Supporting Information

Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H₂ pressure

Shu Fujita,^a Sho Yamaguchi,^a Seiji Yamazoe,^b Jun Yamasaki,^c Tomoo Mizugaki^a and Takato Mitsudome*^a

^a Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

E-mail: mitsudom@cheng.es.osaka-u.ac.jp

^b Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

^c Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Table of Contents

- 1. General experimental details
- 2. Catalyst preparations
- 3. Characterization of metal phosphide nanoalloy catalysts

Fig. S1 XRD patterns of (a) nano-Ni₂P, (b) nano-Co₂P, and (c) nano-Fe₂P.

Fig. S2 TEM images of (a) nano-Co₂P, and (b) nano-Fe₂P.

Fig. S3 Time course of the deoxygenation of 1a using nano-Ni₂P/TiO₂.

Fig. S4 Fourier transform k³-weighted EXAFS of Ni foil, NiO, and nano-Ni₂P.

Fig. S5 EXAFS fitting curves in k-space (upper panel) and R-space (lower panel). (a) Ni foil and (b) nano-Ni₂P.

Fig. S6 Crystal structure of Ni_2P with a (300) plane.

Fig. S7 Ni 2p XPS spectrum of nano-Ni₂P.

Table S1 Elemental analysis of fresh and used nano-Ni₂P/TiO₂ by ICP-AES

Table S2 Curve fitting of Ni K-edge EXAFS for Ni foil and nano-Ni₂P

4. Control experiment

Scheme S1 Deoxygenation of 1a using nano-Ni₂P/TiO₂ treated with H₂.

- Comparison of activity between nano-Ni₂P and reported non-noble metal catalysts
 Table S3 Deoxygenation of sulfides using H₂ catalyzed by non-noble metal catalysts
- 6. Characterization data of products
- 7. ¹H NMR and ¹³C NMR spectra of products

References

1. General experimental details

NiCl₂·6H₂O, Nb₂O₅ and 4Å molecular sieves (4Å M.S.) were purchased from Wako Pure Chemical Industries (Japan). CoCl₂·6H₂O and Fe(CO)₅ were purchased from Nacalai Tesque, Inc. (Japan), and Kanto Chemical Co., Inc., respectively. TiO₂ (JRC-TIO-15) and ZrO₂ (JRC-ZrO-6) were obtained from the Catalysis Society of Japan, respectively, as reference catalysts. SiO₂ (Q-6) was purchased from Fuji Silysia Chemicals (Japan). Al₂O₃ (AKP-G015) was obtained from Sumitomo Chemical Co. Ltd. (Japan). Hydrotalcite (HT, AD-500NS) was obtained from Tomita Pharmaceutical Co. Ltd. (Japan). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was performed using an SII Nano Technology SPS7800 instrument. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded using a JEOL JNM-ESC400 spectrometer.

2. Catalyst preparations

Synthesis of nano-Co₂P

In a typical synthesis, $CoCl_2 \cdot 6H_2O$ (1.0 mmol) was combined with hexadecylamine (10 mmol) and triphenyl phosphite (10 mmol) in a Schlenk flask. The mixture was stirred at 150 °C and then the temperature increased to 290 °C with stirring, affording a black colloidal solution. The rest of the procedure was the same as that used to prepare nano-Ni₂P.

Synthesis of nano-Fe₂P

In a typical synthesis, hexadecylamine (10 mmol) was combined with 1-octadecene (10 mL) and triphenyl phosphite (10 mmol) in a Schlenk flask. The mixture was stirred at 150 °C and then Fe(CO)₅ dissolved in 1-octadecene (5 mol/L) was added. The temperature increased to 300 °C with stirring, affording a black colloidal solution. The rest of the procedure was the same as that used to prepare nano-Ni₂P.

3. Characterization of metal phosphide nanoalloy catalysts

Fig. S1 XRD patterns of (a) nano-Ni₂P, (b) nano-Co₂P, and (c) nano-Fe₂P.

Fig. S2 TEM images of (a) nano-Co₂P, and (b) nano-Fe₂P.

Fig. S3 Time course of the deoxygenation of **1a** using nano-Ni₂P/TiO₂. (\bullet) Without catalyst filtration and (\bullet) with catalyst removal by hot filtration after 1 h. Reaction conditions: nano-Ni₂P/TiO₂ (5 mol% Ni), **1a** (0.5 mmol), toluene (3 mL), H₂ (10 bar), and 120 °C.

Fig. S4 Fourier transform k³-weighted EXAFS of Ni foil, NiO, and nano-Ni₂P.

