Supporting Information

Functionalized fluorescent terephthalate monomers and their attempted polyester formation

Yvonne S. L. Choo, Marta Giamberini, Jose A. Reina, Paul G. Waddell and Andrew

C. Benniston

Contents

S1. Selected variable temperature ¹ H NMR spectra of 3 in d ⁸ -toluene between 183k and 373K highlighting the methylene proton region p4
S2. A sample of calculated gas phase conformations and their energies for 3 using molecular dynamics simulations at the MM+ level p5
S3. Gaussian calculated energy-minimised gas phase structures for a Li ⁺ adduct of 3 using B3LYP and a 6-311G basis set. Distances shown as the insert are in Å and hydrogens are omitted for clarity
S4. Gaussian calculated energy-minimised gas phase structures for a Na ⁺ adduct of 3 using B3LYP and a 6-311G basis set. Distances shown as the insert are in Å and hydrogens are omitted for clarity p7
S5. ¹ H NMR (500MHz, CDCl ₃) spectrum of monomer diol M3p8
S6. ¹³ C NMR (126 MHz, CDCl ₃) spectrum of monomer diol M3p8
S7. COSY NMR spectrum of monomer diol M3p9
S8. HSQC NMR spectrum of monomer diol M3p10
S9. HMBC NMR spectrum of monomer diol M3p11
S10. ¹ H NMR (400MHz, CDCl ₃) spectrum of PolyM1p12
S11. COSY NMR spectrum of PolyM1p13
S12. HSQC NMR spectrum of PolyM1p14
S13. Comparison of ¹³ C NMR spectra (101 MHz, CDCl ₃) of terephthaloyl chloride (top), M1 (middle) and PolyM1 (bottom) p15
S14. ¹ H NMR (400MHz, CDCl ₃) spectrum of PolyM2p16
S15. ¹³ C NMR (101 MHz, CDCl ₃) spectrum of PolyM2p17
S16. COSY NMR spectrum of PolyM2p18

S17. HSQC NMR spectrum of PolyM2p19
S18. HMBC NMR spectrum of PolyM2p20
S19. ¹ H NMR spectrum (400 MHz, CDCl ₃) of PolyM3p21 S20. Comparison of the emission spectra for PolyM1 and PolyM2 in DCM p22
S21. Comparison of the calculated ground state and first-excited singlet state for 1 using Gaussian 09 (B3LYP, 6-311G) p23
S22. Comparison of TD-DFT calculated absorption spectra for ground-state structure of 1 where the ester groups are twisted out of plane (red), planar (blue) and the actual absorption spectrum (black) in DCM p24
S23. Absorption (black), excitation (grey) and fluorescence (red) spectra of 1 in dilute DCM p25
S24. Absorption (black), excitation (grey) and fluorescence (red) spectra of 3 in dilute DCM p26
S25. Absorption (black), excitation (grey) and fluorescence (red) spectra of M1 in dilute DCM p27
S26. Calculated ground and first-excited state structures for 2 and their corresponding HOMO/LUMO locations. The energy gaps are also shown to help emphasise the effect of alteration in the structure p28
S27. ¹³ C NMR (176 MHz, CDCl ₃) spectrum of the 1+1 crown ether derivative 3p29 S28. COSY NMR spectrum of the 1+1 crown ether derivative 3p30
S29. HSQC NMR spectrum of the 1+1 crown ether derivative 3p31S30. HMBC NMR spectrum of the 1+1 crown ether derivative 3p32
S31. ¹ H NMR (700MHz, CDCl ₃) spectrum of the 2+2 crown ether derivative D3p33
 S32. ¹³C NMR (176 MHz, CDCl₃) spectrum of the 2+2 crown ether derivative D3p33 S33. COSY NMR spectrum of the 2+2 crown ether derivative D3p34 S34. HSQC NMR spectrum of the 2+2 crown ether derivative D3p35
S35. HIVIBC NIVIR spectrum of the 2+2 crown ether derivative $D3$
S37. ¹³ C NMR (75 MHz, CDCl ₃) spectrum of 2p37
S38. COSY NMR spectrum of 2p38
S39. HSQC NMR spectrum of 2p39

S40.	HMBC NMR spectrum of 2p	40
S41.	¹ H NMR (400MHz, CDCl ₃) spectrum of monomer diol M1p	41
S42.	¹³ C NMR (101 MHz, CDCl ₃) spectrum of monomer diol M1p	41
S43.	COSY NMR spectrum of monomer diol M1p	42
S44.	HSQC NMR spectrum of monomer diol M1p	43
S45.	HMBC NMR spectrum of monomer diol M1p	44
S46.	¹ H NMR (400MHz, CDCl ₃) spectrum of monomer diol M2p	45
S47. S48.	¹³ C NMR (101 MHz, CDCl ₃) spectrum of monomer diol M2p COSY NMR spectrum of monomer diol M2p	45 46
S49.	HSQC NMR spectrum of monomer diol M2p	47
S50.	HMBC NMR spectrum of monomer diol M2p	48
S51.	¹ H NMR (400MHz, CDCl ₃) spectrum of side product M4p	49
S52.	¹³ C NMR (101 MHz, CDCl ₃) spectrum of side product M4p	49
S53.	COSY NMR spectrum of side product M4p	50
S54.	HSQC NMR spectrum of side product M4p	51
S55.	HMBC NMR spectrum of side product M4p	52
S56.	¹ H NMR (500MHz, CDCl ₃) spectrum of side product M5p	53
S57.	¹³ C NMR (126 MHz, CDCl ₃) spectrum of side product M5p	53
S58.	COSY NMR spectrum of side product M5p	54
S59.	HSQC NMR spectrum of side product M5p	55
S60.	HMBC NMR spectrum of side product M5p	56
S61.	FT-IR spectra of starting materials, compound 3 and D3p	57
S62.	FT-IR spectra of starting materials, compound M1 and PolyM1p	57
S63.	FT-IR spectra of compound 2, M2, M4 and PolyM2p	58
S64.	FT-IR spectra of compound 3, M3, M5 and PolyM3p	58
S65. NH ₄ +	Mass spectra data for the 1+1 crown ether derivative 3 in the presence of K ⁺ a ions, respectively p	nd 59
S66.	Mass spectra data for the 2+2 crown ether derivative D3 in the presence of NH	H_{4}^{+}
ions.	pe	60

