Supporting Information

Palladium-Catalyzed Double Coupling Reaction of Terminal Alkynes

with Isonitriles: A Direct Approach to Symmetrical

N-Aryl Dialkynylimines

Zhi-Wei Xi, ^{a,+} Yan He,^{b,+} Li-Qiu Liu,^a and Ying-Chun Wang^{a,*}

^aNational Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, People's Republic of China Phone: (+86)-743-8563911 fax: (+86)-743-8563911

E-mail: wangyingchunjsu@163.com

^bShanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

Table of Contents

Experimental	S2
General methods and materials	S2
General procedure for the synthesis of <i>N</i> -aryl dialkynylimines 3	S2
X-ray data for compound 3g	S3
X-ray data for compound 5	S4
X-ray data for compound 6c	S5
Spectral data of all compounds	S6-S15
Copies of ¹ H NMR and ¹³ C NMR spectra of all compounds	S16-S42

Experimental

General methods and materials. Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 400 MHz and 100 MHz or 500 MHz and 125 MHz, respectively, using CDCl₃ as reference standard (δ 7.26 ppm) for ¹H NMR and (δ 77.04 ppm) for ¹³C NMR. HRMS were recorded using ESI. Melting points were uncorrected. Precoated silica gel plates GF-254 were used for thin-layer analytical chromatography. Column chromatography was performed on silica gel (300-400 mesh). Unless otherwise noted, all reactions were carried out under the atmosphere of nitrogen. Solvents if necessary were dried and distilled according to standard methods prior to use. All reagents were purchased from commercial sources (Aladdin, Macklin, Adamas, and Guoyao) and used as received without further purification.

General procedure for the synthesis of *N*-aryl dialkynylimines 3.

A mixture of terminal alkynes 1 (0.2 mmol), isonitriles 2 (0.2 mmol), Pd(dppf)Cl₂ (0.01 mmol, 5 mol%), Cu(OAc)₂ (0.2 mmol, 1.0 eq) and 3.0 mL CH₃CN was stirred at rt for 1-2 h under the atmosphere of nitrogen. The progress of the reaction was monitored by thin-layer chromatography. Upon completion, the mixture was evaporated under reduced pressure, and the residue was separated by column chromatography (ethyl acetate/petroleum ether = 1:50 to 1:10) to give the pure products **3**.

2
$$R^1 = + R^2 - N \equiv \overline{C}$$

1 2 $H_3CN, rt, 1-2 h, N_2$
 $R^1 = R^1$

n2

Figure S1 X-ray data for compound 3g (CCDC 1960026)

Table S1. Crystal data and structure refinement for 3	Crystal data and structure refinement fo	r 3
---	--	-----

Compound	3 g
Empirical formula	C ₂₇ H ₁₅ F ₂ N
Formula weight	391.40
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	5.8348(3)
b/Å	14.7954(9)
c/Å	21.5626(13)
$\alpha/^{\circ}$	90
β/°	92.427(5)
$\gamma^{/\circ}$	90
Volume/Å ³	1859.79(19)
Z	4
$ ho_{calc}g/cm^3$	1.398
μ/mm^{-1}	0.095
F(000)	808.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.678 to 50
Index ranges	$\textbf{-6} \le h \le 6, \textbf{-13} \le k \le 17, \textbf{-25} \le \textbf{l} \le 19$
Reflections collected	7922
Independent reflections	$3261 [R_{int} = 0.0239, R_{sigma} = 0.0344]$
Data/restraints/parameters	3261/0/271
Goodness-of-fit on F ²	1.050
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0389, wR_2 = 0.0847$
Final R indexes [all data]	$R_1 = 0.0498, wR_2 = 0.0907$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.20

Figure S2 X-ray data for compound 5 (CCDC 2032367)