Fig. S5 EXAFS fitting curves in k-space (upper panel) and R-space (lower panel). (a) Ni foil and (b) nano-Ni₂P.

Fig. S6 Crystal structure of Ni_2P with a (300) plane.

Fig. S7 Ni 2p XPS spectrum of nano-Ni₂P.

Table S1 Eleme	ental analysis	of fresh and used	d nano-Ni ₂ P/TiO ₂	by ICP-AES
----------------	----------------	-------------------	---	------------

	Ni (wt.%)
Fresh nano-Ni ₂ P/TiO ₂	0.99
Used nano-Ni ₂ P/TiO ₂	0.98

Table S2 Curve fitting of Ni K-edge EXAFS for Ni foil and nano-Ni₂P

Sample	Shell	CN ^a	$r(\mathrm{\AA})^b$	DW ^c	R factor (%)	
Ni foil	Ni–Ni	11 ± 0.1	2.48 ± 0.01	0.007 ± 0.002	2.4	
nano-Ni ₂ P	Ni–P	2.1 ± 0.2	2.21 ± 0.03	0.008 ± 0.004	7.5	
	Ni–Ni	2.2 ± 0.2	2.58 ± 0.03	0.008 ± 0.004	7.5	
bulk Ni ₂ P (ideal)	Ni–P ^d	2.2	2.24			
	Ni–Ni ^e	6.7	2.65			

^{*a*} Coordination number. ^{*b*} Bond distance. ^{*c*} Debye–Waller factor. ^{*d*} Average of Ni–P whose bond lengths are less than 2.3 Å. ^{*e*} Average of Ni-Ni whose bond lengths are less than 2.7 Å.

4. Control experiment

Scheme S1 Deoxygenation of 1a using nano-Ni₂P/TiO₂ treated with H₂. Reaction conditions: nano-Ni₂P/TiO₂ (0.85 μ mol Ni) treated, 1a (0.5 mmol), toluene (3 mL), Ar (1 bar), 120 °C, and 1 h. Before the reaction, nano-Ni₂P/TiO₂ was treated with H₂ (10 bar) at 120 °C for 1 h.

5. Comparison of activity between nano-Ni₂P and reported non-noble metal catalysts

Catalyst	Conditions	Substrate	Yield of	TON	Ref.
			sulfide [%]		
nano-Ni ₂ P/TiO ₂	120 °C, 10 bar, 12 h	Diphenyl sulfoxide	92	92	This
	in toluene				work
nano-Ni ₂ P/TiO ₂	160 °C, 1 bar, 12 h	Diphenyl sulfoxide	97	19	This
	in toluene				work
Co-Mo/NC-400	50 °C, 10 bar, 10 h	Diphenyl sulfoxide	100		<i>S1</i>
	in methanol				
MoO_2Cl_2	120 °C, 50 bar, 20 h	Methyl phenyl	100	10	<i>S2</i>
	in toluene	sulfoxide			

Table S3 Deoxygenation of sulfides using H₂ catalyzed by non-noble metal catalysts

6. Characterization data of products

All the reaction products were characterized by GC-MS and NMR. The retention times (GC-MS) and chemical shifts (¹H and ¹³C) of the products were in agreement with those of authentic samples or previously reported values.

Dimethyl sulfide (S3) (2a)

CAS registry No. [139-66-2]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.35 – 7.20 (m, 10H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 135.8, 131.0, 129.1, 127.0.

Bis(4-methylphenyl) sulfide (S3) (2b)

CAS registry No. [620-94-0]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.22 (d, *J* = 7.6 Hz, 4H), 7.08 (d, *J* = 8.4 Hz, 4H), 2.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 136.9, 132.9, 131.0, 129.9, 21.0.

Benzyl phenyl sulfide (S4) (2c)

CAS registry No. [831-91-4]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.31 – 7.21 (m, 10H), 4.11 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 137.4, 136.3, 129.8, 128.8, 128.4, 127.1, 126.3, 39.0.

Thioanisole (S3) (2d)

CAS registry No. [100-68-5]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.26 – 7.25 (m, 4H), 7.13 – 7.09 (m, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 138.4, 128.7, 126.6, 125.0, 15.8.

(4-Methylthio)toluene (S3) (2e)

CAS registry No. [623-13-2]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.18 (d, *J* = 8.8 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 2.45 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 135.0, 134.7, 129.6, 127.3, 20.9, 16.5.

Dibutyl sulfide (S3) (2f)

CAS registry No. [544-40-1]. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 2.51$ (t, J = 7.6 Hz, 4H), 1.63 – 1.53 (m, 4H), 1.46 – 1.38 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 31.8, 22.0, 13.6$.