S67. Mass spectra data for monomer diol M1 in the presence of NH_4^+ ions p61
S68. Mass spectra data for 2p62
S69. Mass spectra data for monomer diol M2 in the presence of Na ⁺ and NH ₄ ⁺ ions, respectively p63
S70. Mass spectra data for monomer diol M3 in the presence of NH_4^+ ions p64
S71. Mass spectra data for side product M4p64
S72. Mass spectra data for side product $M5$ in the presence of NH_4^+ ions
S73. MALDI-TOF data for polymer PolyM1 in the presence of Na ⁺ ionsp65
S74. a) Partial ¹ H NMR spectra (500 MHz, 298 K, CDCl ₃) stack plot of 3 (2 mM) titration with TFA from 0 to 2306 mol % and b) Non-linear least-squares fit of the binding isotherms [H+ \subset 3] based on H3,3' and H3,3', respectively p66
S75. a) Partial ¹ H NMR spectra (500 MHz, 298 K, CDCl ₃) stack plot of 3 (5 mM) titration with TFA from 0 to 794 mol % and b) Non-linear least-squares fit of the binding isotherms [H+ \subset 3] based on H3,3', <u>H3,3'</u> and H4,4', respectively p67
S76. a) Partial ¹ H NMR spectra (500 MHz, 298 K, CDCl ₃) stack plot of 3 (3 mM) titration with TFA from 0 to 808 mol % and b) Non-linear least-squares fit of the binding isotherms [H+ \subset 3] based on H3,3', <u>H3,3'</u> and H4,4', respectively p68
S77. Summary of binding constants K_a determined by ¹ H NMR titration experiments in CDCI ₃ using appropriate non-linear fitting software p69
Table 1 : Crystal data and structure refinement for M2 P70

Table 2 : Crystal data and structure refinement for 2	p	7(6
---	---	----	---

S1. Selected variable temperature ¹H NMR spectra of **3** in d⁸-toluene between 183K and 373K highlighting the methylene proton region.

S2. A sample of calculated gas phase conformations and their energies for **3** using molecular dynamics simulations at the MM+ level.

S3. Gaussian calculated energy-minimised gas phase structures for a Li⁺ adduct of **3** using B3LYP and a 6-311G basis set. Distances shown as the insert are in Å and hydrogens are omitted for clarity.

S4. Gaussian calculated energy-minimised gas phase structures for a Na⁺ adduct of **3** using B3LYP and a 6-311G basis set. Distances shown as the insert are in Å and hydrogens are omitted for clarity.

¹H NMR (500 MHz, Chloroform - *d*) δ7.33 – 7.26 (m, 4H, H8), 6.86 – 6.82 (m, 4H, H7), 4.69 (ddd, *J* = 13.0, 8.9, 1.3 Hz, 2H, H1, H1'), 4.20 (ddd, *J* = 10.9, 6.8, 5.9 Hz, 2H, H5), 4.07 (ddd, *J* = 10.9, 6.7, 5.9 Hz, 2H, H5), 3.91 (ddd, *J* = 13.0, 3.6, 1.5 Hz, 2H, H1, H1'), 3.80 – 3.71 (m, 2H, H2, H2'), 3.66 – 3.55 (m, 6H, H2, H2', H4, H4', H3, H3'), 3.54 – 3.41 (m, 8H, H4, H4', H3, H3', H18), 1.59 (s, 2H, H19), 1.55 – 1.43 (m, 4H, H6), 1.41 – 1.31 (m, 4H, H17), 1.29 (s, 18H, H9).

S5. ¹H NMR (500MHz, CDCl₃) spectrum of monomer diol **M3**.

13C NMR (126 MHz, CDCl₃) 5164.47 (C16), 155.29 (C12), 145.24 (C11), 144.95 (C15), 140.59 (C13), 126.37 (C8), 125.98 (C14), 115.01 (C7), 72.00 (C2, C2'), 71.94 (C3, C3'), 71.58 (C1, C1'), 70.85 (C4, C4'), 65.43 (C5), 62.35 (C18), 34.35 (C10), 31.67 (C9), 29.09 (C17), 24.90 (C6).

S6. ¹³C NMR (126 MHz, CDCl₃) spectrum of monomer diol **M3**.

S7. COSY NMR spectrum of monomer diol **M3**.

S8. HSQC NMR spectrum of monomer diol **M3**.

S9. HMBC NMR spectrum of monomer diol **M3**.

S10. ¹H NMR (400MHz, CDCl₃) spectrum of **PolyM1**.

S11. COSY NMR spectrum of **PolyM1**.

S12. HSQC NMR spectrum of **PolyM1**.

S13. Comparison of ¹³C NMR spectra (101 MHz, $CDCI_3$) of terephthaloyl chloride (top), **M1** (middle) and **PolyM1** (bottom).

S14. ¹H NMR (400MHz, CDCl₃) spectrum of **PolyM2**.