Table S2. Crystal data and structure refinement for 5

Compound	5
Empirical formula	C ₂₃ H ₄₀ N ₂ O
Formula weight	360.57
Temperature/K	100.01(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.2053(5)
b/Å	9.9516(6)
c/Å	14.8729(13)
$\alpha / ^{\circ}$	79.118(6)
β/°	88.843(6)
γ/°	68.605(6)
Volume/Å ³	1108.87(14)
Z	2
$\rho_{calc}g/cm^3$	1.080
μ/mm^{-1}	0.065
F(000)	400.0
Crystal size/mm ³	0.13 imes 0.12 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.482 to 49.998
Index ranges	$-9 \le h \le 9, -11 \le k \le 11, -17 \le l \le 12$
Reflections collected	7160
Independent reflections	$3897 \ [R_{int} = 0.0277, R_{sigma} = 0.0522]$
Data/restraints/parameters	3897/0/245
Goodness-of-fit on F ²	1.049
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0497, wR_2 = 0.1070$
Final R indexes [all data]	$R_1 = 0.0654, wR_2 = 0.1161$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.24

Figure S3 X-ray data for compound 6c (CCDC 1960024)

Table S3. Crystal data and structure refinement for 6c

Compound	6с
Empirical formula	C ₃₇ H _{34.22} INO ₂
Formula weight	651.77
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	5.8087(3)
b/Å	11.2608(7)
c/Å	47.001(2)
$\alpha / ^{\circ}$	93.058(5)
β/°	90.358(4)
$\gamma/^{\circ}$	92.480(5)
Volume/Å ³	3067.0(3)
Z	4
$ ho_{calc}g/cm^3$	1.412
µ/mm ⁻¹	8.455
F(000)	1329.0
Crystal size/mm ³	0.12 imes 0.11 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	3.766 to 147.928
Index ranges	$-7 \le h \le 4, -13 \le k \le 13, -58 \le l \le 53$
Reflections collected	21375
Independent reflections	11868 [$R_{int} = 0.0960, R_{sigma} = 0.1392$]
Data/restraints/parameters	11868/26/808
Goodness-of-fit on F ²	1.087
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0948, wR_2 = 0.2186$
Final R indexes [all data]	$R_1 = 0.1384, wR_2 = 0.2497$
Largest diff. peak/hole / e Å ⁻³	1.72/-1.80

Spectral data of all compounds

N-(naphthalen-2-yl)-1,5-diphenylpenta-1,4-diyn-3-imin e (3a): brown oil; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 11.1, 8.3 Hz, 3H), 7.74 (s, 1H), 7.67 (dd, J = 7.6, 1.6 Hz, 2H), 7.52–7.28 (m, 9H), 7.27–7.20 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.6, 133.9, 133.6, 132.7,

132.5, 132.0, 130.2, 130.0, 128.6, 128.6, 128.4, 128.2, 127.8, 126.4, 125.8, 121.9, 121.3, 120.8, 118.9, 95.2, 90.4, 88.7, 84.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₁₈N 356.1434; Found 356.1423.

N-(1,5-*bis*(4-*tert*-butylphenyl)penta-1,4-diyn-3ylidene)naphthalen-2-amine (3b): pale brown solid, m.p. 99.0-102.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (t, J = 7.9 Hz, 3H), 7.79 (s, 1H), 7.67 (d, J = 8.3 Hz, 2H), 7.55–7.45 (m, 5H), 7.31

(q, J = 9.0 Hz, 4H), 1.38 (s, 9H), 1.31 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 153.8, 153.4, 147.7, 134.3, 133.7, 132.5, 132.3, 131.9, 128.3, 128.2, 127.8, 126.3, 125.6, 125.5, 122.0, 118.8, 118.3, 117.8, 95.6, 90.8, 88.4, 84.3, 35.0, 35.0, 31.2, 31.1 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₅H₃₄N 468.2686; Found 468.2676.

N-(1,5-*bis*(4-(pentyloxy)phenyl)penta-1,4 -diyn-3-ylidene)naphthalen-2-amine (3c): pale brown oil; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (t, J = 8.2 Hz, 3H), 7.72 (s, 1H), 7.61 (d, J = 8.7 Hz, 2H), 7.50–7.41 (m,

3H), 7.28–7.20 (m, 3H), 6.90 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 3.98 (t, J = 6.6 Hz, 2H), 3.91 (t, J = 6.6 Hz, 2H), 1.78–1.73 (m, 4H), 1.47–1.31 (m, 9H), 0.95–0.87 (m, 6H) ppm; ¹³C NMR (100MHz, CDCl₃): δ 160.7, 160.5, 147.8, 134.4, 134.4, 134.3, 133.7, 131.8, 128.2, 128.1, 127.8, 126.3, 125.4, 122.2, 118.7, 114.7,

113.0, 112.4, 96.0, 90.9, 88.1, 84.2, 68.2, 68.2, 28.9, 28.8, 28.2, 28.1, 22.5, 22.4, 14.1, 14.0 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₈O₂N 528.2897; Found 528.2883.

