Supplementary Information

Deciphering sphaeropsidin A's chemical instability under physiological conditions – degradation studies and elucidation of the major metabolite

Alet E. van der Westhuyzen¹, Aude Ingels^{2,3}, Rémi Rosière², Karim Amighi², Lukas Oberer⁴, Kirk R. Gustafson⁵, Dongdong Wang⁵, Antonio Evidente⁶, Lucia Maddau⁷, Marco Masi⁶, André de Villiers¹, Ivan R. Green¹, Walter Berger⁸, Alexander Kornienko⁹, Veronique Mathieu^{2,3},* Willem A. L. van Otterlo^{1*}

¹Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, 7600, Stellenbosch, Western Cape, South Africa.

² Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Accès 2, 1050 Ixelles, Belgium.

³ ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium

⁴ Novartis Institutes for BioMedical Research, Global Discovery Chemistry, Basel, Switzerland.

⁵Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States.

⁶ Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy.

⁷Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Viale Italia 39, 07100, Sassari, Italy.

⁸Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.

⁹Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States.

List of Tables and Figures

Figure S1: Base peak ion chromatogram (ESI +) of SphA 1 incubated in water/DMSO	1
Table S1: LC-MS data of SphA 1 and minor metabolites 8 and 9	1
Figure S2: Base peak ion chromatogram of SphA 1 incubated in MEM vs blank sample	2
Figure S3: Overlaid UV chromatograms of the SphA 1 peak acquired over period of 48 h	2
Figure S4: Mass spectrum (ESI +) of SphA 1	3
Figure S5: Mass spectrum (ESI +) of major SphA degradation metabolite 10	3
Table S2: LC-MS data of SphA 1 and major metabolite 10.	3
Figure S6: Investigating SphA degradation products-amino acid adducts.	4
Table S3: SphA degradation compounds as proposed from SphA 1/buffer incubation experiment	4
Table S4: Proposed SphA degradation products (DP)-amino acid adducts	5
Figure S7: Sample of crude SphA 1 degradation mixture used for the isolation of SphA-Met 10	6
Figure S8: Purity analysis of isolated fraction of SphA-Met 10.	6
Figure S9: Mass spectrum of SphA-Met 10 peak (from Figure S8)	7
Figure S10: ¹ H NMR spectrum of SphA 1	8
Figure S11: ¹ H NMR spectrum of SphA-Met 10.	8
Figure S12: ¹³ C NMR spectrum of SphA 1	9
Figure S13: ¹³ C NMR spectrum of SphA-Met 10.	9
Figure S14: Expansion of COSY NMR spectrum of SphA-Met 10	10
Figure S15: COSY NMR spectrum of SphA-Met 10.	10
Figure S16: HSQC NMR spectrum of SphA-Met 10	11
Figure S17: Expansion of aliphatic region of HSQC NMR spectrum of SphA-Met 10	11
Figure S18: HMBC (${}^{n}J_{CH} = 8.0 \text{ Hz}$) NMR spectrum of SphA-Met 10	12
Figure S19: Expansion of HMBC NMR spectrum of SphA-Met 10	12
Figure S20: Expansion of HMBC NMR spectrum of SphA-Met 10.	13
Figure S21: Expansion of HMBC NMR spectrum of SphA-Met 10	13
Figure S22: Additional HMBC (${}^{n}J_{CH} = 3.5 \text{ Hz}$) NMR spectrum of SphA-Met 10	14

Figure S1: Base peak ion chromatogram (ESI positive mode) of SphA 1 incubated in water/DMSO (9:1) for 55 h. a) Sample containing SphA 1 along with minor metabolites 8 and 9 (arrows indicate separated peaks having the same MS i.e. potential isomers) compared to b) blank sample.

Product	1	8	9
	[M+H] ⁺ : 347.1861,	[M+H] ⁺ : 301.1773,	[M+H] ⁺ : 285.1852,
	$(C_{20}H_{27}O_5)$	$(C_{19}H_{25}O_3)$	$(C_{19}H_{25}O_2)$
Accurate mass (m/z) ,	[M+H–H ₂ O] ⁺ : 329.1750,	[M+H-H ₂ O] ⁺ : 283.1626,	[M+H-H ₂ O] ⁺ : 267.1736
Elemental composition	$(C_{20}H_{25}O_4)$	$(C_{19}H_{23}O_2)$	$(C_{19}H_{23}O)$
	[M+Na] ⁺ : 369.1673,	[M+Na] ⁺ : 323.1586,	-
	$(C_{20}H_{26}O_5Na)$	$(C_{19}H_{24}O_{3}Na)$	
Retention time (min)	6.26	6.93, 7.08	8.16, 8.23

Table S1: LC-MS data of SphA 1 and minor metabolites 8 and 9.

Note: Each of the two chromatographic peaks of products 8 and 9 appearing at the indicated retention times exhibit the same accurate mass, indicative of respective isomer formation.