S15. ¹³C NMR (101 MHz, CDCl₃) spectrum of **PolyM2**.

S16. COSY NMR spectrum of **PolyM2**.

S17. HSQC NMR spectrum of **PolyM2**.

S18. HMBC NMR spectrum of **PolyM2**.

S19. ¹*H* NMR spectrum (400 MHz, CDCl₃) of **PolyM3**.

S20. Comparison of the emission spectra for PolyM1 and PolyM2 in DCM.

S21. Comparison of the calculated ground state and first-excited singlet state for **1** using Gaussian 09 (B3LYP, 6-311G).

S22. Comparison of TD-DFT calculated absorption spectra for ground-state structure of **1** where the ester groups are twisted out of plane (red), planar (blue) and the actual absorption spectrum (black) in DCM.

S23. Absorption (black), excitation (grey) and fluorescence (red) spectra of **1** in dilute DCM.

S24. Absorption (black), excitation (grey) and fluorescence (red) spectra of **3** in dilute DCM.

S25. Absorption (black), excitation (grey) and fluorescence (red) spectra of **M1** in dilute DCM.

S26. Calculated ground and first-excited state structures for **2** and their corresponding HOMO/LUMO locations. The energy gaps are also shown to help emphasise the effect of alteration in the structure.

13C NMR (176 MHz, CDCl₃) 5164.50 (C16), 155.33 (C12), 145.08 (C11,C15), 140.79 (C13), 126.28 (C8), 125.93 (C14), 115.13 (C7), 72.13 (C2,C2'), 71.98 (C3,C3'), 71.60 (C1,C1'), 70.90 (C4,C4'), 61.58 (C5), 34.32 (C10), 31.66 (C9), 13.88 (C6).

S27. ¹³C NMR (176 MHz, CDCl₃) spectrum of the 1+1 crown ether derivative **3**.

S28. COSY NMR spectrum of the 1+1 crown ether derivative **3**.

S29. HSQC NMR spectrum of the 1+1 crown ether derivative **3**.

S30. HMBC NMR spectrum of the 1+1 crown ether derivative **3**.

¹H NMR (700 MHz, Chloroform - *d*) δ7.28 – 7.24 (m, 8H, H8), 6.85 – 6.81 (m, 8H, H7), 4.19 (t, *J*= 5.4 Hz, 8H, H1), 4.12 (q, *J*= 7.1 Hz, 8H, H5), 3.57 (t, *J*= 5.3 Hz, 8H, H2), 3.51 – 3.46 (m, 16H, H3, H4), 1.28 (s, 36H, H9), 1.03 (t, *J*= 7.1 Hz, 12H, H6).

S31. ¹H NMR (700MHz, CDCl₃) spectrum of the 2+2 crown ether derivative **D3**.

¹³C NMR (176 MHz, CDCl₃) 5163.85 (C16), 155.51 (C12), 145.41 (C15), 145.23 (C11), 141.69 (C13), 126.66 (C14), 126.31 (C8), 115.22 (C7), 73.07 (C1), 70.73, 70.61 (C3,C4), 69.99 (C2), 61.78 (C5), 34.33 (C10), 31.66 (C9), 13.92 (C6).

S32. ¹³C NMR (176 MHz, CDCl₃) spectrum of the 2+2 crown ether derivative **D3**.

S33. COSY NMR spectrum of the 2+2 crown ether derivative **D3**.

S34. HSQC NMR spectrum of the 2+2 crown ether derivative **D3**.

S35. HMBC NMR spectrum of the 2+2 crown ether derivative **D3**.

¹H NMR (300 MHz, Chloroform - d) δ7.34 – 7.22 (m, 4H, H4), 6.86 – 6.80 (m, 4H, H3), 4.16 (q, J= 7.1 Hz, 4H, H1), 3.81 (s, 6H, H6), 1.29 (s, 18H, H5), 1.08 (t, J= 7.1 Hz, 6H, H2).

S36. ¹H NMR (300MHz, CDCl₃) spectrum of 2.

¹³C NMR (75 MHz, CDCl₃) ō164.00 (C10), 155.58 (C11), 146.48 (C7), 145.40 (C12), 142.04 (C8), 126.84 (C9), 126.34 (C4), 115.11 (C3), 62.08 (C6), 61.89 (C1), 34.34 (C13), 31.63 (C5), 13.96 (C2).

S37. ¹³C NMR (75 MHz, CDCl₃) spectrum of **2**.

S38. COSY NMR spectrum of **2**.

S39. HSQC NMR spectrum of 2.

S40. HMBC NMR spectrum of **2**.

¹H NMR (400 MHz, Chloroform - *d*) δ10.27 (s, 2H, H6), 7.41 – 7.34 (m, 4H, H4), 6.88 – 6.81 (m, 4H, H3), 4.30 – 4.25 (m, 4H, H1), 3.55 – 3.49 (m, 4H, H2), 1.31 (s, 18H, H5).

S41. ¹H NMR (400MHz, CDCl₃) spectrum of monomer diol **M1**.

¹³C NMR (101 MHz, CDCl₃) 5168.59 (C8), 155.96 (C12), 147.41 (C11), 145.46 (C13), 138.69 (C10), 126.88 (C4), 114.79 (C9), 113.68 (C3), 68.53 (C1), 60.45 (C2), 34.40 (C14), 31.59 (C5).

S42. ¹³C NMR (101 MHz, CDCI₃) spectrum of monomer diol **M1**.

S43. COSY NMR spectrum of monomer diol M1.

S44. HSQC NMR spectrum of monomer diol M1.

S45. HMBC NMR spectrum of monomer diol M1.