N-(1,5-*bis*(3-methoxyphenyl)penta-1,4-diyn -3-ylidene)naphthalen-2-amine (3d): pale brown oil; ¹H NMR (400 MHz, CDCl₃): δ 7.84–7.74 (m, 3H), 7.65 (d, J = 1.6 Hz, 1H), 7.44–7.35 (m, 3H), 7.27–7.19 (m, 2H),

7.15–7.07 (m, 2H), 6.95–6.90 (m, 1H), 6.88–6.80 (m, 2H), 6.65 (d, J = 1.3 Hz, 1H), 3.77 (s, 3H), 3.56 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 159.3, 147.7, 134.0, 133.6, 131.9, 129.6, 129.6, 128.3, 128.1, 127.8, 126.4, 125.7, 125.2, 124.9, 122.2, 121.9, 121.6, 118.6, 117.3, 117.1, 116.9, 116.7, 95.2, 90.3, 88.1, 84.2, 55.4, 55.2 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₂O₂N 416.1645; Found 416.1636.

N-(1,5-*bis*(2-methoxyphenyl)penta-1,4-diyn-3-ylidene) naphthalen-2-amine (3e): reddish brown oil; ¹H NMR (400 MHz, CDCl₃): δ 7.89–7.80 (m, 4H), 7.65 (dd, J = 7.6, 1.6 Hz, 1H), 7.55 (dd, J= 8.7, 2.0 Hz, 1H), 7.52–7.38 (m, 3H), 7.37–7.29 (m, 2H), 7.05–6.91 (m,

2H), 6.86 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 3.98 (s, 3H), 3.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 161.1, 147.7, 134.5, 134.4, 134.2, 133.7, 131.9, 131.8, 131.4, 128.3, 128.1, 127.7, 126.0, 125.4, 122.3, 120.5, 120.4, 118.7, 110.9, 110.8, 110.7, 110.2, 92.7, 92.3, 88.6, 87.1, 55.9, 55.5 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₂O₂N 416.1645; Found 416.1635.

N-(1,5-*bis*(4-(dimethylamino)phenyl)penta-1,4diyn-3-ylidene)naphthalen-2-amine (3f): black solid, m.p. 85.7-88.4 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 8.5, 3.6 Hz, 3H), 7.56 (d, J = 8.9 Hz, 2H), 7.52–7.40 (m, 4H), 7.20–7.14 (m,

2H), 6.67 (d, J = 9.0 Hz, 2H), 6.52 (d, J = 9.0 Hz, 2H), 3.02 (s, 6H), 2.96 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 151.1, 151.0, 148.2, 134.9, 134.1, 134.1, 133.7, 131.6, 128.0, 128.0, 127.7, 126.0, 125.1, 122.6, 118.7, 111.6, 111.5, 107.7, 107.0, 98.0, 92.6, 88.5, 84.8, 40.1, 40.0 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₈N₃ 442.2278; Found 442.2267.

N-(1,5-*bis*(4-fluorophenyl)penta-1,4-diyn-3-yliden e)naphthalen-2-amine (3g): pale brown solid, m.p. 129.1-132.1 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.71 (m, 3H), 7.69–7.53 (m, 3H), 7.45–7.33 (m, 3H), 7.26–7.17 (m, 2H), 7.02 (t, J = 8.7 Hz, 2H),

6.89 (t, J = 8.7 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.6 (d, ¹J_{CF} = 252 Hz), 163.5 (d, ¹J_{CF} = 251 Hz), 147.5, 134.7 (d, ³J_{CF} = 8.0 Hz), 134.6 (d, ³J_{CF} = 8.0 Hz), 133.6, 133.57, 132.0, 128.4, 128.1, 127.8, 126.5, 125.8, 121.7, 118.7, 117.3 (d, ⁴J_{CF} = 3.0 Hz), 116.8 (d, ⁴J_{CF} = 3.0 Hz), 116.0 (d, ²J_{CF} = 22.0 Hz), 115.9 (d, ²J_{CF} = 22.0 Hz), 94.1, 89.3, 88.2, 84.2 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₁₆NF₂ 392.1245; Found 392.1238.

