50		30	20)