¹H NMR (400 MHz, Chloroform - d) δ7.31 – 7.25 (m, 4H, H4), 6.85 – 6.80 (m, 4H, H3), 4.15 (t, J= 6.4 Hz, 4H, H1), 3.78 (s, 6H, H6), 3.46 (t, J= 6.3 Hz, 4H, H15), 2.61 (s, 2H, H16), 1.59 – 1.50 (m, 4H, H2), 1.44 – 1.35 (m, 4H, H14), 1.28 (s, 18H, H5).

S46. ¹H NMR (400MHz, CDCl₃) spectrum of monomer diol **M2**.

¹³C NMR (101 MHz, CDCl₃) 5164.02 (C10), 155.46 (C11), 146.29 (C7), 145.45 (C12), 141.82 (C8), 126.79 (C9), 126.34 (C4), 114.96 (C3), 65.65 (C1), 62.19 (C15), 62.01 (C6), 34.29 (C13), 31.59 (C5), 28.84 (C14), 24.89 (C2).

S47. ¹³C NMR (101 MHz, CDCl₃) spectrum of monomer diol **M2**.

S48. COSY NMR spectrum of monomer diol M2.

S49. HSQC NMR spectrum of monomer diol M2.

S50. HMBC NMR spectrum of monomer diol **M2**.

¹H NMR (400 MHz, Chloroform - *d*) δ 7.31 – 7.27 (m, 4H, H4, H4'), 6.86 – 6.81 (m, 4H, H3', H3), 4.21 – 4.12 (m, 4H, H1, H1'), 3.81 (s, 3H, H6'), 3.78 (s, 3H, H6), 3.49 (t, *J*= 6.3 Hz, 2H, H15), 1.62 – 1.52 (m, 2H, H2), 1.47 – 1.37 (m, 2H, H14), 1.30 – 1.28 (m, 18H, H5', H5), 1.07 (t, *J*= 7.1 Hz, 3H, H2').

S51. ¹H NMR (400MHz, CDCl₃) spectrum of side product **M4**.

¹³C NMR (101 MHz, CDCl₃) δ164.10 (C10), 163.93 (C10'), 155.56 (C11, C11'), 146.47 (C7'), 146.37 (C7), 145.47, 145.44 (C12, C12'), 142.07 (C8'), 141.85 (C8), 126.93 (C9'), 126.77 (C9), 126.37, 126.35 (C4', C4), 115.13 (C3'), 115.01 (C3), 65.67 (C1), 62.34 (C15), 62.12 (C6'), 62.02 (C6), 61.89 (C1'), 34.35, 34.34 (C13', C13), 31.64 (C5, C5'), 29.03 (C14), 24.99 (C2), 13.94 (C2').

S53. COSY NMR spectrum of side product **M4**.

S54. HSQC NMR spectrum of side product **M4**.

S55. HMBC NMR spectrum of side product M4.

¹H NMR (500 MHz, Chloroform - *d*) δ7.30 – 7.26 (m, 4H, H8, H8'), 6.87 – 6.81 (m, 4H, H7, H7'), 4.71 (dddd, *J*= 18.8, 13.0, 9.0, 1.3 Hz, 2H, H1, H1'), 4.24 – 4.12 (m, 2H, H5, H5'), 4.11 – 4.00 (m, 2H, H5, H5'), 3.92 (dddd,*J*= 17.5, 13.0, 3.5, 1.5 Hz, 2H, H1, H1'), 3.76 (dddd, *J*= 10.5, 8.8, 4.8, 1.4 Hz, 2H, H2, H2'), 3.68 – 3.57 (m, 6H, H2, H2', H4, H4', H3, H3'), 3.55 – 3.41 (m, 6H, H4, H4', H3, H3', H18), 1.54 – 1.44 (m, 2H, H6), 1.42 – 1.32 (m, 2H, H17), 1.29 (s, 18H, H9, H9'), 1.11 (s, 1H, H19), 0.99 (t, *J*= 7.1 Hz, 3H, H6').

S56. ¹H NMR (500MHz, CDCl₃) spectrum of side product **M5**.

¹³C NMR (126 MHz, CDCl₉) ō164.55 (C16'), 164.41 (C16), 155.32 (C12, C12'), 145.18, 145.13 (C11, C11'), 144.92 (C15, C15'), 140.87 (C13'), 140.53 (C13), 126.35, 126.30 (C8, C8'), 126.02 (C14), 125.91 (C14'), 115.16 (C7'), 115.01 (C7), 72.06 (C2, C2'), 72.01 (C3, C3'), 71.61, 71.59 (C1, C1'), 70.93, 70.85 (C4, C4'), 65.39 (C5), 62.36 (C18), 61.59 (C5'), 34.34 (C10, C10'), 31.67 (C9, C9'), 29.10 (C17), 24.91 (C6), 13.88 (C6').

S57. ¹³C NMR (126 MHz, CDCl₃) spectrum of side product **M5**.

S58. COSY NMR spectrum of side product **M5**.

S59. HSQC NMR spectrum of side product **M5**.

S60. HMBC NMR spectrum of side product M5.

S61. FT-IR spectra of starting materials, compound **3** and **D3**.

S62. FT-IR spectra of starting materials, compound M1 and PolyM1.

S63. FT-IR spectra of compound 2, M2, M4 and PolyM2.

S64. FT-IR spectra of compound 3, M3, M5 and PolyM3.

S65. Mass spectra data for the 1+1 crown ether derivative **3** in the presence of K^+ and NH_{4^+} ions, respectively.

S66. Mass spectra data for the 2+2 crown ether derivative **D3** in the presence of NH_4^+ ions.

S67. Mass spectra data for monomer diol **M1** in the presence of NH_4^+ ions.