Dodecyl Methyl Sulfide (S5) (2g)

CAS registry No. [3698-89-3]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 2.49 (t, *J* = 7.4 Hz, 2H), 2.09 (s, 3H), 1.63 – 1.56 (m, 2H), 1.39 – 1.26 (m, 18H), 0.88 (t, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 34.3, 31.9, 29.6, 29.5, 29.3, 29.2, 28.8, 22.7, 15.5, 14.1.

Tetrahydrothiophen (S3) (2h)

CAS registry No. [110-01-0]. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 2.84 - 2.81$ (m, 4H), 1.95 - 1.92 (m 4H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 31.7$, 30.9.

Bis(methylthio)methane (S6) (2i)

CAS registry No. [1618-26-4]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 3.56 (s, 2H), 2.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 40.1, 14.3.

4,4'-Dichloro diphenyl sulfide (S3) (2j)

CAS registry No. [5181-10-2]. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.29 - 7.22$ (m, 8H); ¹³C NMR

(100 MHz, CDCl₃, ppm): δ = 134.0, 133.5, 132.3, 129.5.

4-Bromothioanisole (S7) (2k)

CAS registry No. [104-95-0]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.39 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 137.7, 131.8, 128.2, 118.6, 16.0.

4-Methoxythioanisole (S3) (2l)

CAS registry No. [1879-16-9]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.29 – 7.25 (m, 2H), 6.87 – 6.83 (m, 2H), 3.79 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 158.2, 130.3, 128.8, 114.6, 55.4, 18.1.

4-(Methylthio)benzaldehyde (S8) (2m)

CAS registry No. [3446-89-7]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 9.92 (s, 1H), 7.78 – 7.75 (m, 2H), 7.34 – 7.31 (m, 2H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 191.1, 147.9, 133.0, 129.9, 125.2, 14.7.

4'-(Methylthio)acetophenone (S5) (2n)

CAS registry No. [1778-09-2]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.87 (d, *J* = 8.8 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 2.57 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 197.2, 145.9, 133.6, 128.7, 125.0, 26.4, 14.8.

Allyl phenyl sulfide (*S9*) (20)

CAS registry No. [5296-64-0]. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.32 – 7.30 (m, 2H), 7.26 –

7.22 (m, 2H), 7.14 (t, J = 7.4 Hz, 1H), 5.90 – 5.80 (m, 1H), 5.13 – 5.02 (m, 2H), 3.51 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 135.9, 133.6, 129.8, 128.8, 126.2, 117.6, 37.2.

7. ¹H NMR and ¹³C NMR spectra of products

¹³C NMR spectrum of **2a**

¹³C NMR spectrum of **2b**

¹H NMR spectrum of **2e**

¹³C NMR spectrum of **2i**

¹H NMR spectrum of **2**j

¹³C NMR spectrum of **2**j

¹³C NMR spectrum of **2k**

¹³C NMR spectrum of **2m**

¹³C NMR spectrum of **2n**

References

- S1. P. M. Reis, P. J. Costa, C. C. Romão, J. A. Fernandes, M. J. Calhorda and B. Royo, *Dalton Trans*.2008, 1727–1733.
- S2. K. Yao, Z. Yuan, S. Jin, Q. Chi, B. Liu, R. Huang and Z. Zhang, Green Chem. 2020, 22, 39-43.
- S3. R. Ma, A.-H. Liu, C.-B. Huang, X.-D. Li and L.-N. He, Green Chem., 2013, 15, 1274–1279.
- S4. X. Lv and W. Bao, J. Org. Chem., 2007, 72, 3863-3867.
- S5. F. Takahashi, K. Nogi and H. Yorimitsu, Eur. J. Org. Chem., 2020, 3009-3012.
- S6. E. P. Levanova, V. Yu. Vshivtsev, E. N. Sukhomazova, V. A. Grabel'nykh, N. V. Russavskaya,
 E. R. Zhanchipova, L. V. Klyba, A. I. Albanov and N. A. Korchevin, *Russ. J. Gen. Chem.*, 2008,
 78, 1734–1741.
- S7. T. Mitsudome, Y. Takahashi, T. Mizugaki, K. Jitsukawa and K. Kaneda, *Angew. Chem., Int. Ed.*, 2014, 53, 8348–8351.
- S8. C. Zhu, Z. Zhang, W. Ding, J. Xie, Y. Chen, J. Wu, X. Chen and H. Ying, *Green Chem.*, 2014, 16, 1131–1138.
- S9. G. A. Edwards, P. A. Culp and J. M. Chalker, Chem. Commun., 2015, 51, 515-518.