Figure S2: Comparison of base peak ion chromatogram of: a) SphA 1 incubated for 31 h in MEM and b) blank sample comprising of MEM/DMSO (9:1), incubated for 31 h under the same conditions. Note: the y-axis (intensity) scale for the blank sample in b) is $\sim 3 \times$ higher to highlight the presence of minor peaks.

Figure S3: Overlaid UV chromatograms of the SphA 1 peak (extracted at 245 nm) acquired over period of 48 h when incubated in MEM/DMSO (9:1). Apart from SphA being clearly apparent at the retention time of 7.45 min, the complexity of the data over the extended incubation period complicated analysis of the degradation metabolites (see S2). However, the data did confirm the instability of SphA in cell culture medium. This behaviour was further corroborated by analysis of the UV (λ_{max} at 245 nm) data, displaying a clear decrease in concentration of SphA over 48 h of incubation (Figure S3 above). Peak area integration revealed that within 24 h of incubation, approximately 40% of SphA had degraded – further validating the results reported by Lallemand *et al.*, as well as our findings with conventional HPLC methodology.¹

Figure S4: Mass spectrum (ESI positive mode) of SphA 1 (eluted at 7.45 min) incubated in MEM cell medium (t = 0).

Figure S5: Mass spectrum (ESI positive mode) of major SphA degradation metabolite 10 (eluted at 7.54 min) incubated in MEM cell medium (t = 24).

	Table S2: LC	C-MS data	of SphA 1	and major	metabolite	10
--	--------------	-----------	-----------	-----------	------------	----

Product	1	10	
Accurate mass (<i>m/z</i>)	[M+H] ⁺ : 347.1862	[M+H] ⁺ : 317.1743	
	[M+H-H ₂ O] ⁺ : 329.1756	[M+H-H ₂ O] ⁺ : 299.1626	
	[M+NH ₄] ⁺ : 364.2112	[M+NH ₄] ⁺ : 334.2017	
	[M+Na]+: 369.1682	[M+Na] ⁺ : 339.1566	
	[2(M)+Na]+: 715.3419	[2(M)+Na]+: 655.3236	

Figure S6: Investigating SphA degradation products-amino acid adducts. Initially studied SphA 1 in buffer-only media (buffer/DMSO, 9:1) to determine molecular ions $[M+H]^+$ of SphA 1 degradation products (DP). Experiments whereby a specific amino acid is introduced and analysed in the SphA 1/buffer system propose the formation of several SphA degradation products-amino acid adducts. Analysis of adduct formation *via* LC-MS.

The exploration of the LC-MS data of SphA incubated in this buffer-only solution revealed a similar, yet less complex, degradation behaviour compared to experiments implementing MEM cell medium. The chromatographic and HR-MS data of SphA, incubated in the buffer-only solution, was scrutinised to reveal the generation of several possible SphA degradation products (Table S3).

SphA & i Product	its Degradation is MW (g/mol)	Retention Time (min)	Experimental [MW+H] ⁺ m/z	Theoretical [MW+H] ⁺ m/z	Molecular Formula*	PPM
1	346	6.27	347.1855	347.1858	$C_{20}H_{26}O_5$	-0.9
10	316	6.36	317.1755	317.1753	$C_{19}H_{24}O_4$	0.6
	314	5.01	315.1949	315.1960	$C_{20}H_{26}O_{3}$	-3.5
8	300	6.91, 7.07	301.1796	301.1804	$C_{19}H_{24}O_3$	-2.7
	298	4.19, 4.97	299.1652	299.1647	$C_{19}H_{22}O_{3}$	1.7
	296	4.01, 4,57, 4.73	297.1486	297.1491	$C_{19}H_{20}O_{3}$	-1.7
9	284	8.16, 8.23	285.1863	285.1855	$C_{19}H_{24}O_2$	2.8
	282	6.62, 7.08	283.1690	283.1698	$C_{19}H_{22}O_2$	-2.8
	182	3.52	183.1018	183.1021	$C_{10}H_{14}O_3$	-1.6
	162	3.26	163.0751	163.0759	$C_{10}H_{10}O_2$	-4.9

Table S3: SphA degradation compounds as proposed from SphA 1/buffer incubation experiment.

* Represents molecular formula of the neutral species.