S68. Mass spectra data for 2.

S69. Mass spectra data for monomer diol **M2** in the presence of Na⁺ and NH₄⁺ ions, respectively.

S70. Mass spectra data for monomer diol **M3** in the presence of NH_4^+ ions.

S71. Mass spectra data for side product M4.

S72. Mass spectra data for side product **M5** in the presence of NH_4^+ ions.

S73. MALDI-TOF data for polymer **PolyM1** in the presence of Na⁺ ions.

a. Titration of **3** with H^{+} (TFA) in CDCl₃

b. Binding isotherms $[H^+ \subset 3]$ (CDCl₃)

S74. a) Partial ¹H NMR spectra (500 MHz, 298 K, CDCl₃) stack plot of **3** (2 mM) titration with TFA from 0 to 2306 mol % and b) Non-linear least-squares fit of the binding isotherms [H+ \subset **3**] based on H3,3' and H3,3', respectively.

S75. a) Partial ¹H NMR spectra (500 MHz, 298 K, CDCl₃) stack plot of **3** (5 mM) titration with TFA from 0 to 794 mol % and b) Non-linear least-squares fit of the binding isotherms [H+ \subset **3**] based on H3,3', H3,3' and H4,4', respectively.

S76. a) Partial ¹H NMR spectra (500 MHz, 298 K, CDCl₃) stack plot of **3** (3 mM) titration with TFA from 0 to 808 mol % and b) Non-linear least-squares fit of the binding isotherms [H+ \subset **3**] based on H3,3', H3,3' and H4,4', respectively.

Experiment	Proton	Scientist® ¹		Bindfit ²	
		log K _a , M⁻¹	∆ G, kJmol -¹	log K _a , M⁻¹	∆G, kJmol ⁻¹
1	H3,3'	2.21	-12.6	2.05	-11.7
	<u>H3,3'</u>	1.89	-10.8		
2	H3,3'	1.97	-11.3	2.00	-11.4
	<u>H3,3'</u>	1.80	-10.3		
	H4,4'	2.06	-11.8		
3	H3,3'	2.21	-12.6	1.94	-11.1
	<u>H3,3'</u>	1.73	-9.9		
	H4,4'	1.99	-11.3		

¹Micromath Scientist® and ²Bindfit (http://app.supramolecular.org/bindfit/) are non-linear fitting software used to calculate the binding constant.

S77. Summary of binding constants log K_a and ΔG values determined by ¹H NMR titration experiments in CDCl₃ using appropriate non-linear fitting software.
Table 1 : Crystal data and structure refinement for M2.

Identification code	acb170005_fa
Empirical formula	$C_{34}H_{40}Cl_6O_{10}$
Formula weight	821.36
Temperature/K	150.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	6.1698(2)
b/Å	8.7425(3)
c/Å	18.2846(4)
α/°	79.864(2)
β/°	83.699(2)
γ/°	80.021(3)
Volume/Å ³	952.98(5)
Ζ	1
$\rho_{calc}g/cm^3$	1.431
µ/mm ⁻¹	4.571
F(000)	426.0
Crystal size/mm ³	$0.34 \times 0.08 \times 0.06$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	9.862 to 133.572
Index ranges	$-7 \le h \le 7, -10 \le k \le 10, -21 \le l \le 21$
Reflections collected	32589
Independent reflections	3384 [$R_{int} = 0.0339$, $R_{sigma} = 0.0141$]
Data/restraints/parameters	3384/21/262
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0295, wR_2 = 0.0756$
Final R indexes [all data]	$R_1 = 0.0346, wR_2 = 0.0790$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.21

Table 1B Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for acb170005_fa. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Aton	n <i>x</i>	У	Z	U(eq)
Cl1	1077(4)	7227(2)	1966.5(13)	41.2(5)
Cl2	-1754(7)	4813(4)	2366(2)	53.7(5)
Cl3	-1603(4)	6647(4)	887.6(12)	50.5(4)
01	11351.4(18)	6926.7(11)	5623.6(6)	27.0(2)
02	7980.4(17)	6231.9(11)	5117.1(6)	30.4(2)
03	6171.0(16)	7971.9(11)	4259.9(5)	25.0(2)
O4	4506(2)	8112.1(15)	2847.6(6)	37.8(3)
05	13826.7(15)	9022.2(11)	5724.9(5)	21.1(2)
C1	10622(2)	8421.7(15)	5311.3(7)	20.8(3)
C2	8746(2)	8855.2(16)	4897.0(7)	20.2(3)
C3	11860(2)	9555.2(15)	5400.7(7)	19.4(3)
C4	7580(2)	7570.6(16)	4779.2(7)	22.1(3)
C5	5132(3)	6701.8(18)	4099.1(9)	29.5(3)
C6	3501(3)	7442(2)	3538.9(9)	33.5(4)
C7	13833(2)	8771.4(15)	6495.8(7)	21.1(3)
C8	15848(2)	8106.1(18)	6772.6(8)	28.7(3)
C9	16045(3)	7887.7(19)	7530.7(8)	31.4(3)
C10	14267(2)	8299.2(17)	8036.3(8)	26.9(3)
C11	12272(2)	8948.6(17)	7741.1(8)	26.6(3)
C12	12035(2)	9190.4(17)	6976.7(8)	24.7(3)
C13	14600(3)	8067(2)	8870.0(8)	32.0(4)
C14	15927(3)	9303(2)	9004.9(9)	37.8(4)
C15	15910(4)	6424(2)	9112.5(10)	50.7(5)
C16	12406(3)	8247(3)	9347.2(9)	58.4(6)
C17	-1418(3)	6651(2)	1849.1(10)	38.7(4)
Cl3A	-1726(11)	6412(9)	965(3)	96(2)
Cl2A	-1477(12)	4856(8)	2473(4)	82.3(19)
Cl1A	1147(11)	7182(7)	1919(4)	89(2)

