Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for

Rhodium-catalyzed iminoiodane-mediated oxyamidation studies of 5vinyluracil derivatives using aryl and alkyl sulfamates

Zhaoxin Wang,^{§, a} Zongxin Jin,^{§, a} Quanxing Zhong, ^a Yinan Zhang, ^a Yan Wu,^a Yujiao Ma,^a

Hua Sun, ^{a,*} Peng Yu ^{a,*} and Robert H. Dodd ^{a,b,*}

^aChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.^b Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gifsur-Yvette, France

robert.dodd@cnrs.fr

Table of contents

Table of contents

General procedure for optimization study of Cu-catalyzed reaction of 10a with 11a St	2
¹ H and ¹³ C NMR Spectra of Compounds	4
High Resolution Mass Spectra of Compounds	32

Diphenyl (1-(1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)ethane-1,2divl)bis(sulfamate) (12aa)phenyl (2-(1,3-dimethyl-2,4-dioxo-1,2,3,4and tetrahydropyrimidin-5-yl)-2-hydroxyethyl)sulfamate (13aa). A mixture of 5-vinyluracil derivative **10a** (1 equiv), phenylsulfamate **11a** (1.5 equiv), iodosylbenzene (1.5 equiv), copper catalyst (0.2 - 0.4 equiv) and 3Å molecular sieves (250 mg) in the indicated solvent (3 mL) was stirred for 2 h at room temperature unless indicated otherwise. The reaction mixture was then poured into saturated aqueous sodium chloride solution (20 mL) and extracted with dichloromethane (2 x 20 mL). The organic extracts were combined, dried over sodium sulfate and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (dichloromethane / methanol = 50: 1) (petroleum ether/ethyl acetate 3: 1) affording compound **12aa**: white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 8 Hz, 1H), 8.52 (t, J = 6 Hz, 1H), 7.56 (s, 1H), 7.47 – 7.17 (m, 10H), 4.44 (m, 1H), 3.52 – 3.45 (m, 1H), 3.24 (s, 3H), 3.12 (s, 3H); ¹³C NMR(100 MHz, CDCl₃) & 162.2, 151.4, 150.4, 150.3, 143.9, 130.4, 130.1, 129.9, 127.3, 126.8, 122.2, 121.6, 115.7, 108.4, 52.7, 45.8, 37.1, 27.9; HRMS (ESI), m/z: calcd for $C_{20}H_{22}N_4O_8S_2Na^+$ 533.0777; found: 533.0749.

Continued elution of the chromatography column using dichloromethane/methanol (50:1) provided compound **13aa**:white solid; ¹H NMR (400 MHz, DMSO- d_6) δ 8.31 (t, J = 5.6 Hz, 1H), 7.58 (s, 1H), 7.44 (m, 2H), 7.33 (m, 1H), 7.29 (m, 2H), 5.47 (d, J = 4.4 Hz, 1H), 4.61 (m, 1H), 3.41 – 3.33 (m, 1H), 3.32 (s, 3H), 3.27 (s, 1H), 3.16 – 3.10 (m, 1H); ¹³C NMR (100

MHz, DMSO-*d*₆) δ 162.5, 151.7, 150.5, 142.2, 130.3, 127.1, 122.4, 112.4, 65.6, 48.7, 37.0, 27.8; HRMS (ESI) m/z: calcd for C₁₄H₁₇N₃O₆SNa⁺ 378.0736, found 378.0746.

See Table below for conditions and yields.

Entry	Catalyst	Equiv	Solvent	Yield $(\%)^b$	
				12 aa	13 aa
1	Cu(CH ₃ CN) ₄ PF ₆	0.2	DCM	22	35
2	CuBr	0.2	DCM	4	0
3	CuBr	0.2	DCM ^c	4	0
4	Cu(acac) ₂	0.2	DCM	33	29
5	CuOTf	0.2	DCM	29	45
6	Cu(OTf) ₂	0.2	DCM	36	31
7	Cu(OTf) ₂	0.2	DCM ^c	37	33
8	Cu(OTf) ₂	0.3	DCM	45	30
9	Cu(OTf) ₂	0.4	DCM	49	28
10	Cu(OTf) ₂	0.3	MeCN	10	29
11	Cu(OTf) ₂	0.3	Dioxane	10	14
12	Cu(OTf) ₂	0.3	Toluene	0	0
13	Cu(OTf) ₂	0.3	DCE	37	31
14	Cu(OTf) ₂	0.3	THF	12	15

Table Optimization of copper-catalyzed formation of 12aa and 13aa^a

^{*a*} General conditions : **10a** (5 mmol), **11a** (7.5 mmol), PhIO (7.5 mmol), 3Å molecular sieves (2.5 g) in solvent (25 mL) and catalyst were stirred for 2 h under argon in a sealed tube. ^{*b*} Isolated yield. ^{*c*} Reaction conducted at reflux.