SphA Degradation Product (DP) MW (g/mol)	Adduct MW (g/mol)	Experimental [MW+H] ⁺ m/z	Theoretical [MW+H] ⁺ m/z	Molecular Formula*	Description	
SphA DP-Cys Adduct						
316	437.5496	438.1931	438.1950	$C_{22}H_{31}NO_6S$	SphA DP+Cys	
298	419.5344	420.1845	420.1845	C ₂₂ H ₂₉ NO ₅ S	SphA DP+Cys	
297	417.5185	418.1690	418.1688	C ₂₂ H ₂₇ NO ₅ S	SphA DP+Cys	
297	538.6767	538.1883	539.1886	$C_{25}H_{34}N_2O_7S_2$	SphA DP+(2×Cys)	
282	403.5350	404.1904	404.1896	$C_{22}H_{29}NO_4S$	SphA DP+Cys	
	SphA DP-	Lys Adduct				
316	462.5790	463.2808	463.2808	$C_{25}H_{38}N_2O_6$	SphA DP+Lys	
298	444.5637	445.2698	445.2702	$C_{25}H_{36}N_2O_5$	SphA DP+Lys	
182	328.4039	329.2073	329.2076	$C_{16}H_{28}N_2O_5$	SphA DP+Lys	
	SphA DP-	Phe Adduct				
316	481.5806	482.2537	482.2543	$C_{28}H_{35}NO_6$	SphA DP+Phe	
298	463.5653	464.2429	464.2437	C ₂₈ H ₃₃ NO ₅	SphA DP+Phe	
182	347.4055	348.1803	348.1811	C ₁₉ H ₂₅ NO ₅	SphA DP+Phe	
SphA DP-Leu Adduct						
316	447.5644	448.2698	448.2699	C ₂₅ H ₃₇ NO ₆	SphA DP+Leu	
182	313.3893	314.1966	314.1967	C ₁₆ H ₂₇ NO ₅	SphA DP+Leu	
SphA DP-Trp Adducts						
316	520.6166	521.2642	521.2652	$C_{30}H_{36}N_2O_6$	SphA DP+Trp	
298	502.6014	503.2534	503.2546	$C_{30}H_{34}N_2O_5$	SphA DP+Trp	
182	386.4415	387.1917	387.1920	$C_{21}H_{26}N_2O_5$	SphA DP+Trp	

Table S4: Proposed SphA degradation products (DP)-amino acid adducts as determined from the identified molecular ions.

* Represents molecular formula of the neutral species.

Figure S7: Sample of crude SphA 1 degradation mixture used for the isolation of SphA-Met 10. Representation of UV chromatogram acquired and utilised during preparative HPLC isolation of SphA-Met 10 (15.8–17.7 min).

Figure S8: Purity analysis of isolated fraction of SphA-Met 10. a) UV and b) total ion chromatogram of the analytical separation of SphA-Met 10.

Figure S9: Mass spectrum of SphA-Met 10 peak eluted at 8.65 min (from chromatogram (b) in Figure S8) obtained on a single quadrupole instrument.

ure S10: ¹H NMR spectrum (CDCl₃) of SphA **1**. Assignments made according to Evidente *et al.*² Highlighted signals C₆-OH, H₅ and C₉-OH are missing from the ¹H NMR spectrum of SphA-Met **10** (shown below).

Figure S11: ¹H NMR spectrum (CDCl₃) of SphA-Met 10. (* = grease)

Figure S12: ¹³C NMR spectrum (CDCl₃) of SphA 1. Assignments made according to Evidente *et al.* Highlighted signals C₇, C₆, C₁₀ and C₅ are missing from the ¹³C NMR spectrum of SphA-Met **10** (shown below). C₁₈/C₁₉ interchangeable.

Figure S13: ¹³C NMR spectrum (CDCl₃) of SphA-Met 10. (* = grease)

Figure S14: Expansion of COSY NMR spectrum of SphA-Met 10.

Figure S17: Expansion of aliphatic region of HSQC NMR spectrum of SphA-Met 10. ¹³C and ¹H NMR signals of 18 and 19 are interchangeable.

Figure S18: HMBC (${}^{n}J_{CH} = 8.0 \text{ Hz}$) NMR spectrum of SphA-Met 10.

Figure S19: Expansion of HMBC NMR spectrum of SphA-Met 10, showing coupling of C13/H15, H16 and H11

Figure S20: Expansion of HMBC NMR spectrum of SphA-Met **10**, showing coupling of C₁₃/H₁₇; C₃/ H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₈; C₁₂/ H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₇; C₄/H₁₈; C₁₂/ H₁₈; C₁₃/ H₁₈; C₁₃/ H₁₈; C₁₄/ H₁₈; C₁₅/ H₁₈; C₁₅/ H₁₈; C₁₅/ H₁₈; C₁₅/ H₁₈; C₁₅/ H₁₈; C₁₅/ H₁₈; C₁₆/ H

Figure S21: Expansion of HMBC NMR spectrum of SphA-Met 10, showing coupling of C_9/H_{14} .

Figure S22: Additional HMBC (${}^{n}J_{CH}$ = 3.5 Hz) NMR spectrum of SphA-Met 10, showing weaker ${}^{1}H{-}{}^{13}C$ correlations and crosspeaks identifying C₇(169.5 ppm) and C₈ (125.6 ppm).

References:

- 1. B. Lallemand, M. Masi, L. Maddau, M. De Lorenzi, R. Dam, A. Cimmino, L. Moreno y Banuls, A. Andolfi, R. Kiss, V. Mathieu and A. Evidente, *Phytochem. Lett.*, 2012, 5, 770-775.
- 2. A. Evidente, L. Sparapano, A. Motta, F. Giordano, O. Fierro and S. Frisullo, *Phytochemistry*, 1996, 42, 1541-1546.