Table 1C Anisotropic Displacement Parameters (Å ² ×10 ³) for acb170005_fa. The
Anisotropic displacement factor exponent takes the form: -
$2\pi^{2}[h^{2}a^{*2}U_{11}+2ha^{*}b^{*}U_{12}+].$

	11					
Atom	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	41.3(11)	36.2(8)	51.4(8)	-7.1(6)	-22.1(7)	-8.8(7)
Cl2	60.7(9)	36.3(9)	63.3(8)	-0.3(6)	1.4(6)	-17.3(7)
Cl3	53.6(8)	69.8(8)	30.9(5)	-12.1(5)	-14.3(5)	-6.3(7)
01	30.3(6)	18.9(5)	32.5(6)	0.9(4)	-14.5(4)	-3.0(4)
O2	32.3(6)	22.2(5)	38.1(6)	-0.6(4)	-13.7(5)	-5.3(4)
O3	29.0(5)	25.4(5)	23.3(5)	-2.8(4)	-10.2(4)	-7.4(4)
O4	48.3(7)	40.6(6)	28.4(6)	-4.5(5)	-6.6(5)	-16.7(5)
05	18.9(5)	26.1(5)	17.7(5)	-2.3(4)	-6.1(4)	-0.7(4)
C1	23.8(7)	20.4(6)	17.1(6)	-1.6(5)	-3.9(5)	-0.9(5)

C2	20.5(7)	23.3(7)	17.2(6)	-3.6(5)	-2.0(5)	-3.2(5)
C3	19.1(7)	23.7(7)	15.0(6)	-2.9(5)	-3.9(5)	-0.7(5)
C4	21.3(7)	23.9(7)	20.9(7)	-4.3(5)	-2.1(5)	-2.4(6)
C5	33.2(8)	28.4(7)	31.3(8)	-4.5(6)	-9.2(6)	-12.5(6)
C6	32.7(9)	42.3(9)	29.0(8)	-2.6(7)	-9.1(6)	-14.5(7)
C7	24.8(7)	21.1(6)	18.1(6)	-1.0(5)	-6.1(5)	-4.9(5)
C8	22.4(8)	39.3(8)	21.8(7)	-2.8(6)	-3.5(6)	0.9(6)
C9	23.0(8)	45.2(9)	24.1(7)	-0.2(6)	-9.1(6)	-1.1(6)
C10	29.4(8)	32.3(8)	20.1(7)	-0.4(6)	-5.5(6)	-9.7(6)
C11	25.0(8)	32.4(8)	22.5(7)	-4.1(6)	-1.0(6)	-5.8(6)
C12	21.0(7)	27.9(7)	24.5(7)	-1.5(6)	-6.1(5)	-2.2(6)
C13	33.4(9)	44.5(9)	20.0(7)	-0.9(6)	-6.2(6)	-12.6(7)
C14	42.9(10)	47.5(10)	27.0(8)	-9.0(7)	-7.6(7)	-12.2(8)
C15	82.1(15)	45.1(10)	26.0(9)	5.4(7)	-21.2(9)	-14(1)
C16	43.8(11)	116.5(19)	19.1(8)	-4.5(10)	0.6(7)	-32.3(12)
C17	41.6(10)	37.3(9)	38.0(9)	-5.6(7)	-5.2(7)	-8.1(7)
Cl3A	109(3)	106(3)	92(3)	-28(2)	-49(2)	-36(2)
Cl2A	76(3)	45(2)	100(4)	13.4(19)	34(2)	10.4(18)
Cl1A	79(4)	96(3)	109(4)	-29(3)	-28(3)	-36(3)

Table 1D Bond Lengths for acb170005_fa.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C17	1.746(3)	C5	C6	1.499(2)
Cl2	C17	1.748(4)	C7	C8	1.387(2)
Cl3	C17	1.775(3)	C7	C12	1.377(2)
01	C1	1.3516(16)	C8	C9	1.382(2)
02	C4	1.2211(17)	C9	C10	1.395(2)
03	C4	1.3188(17)	C10	C11	1.387(2)
03	C5	1.4607(17)	C10	C13	1.5338(19)
O4	C6	1.421(2)	C11	C12	1.396(2)
05	C3	1.3803(16)	C13	C14	1.531(2)
05	C7	1.3882(16)	C13	C15	1.538(3)
C1	C2	1.4129(19)	C13	C16	1.528(2)
C1	C3	1.3927(19)	C17	Cl3A	1.701(6)
C2	C3 ¹	1.4021(19)	C17	Cl2A	1.774(7)
C2	C4	1.4912(19)	C17	Cl1A	1.749(6)
C3	C2 ¹	1.4021(19)			

¹2-X,2-Y,1-Z

Table 1E Bond Angles for acb170005_fa.