¹H NMR spectrum of **10a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **10a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **10b** (100 MHz, CDCl₃)

¹H NMR spectrum of **10c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **10c** (100 MHz, CDCl₃)

¹³C NMR spectrum of **10d** (100 MHz, CDCl₃)

¹³C NMR spectrum of **10e** (100 MHz, CDCl₃)

¹³C NMR spectrum of **12aa** (100 MHz, CDCl₃)

NMR spectrum of 13aa (400 MHz, CDCl₃)

¹³C NMR spectrum of **13aa** (100 MHz, CDCl₃)

¹³C NMR spectrum of **14a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **14b** (100 MHz, CDCl₃)

¹H NMR spectrum of **14c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **14c** (100 MHz, CDCl₃)

¹H NMR spectrum of **14d** (400 MHz, CDCl₃)

¹³C NMR spectrum of **14d** (100 MHz, CDCl₃)

¹³C NMR spectrum of **14e** (100 MHz, CDCl₃)

¹³C NMR spectrum of **14f** (100 MHz, CDCl₃)

¹H NMR spectrum of **15aa** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15aa** (100 MHz, CDCl₃)

H NMR spectrum of 15ab (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ab** (100 MHz, CDCl₃)

¹H NMR spectrum of **15ac** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ac** (100 MHz, DMSO-*d*₆)

¹H NMR spectrum of **15ad** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ad** (100 MHz, CDCl₃)

¹H NMR spectrum of **15ae** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ae** (100 MHz, CDCl₃)

¹H NMR spectrum of **15af** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15af** (100 MHz, CDCl₃)

¹H NMR spectrum of **15ag** (400 MHz, CDCl₃)

C NMR spectrum of 15ag (100 MHz, CDCl₃)

¹H NMR spectrum of **15ah** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ah** (100 MHz, CDCl₃)

¹H NMR spectrum of **15ba** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ba** (100 MHz, CDCl₃)

¹H NMR spectrum of **15ca** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15ca** (100 MHz, CDCl₃)

¹H NMR spectrum of **15da** (400 MHz, CDCl₃)

¹³C NMR spectrum of **15da** (100 MHz, CDCl₃)

¹H NMR spectrum of **16** (400 MHz, CDCl₃)

¹³C NMR spectrum of **16** (100 MHz, CDCl₃)

¹H NMR spectrum of **17** (400 MHz, CDCl₃)

¹³C NMR spectrum of **17** (100 MHz, CDCl₃

¹H NMR spectrum of **18** (400 MHz, CDCl₃)

¹³C NMR spectrum of **18** (100 MHz, CDCl₃)

1H NMR spectrum of 19 (400 MHz, CD₃OD-d₄)

¹³C NMR spectrum of **19** (100 MHz, CD₃OD $-d_4$)

HRMS spectrum of 12aa

HRMS spectrum of 13aa

HRMS spectrum of 14a

HRMS spectrum of 14b

HRMS spectrum of 14c

HRMS spectrum of 14d

HRMS spectrum of 14e

HRMS spectrum of 14f

HRMS spectrum of 15ab

HRMS spectrum of 15ac

HRMS spectrum of 15ad

HRMS spectrum of 15af

HRMS spectrum of 15ag

HRMS spectrum of 15ah

HRMS spectrum of 15ba

HRMS spectrum of 15ca

HRMS spectrum of 15da

HRMS spectrum of 17

Formula Predictor Report - JZX-A262-50.lcd

Page 1 of 1

Data File: D:\DATA\郁鹏\孙华\2018.10.30\JZX-A262-50.lcd

HRMS spectrum of 18

Formula Predictor Report - JZX-A262-63.lcd

Data File: D:\DATA\郁鹏\孙华\2018.10.30\JZX-A262-63.lcd

C14 H14 N3 O6 F2 S CI [M-H]- : Predicted region for 424.0187 m/z

HRMS spectrum of **19**

Formula Predictor Report - JZX-A262-41.lcd

Data File: D:\DATA\郁鹏\孙华\2018.10.30\JZX-A262-41.lcd

Event#: 1 MS(E+) Ret. Time : 1.173 -> 1.320 Scan# : 177 -> 199

