Supporting Information

Solid-phase synthesis and evaluation of tumour-targeting phenylboronate-based MRI contrast agents

Jonathan Martinelli,^{a,b} Rogelio Jiménez-Juárez,^{a,c} Diego Alberti,^d Simonetta Geninatti Crich,^d and Kristina Djanashvili^{*,a}

^a Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 262 HZ Delft, The Netherlands

^b Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy

^e Department of Organic Chemistry, National School of Biological Sciences, National Polytechnical Institute, Prolongación de Carpio y Plan de Ayala S/N, 11340, Mexico D.F., Mexico

^d Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy

Table of contents

1. pKa's Determination	2
	_
2. HPLC- and ESI-MS	3
3. NMR Spectra	7

1. pKa's Determination

¹¹B NMR-titration measurements were performed on Varian INOVA-300 spectrometers at 96.3 MHz and 25 °C using 5 mm NMR sample tubes. A 0.1 M solution of H₃BO₃ in D₂O (δ = 0.00 ppm) was used as external reference. The conversion to the BF₃·Et₂O scale by -18.7 ppm was applied. About 240 scans were collected using a delay and an acquisition time of 1 s. Boron-containing compounds were dissolved in a water (10% D₂O) / methanol (2:1 v/v) mixture. The pH values of the samples were measured at 25 °C with a Corning 125 pH-meter using a calibrated micro-combination probe purchased from Sigma Aldrich. The pH values were adjusted with 1 M solutions of NaOH and HCl.

The resonance of ¹¹B within the entire range of pH studied showed transition of B-atom from its planar B⁰ (sp²-hybridized) configuration at lower pH to the tetragonal B⁻ (sp³-hybridized) configuration upon increase of the pH. With the exchange between B⁰ and B⁻ being rapid on the ¹¹B NMR time-scale, the average chemical shift and the ionization constant of boron can be defined by the eqs. (1) and (2), where χ_i is the molar fraction of B⁰ and B⁻ and δ is the corresponding chemical shift. Fitting the experimental data to eqs (1) and (2) allowed for calculation of the pKa values of the corresponding compounds.

$$\delta = \sum_{i} \chi_{i} \delta_{i}$$
(1)
$$K_{a} = \frac{[B^{-}][H^{+}]}{[B^{0}]}$$
(2)

Figure S1. pH profiles of the ¹¹B chemical shift of a solution of PBA-containing model compounds. pKa (3-Me-PBA) = 8.8 pKa (2,3-F-4-Me-PBA) = 7.2 pKa (2,4-F-5-Me-PBA) = 8.0

pKa (2,6-f-5-Me-PBA) = 8.6

2. HPLC- and ESI-MS

Analytical HPLC gradient conditions for DOTA-EN-F2PBA:

Solvent A: H₂O TFA 0.1%; Solvent B: ACN TFA 0.1%; Flow: 1 ml/min; $t_R = 11.7$ min

Time (min)	Solvent A (%)	Solvent B (%)
0	90	10
2,00	90	10
16,00	0	100
19,00	0	100

Figure S2. ESI⁺ MS (*bottom*), UV (254 nm, *middle*) and specific ion (M-H₂O+H⁺, *top*) HPLC chromatograms of DOTA-EN-F2PBA from solid-phase synthesis (the peak at 2.0 min is due to the solvent front).

Figure S3. ESI⁻ (*top*) and ESI⁺ (*bottom*) mass spectra of DOTA-EN-F2PBA ligand prepared in solution. The peaks at 571.7 (negative mode) and 573.8 (positive mode) m/z correspond to the deboronated by-product. M⁺ = 616.3 m/z; M-H₂O+H⁺ = 599.3 m/z; M-B(OH)₂+H⁺ = 573.3 m/z.

Figure S4. ESI⁺ mass spectra of DOTA-EN-PBA ligand at different cone voltages: 30 V (top), 20 V (middle) and 10 V (bottom). The peaks around 563.3 m/z correspond to the mono-dehydrated adduct ($M-H_2O+H^+$); the peaks around 545.3 m/z correspond to the bis-dehydrated adduct ($M-2H_2O+H^+$).

Figure S5. ESI⁺ mass spectrum of GdDOTA-EN-PBA complex. Calculated for $[M+H]^+$ ($C_{25}H_{39}BGdN_6O_9^+$) = 736.2 m/z; for M-H₂O+H⁺ ($C_{25}H_{38}BGdN_6O_8^+$) = 719.2 m/z.

Figure S6. ESI⁺ mass spectrum of GdDOTA-EN-F2PBA complex. Calculated for $M+H^+$ ($C_{25}H_{37}BF_2GdN_6O_9^+$) = 772.2 m/z; for $M-H_2O+H^+$ ($C_{25}H_{35}BF_2GdN_6O_8^+$) = 754.2 m/z.

3 NMR Spectra

Figure S7. ¹H NMR spectrum in D₂O of DOTA-EN-PBA ligand prepared *via* solid-phase synthesis.

Figure S8. ¹H NMR spectrum in D_2O/CD_3CN of DOTA-EN-F2PBA ligand prepared *via* solid-phase synthesis. (residual Et₂O from precipitation is also observable).

Figure S9. ¹³C NMR spectrum in D₂O/CD₃CN of DOTA-EN-F2PBA ligand prepared *via* solid-phase synthesis (TFA as counterion is also observable).

Figure S10. ¹¹B NMR spectrum in D₂O/CD₃CN of DOTA-EN-F2PBA ligand prepared *via* solid-phase synthesis.

Figure S11. ¹⁹F NMR spectrum in D₂O/CD₃CN of DOTA-EN-F2PBA ligand prepared *via* solid-phase synthesis.

Figure S12. ¹⁹F NMR spectrum in D_2O of DOTA-EN-F2PBA ligand prepared *via* liquid-phase synthesis. The integrals confirm the presence of two F-containing species with a ratio 1:1.5.

Figure S13. ¹⁹F NMR COSY spectrum that identifies the two fluorine atoms belonging to each compound: - 132 and -142 ppm for DOTA-EN-F2PBA and -138 and -141 ppm for its deboronated derivative.