Aton	1 Atom	1 Atom	n Angle/°	Atom	Aton	1 Atom	Angle/°
C4	03	C5	115.79(11)	C9	C8	C7	119.63(14)
C3	05	C7	119.57(10)	C8	C9	C10	122.15(14)
01	C1	C2	123.53(12)	C9	C10	C13	119.80(13)
01	C1	C3	116.36(12)	C11	C10	C9	116.69(13)
C3	C1	C2	120.10(12)	C11	C10	C13	123.49(14)
C1	C2	C4	117.42(12)	C10	C11	C12	122.23(14)
C31	C2	C1	118.57(12)	C7	C12	C11	119.27(13)
C31	C2	C4	123.97(12)	C10	C13	C15	109.78(13)
05	C3	C1	116.92(11)	C14	C13	C10	108.83(12)
05	C3	$C2^1$	121.42(12)	C14	C13	C15	108.58(14)
C1	C3	$C2^1$	121.31(12)	C16	C13	C10	111.99(13)
O2	C4	03	122.76(12)	C16	C13	C14	108.45(15)
O2	C4	C2	122.16(12)	C16	C13	C15	109.14(16)
O3	C4	C2	115.00(11)	Cl1	C17	Cl2	113.03(16)
O3	C5	C6	106.47(12)	Cl1	C17	Cl3	109.24(16)
O4	C6	C5	113.15(13)	Cl2	C17	Cl3	110.24(18)
C8	C7	05	115.43(12)	Cl3A	C17	Cl2A	110.7(3)
C12	C7	05	124.50(12)	Cl3A	C17	Cl1A	111.7(3)
C12	C7	C8	120.02(13)	Cl1A	C17	Cl2A	105.3(3)

¹2-X,2-Y,1-Z

Table 1F Hydrogen Bo	nds for acb17	0005_fa.	
D H A d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1H1O20.81(2)	1.84(2)	2.5712(14)	149.7(19)

Table 1G Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for acb170005_fa.

Atom	x	У	Z	U(eq)
H1	10480(30)	6390(20)	5542(11)	41
H4	4860(40)	9020(30)	2892(12)	57
H5A	4388	6200	4550	35
H5B	6230	5915	3898	35
H6A	2677	6651	3452	40
H6B	2461	8256	3743	40
H8	17059	7809	6450	34
H9	17408	7452	7710	38
H11	11052	9233	8063	32
H12	10677	9630	6794	30
H14A	17308	9211	8705	57

H14B16201	9138	9522	57
H14C 15104	10335	8872	57
H15A15192	5641	8972	76
H15B 15976	6239	9644	76
H15C 17381	6365	8873	76
H16A11633	9298	9225	88
H16B 12681	8044	9865	88
H16C 11525	7510	9252	88
H17 -2623	7433	2016	46
H17A-2602	7457	2008	46

Table 1H Atomic Occupancy for acb170005_fa.

Atom	Occupancy	Atom Occupanc	<i>ty</i> Atom <i>Occupancy</i>
Cl1	0.6372	Cl2 0.6372	Cl3 0.6372
H17	0.6372	H17A 0.3628	Cl3A 0.3628
Cl2A	0.3628	Cl1A 0.3628	

Table 2 : Crystal data and structure refinement for 2.

Identification code	acb160036
Empirical formula	$C_{34}H_{42}O_8$
Formula weight	578.67
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	5.9780(3)
b/Å	10.5544(4)
c/Å	25.1034(10)
α/°	90
β/°	92.057(4)
γ/°	90
Volume/Å ³	1582.85(13)
Ζ	2
$\rho_{calc}g/cm^3$	1.214
µ/mm ⁻¹	0.697
F(000)	620.0
Crystal size/mm ³	$0.18 \times 0.14 \times 0.12$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.048 to 133.792
Index ranges	$-7 \le h \le 6, -11 \le k \le 12, -29 \le l \le 24$
Reflections collected	14110
Independent reflections	2806 [$R_{int} = 0.0384$, $R_{sigma} = 0.0259$]
Data/restraints/parameters	2806/0/195
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0392, wR_2 = 0.0958$
Final R indexes [all data]	$R_1 = 0.0487, wR_2 = 0.1039$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.25

Table 2A Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement

Atom	x	у	z	U(eq)
01	7521.5(17)	4387.5(9)	4133.1(4)	29.7(2)
O2	7300(2)	1769.9(11)	4878.2(6)	57.7(4)
O3	4100.5(19)	1965.4(9)	4395.2(4)	35.5(3)
O4	3049.7(17)	3078.5(9)	5571.6(4)	29.7(2)
C1	6293(2)	4694.5(13)	4565.1(5)	24.8(3)
C2	5341(2)	3740.1(12)	4866.3(5)	25.1(3)
C3	4070(2)	4044.6(12)	5298.6(5)	24.7(3)
C4	9886(3)	4299.5(19)	4257.5(7)	44.2(4)
C5	5731(2)	2377.6(13)	4719.8(5)	28.8(3)
C6	4281(3)	657.8(14)	4206.0(7)	42.3(4)
C7	2102(4)	318.6(19)	3947.3(10)	65.3(6)
C8	3882(2)	2805.7(12)	6085.4(5)	25.0(3)
C9	2542(3)	2057.5(15)	6389.4(6)	35.5(4)
C10	3268(3)	1721.1(15)	6900.4(6)	36.5(4)
C11	5309(2)	2116.0(13)	7122.1(5)	26.8(3)
C12	6616(3)	2855.5(15)	6801.5(6)	33.7(3)
C13	5933(3)	3198.6(15)	6286.3(6)	33.9(3)
C14	6089(3)	1717.8(14)	7688.4(6)	31.4(3)
C15	7351(3)	455.1(15)	7656.7(7)	39.4(4)
C16	4098(3)	1544(2)	8045.7(6)	47.8(5)
C17	7651(3)	2708.8(17)	7946.1(7)	46.3(4)

Parameters (Å²×10³) for acb160036. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table 2B Anisotropic Displacement Parameters (Å ² ×10 ³) for acb160036. The
Anisotropic displacement factor exponent takes the form: -
$2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	31.3(5)	36.7(5)	21.0(5)	-4.8(4)	0.7(4)	-3.1(4)
O2	53.8(8)	33.8(6)	83.4(10)	-8.8(6)	-27.5(7)	9.0(6)
O3	45.3(6)	24.1(5)	36.3(6)	-7.4(4)	-9.3(5)	-0.9(4)
O4	38.3(6)	28.4(5)	22.1(5)	4.2(4)	-4.2(4)	-12.4(4)
C1	27.4(7)	29.3(7)	17.4(6)	-1.3(5)	-3.0(5)	-3.8(5)
C2	28.4(7)	23.9(7)	22.6(6)	-0.7(5)	-5.6(5)	-3.2(5)
C3	29.2(7)	24.3(6)	20.2(6)	2.9(5)	-4.0(5)	-6.3(5)
C4	30.8(8)	63.1(11)	38.8(8)	-11.4(8)	3.6(7)	-7.9(7)
C5	34.1(8)	25.0(7)	27.1(7)	0.5(6)	-1.6(6)	-3.4(6)
C6	62.5(11)	22.4(7)	41.6(9)	-8.1(6)	-4.4(8)	-2.7(7)
C7	70.4(14)	42.9(10)	81.7(15)	-25.1(10)	-9.9(12)	-14(1)
C8	32.1(7)	21.8(6)	21.0(6)	0.1(5)	0.0(5)	-0.8(5)
C9	33.4(8)	43.2(9)	29.6(7)	5.8(6)	-4.3(6)	-15.6(7)
C10	38.1(9)	43.3(9)	28.3(7)	10.0(6)	1.2(6)	-14.6(7)
C11	31.2(7)	25.0(7)	24.2(7)	1.6(5)	1.2(6)	3.4(6)

C12	28.3(8)	41.5(8)	30.9(7)	4.8(6)	-4.0(6)	-6.4(6)
C13	31.7(8)	39.6(8)	30.3(7)	9.7(6)	1.9(6)	-10.6(6)
C14	34.8(8)	32.7(7)	26.4(7)	5.0(6)	-2.2(6)	3.6(6)
C15	43.4(9)	36.9(8)	37.7(8)	7.3(7)	-2.7(7)	6.2(7)
C16	42.8(10)	75.1(13)	25.4(8)	12.6(8)	2.2(7)	10.1(9)
C17	63.0(12)	42.1(9)	32.6(8)	3.5(7)	-15.1(8)	-3.9(8)

Table 2C Bond Lengths for acb160036.

Atom Atom		Length/Å
01	C1	1.3704(17)
01	C4	1.439(2)
O2	C5	1.1927(19)
O3	C5	1.3214(17)
03	C6	1.4648(18)
O4	C3	1.3824(16)
O4	C8	1.3958(16)
C1	C2	1.3931(19)
C1	C3 ¹	1.393(2)
C2	C3	1.385(2)
C2	C5	1.505(2)
C3	C11	1.393(2)

Aton	n Atom	Length/Å
C6	C7	1.479(3)
C8	C9	1.375(2)
C8	C13	1.373(2)
C9	C10	1.386(2)
C10	C11	1.387(2)
C11	C12	1.383(2)
C11	C14	1.5386(19)
C12	C13	1.390(2)
C14	C15	1.535(2)
C14	C16	1.527(2)
C14	C17	1.530(2)

¹1-X,1-Y,1-Z

Table 2D Bond Angles for acb160036. Atom Atom Angle/°

Atom Atom Atom Angle/				
C1	01	C4	113.18(11)	
C5	03	C6	116.66(12)	
C3	O4	C8	117.47(10)	
01	C1	C2	119.97(12)	
01	C1	C31	120.85(12)	
C31	C1	C2	119.17(13)	
C1	C2	C5	119.25(12)	
C3	C2	C1	120.25(13)	
C3	C2	C5	120.50(12)	
O4	C3	C11	120.51(12)	
O4	C3	C2	118.78(12)	
C2	C3	C11	120.58(12)	
O2	C5	03	125.62(14)	
O2	C5	C2	124.01(13)	
O3	C5	C2	110.37(12)	
03	C6	C7	107.25(15)	

Atom Atom Atom Angle/°

			-
C9	C8	O4	115.84(12)
C13	C8	O4	124.12(12)
C13	C8	C9	120.00(13)
C8	C9	C10	119.44(14)
C9	C10	C11	122.43(14)
C10	C11	C14	121.44(13)
C12	C11	C10	116.31(13)
C12	C11	C14	122.23(13)
C11	C12	C13	122.37(13)
C8	C13	C12	119.44(13)
C15	C14	C11	108.80(12)
C16	C14	C11	111.03(12)
C16	C14	C15	108.73(13)
C16	C14	C17	108.10(14)
C17	C14	C11	111.34(12)
C17	C14	C15	108.77(13)

¹1-X,1-Y,1-Z

Table 2E Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters

$(Å^2 \times 10^3)$ for acb160036.

Atom	x	у	Z	U(eq)
H4A	10666	4133	3937	66
H4B	10161	3623	4507	66
H4C	10407	5084	4411	66
H6A	4623	93	4503	51
H6B	5465	589	3953	51
H7A	1733	920	3671	98
H7B	963	330	4207	98
H7C	2195	-514	3796	98
H9	1161	1780	6253	43
H10	2353	1212	7102	44
H12	8001	3133	6935	40
H13	6858	3690	6079	41
H15A	6374	-179	7503	59
H15B	7843	197	8008	59
H15C	8625	558	7439	59
H16A	3223	2307	8045	72
H16B	4630	1361	8403	72
H16C	3188	854	7914	72
H17A	8982	2776	7745	69
H17B	8045	2457	8305	69
H17C	6906	3514	7950	69