N-(1,5-*bis*(4-chlorophenyl)penta-1,4-diyn-3-ylide ne)naphthalen-2-amine (3h): pale brown solid, m.p. 129.8-131.4 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.91–7.81 (m, 3H), 7.71 (d, J = 1.7 Hz, 1H), 7.64–7.57 (m, 2H), 7.52–7.43 (m, 3H), 7.41–7.36

(m, 2H), 7.27–7.22 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 136.6, 136.2, 133.8, 133.7, 133.5, 133.3, 132.0, 129.0, 128.9, 128.4, 128.1, 127.8, 126.5, 125.9,

121.7, 119.7, 119.1, 118.8, 93.9, 89.2, 89.1, 85.0 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₁₆NCl₂ 424.0654; Found 424.0644.

N-(1,5-*bis*(2-chlorophenyl)penta-1,4-diyn-3-ylidene)na phthalen-2-amine (3i): pale brown solid, m.p. 89.2-91.6 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.79 (m, 4H), 7.69 (dd, J = 7.6, 1.6 Hz, 1H), 7.56–7.41 (m, 4H), 7.39–7.23 (m, 5H), 7.16 (td, J = 7.5, 1.2 Hz, 1H) ppm; ¹³C

NMR (100 MHz, CDCl₃): δ 147.3, 137.2, 134.5, 134.3, 133.6, 133.1, 132.2, 131.1, 130.9, 129.6, 129.5, 128.5, 128.3, 127.8, 126.7, 126.6, 126.4, 125.8, 121.9, 121.5, 121.1, 118.8, 92.9, 91.7, 88.5, 87.2 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₁₆NCl₂ 424.0654; Found 424.0646.

N-(1,5-*bis*(4-(trifluoromethyl)phenyl)penta-1,4 -diyn-3-ylidene)naphthalen-2-amine (3j): pale brown oil; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (ddd, J = 8.6, 7.3, 6.2 Hz, 3H), 7.79 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 8.2

Hz, 2H), 7.57–7.40 (m, 7H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.2, 133.5, 132.8, 132.7, 132.2, 131.9, 131.8, 131.6, 131.4, 128.5, 128.2, 127.8, 126.6, 126.1, 125.50 (q), 124.9 (q), 124.4, 122.4, 122.2, 121.5, 118.9, 93.1, 89.8, 88.6, 85.6 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₁₆NF₆ 492.1181; Found 492.1169.

N-(1,5-bis(4-bromophenyl)penta-1,4-diyn-3-ylide ne)naphthalen-2-amine (3k): pale brown solid, m.p. 95.8-98.5 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.72 (m, 3H), 7.64 (d, J = 1.8 Hz, 1H), 7.53–7.44 (m, 4H), 7.43–7.38 (m, 2H), 7.37–7.32

(m, 2H), 7.19 (s, 1H), 7.16–7.03 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 133.9, 133.8, 133.5, 133.3, 132.1, 131.9, 131.9, 128.4, 128.1, 127.8, 126.5, 125.9,

125.0, 124.6, 121.6, 120.1, 119.6, 118.8, 94.0, 89.2, 85.1, 77.2 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₁₆NBr₂ 513.9629; Found 513.9613.

1,5-Di([1,1'-biphenyl]-4-yl)-N-(naphthalen-2-yl) penta-1,4-diyn-3-imine (3l): pale brown oil; ¹H **NMR** (400 MHz, CDCl₃): δ 7.85–7.77 (m, 3H), 7.69 (d, J = 8.3 Hz, 3H), 7.60–7.53 (m, 4H), 7.49–7.30 (m, 14H), 7.18 (s, 1H) ppm; ¹³C NMR

(100 MHz, CDCl₃): δ 147.6, 142.9, 142.7, 140.1, 139.9, 133.9, 133.6, 133.1, 133.0, 132.0, 129.0, 129.0, 128.3, 128.2, 128.1, 128.0, 127.8, 127.2, 127.2, 127.2, 127.1, 126.4, 125.7, 121.9, 120.1, 119.5, 118.9, 95.2, 90.4, 89.3, 85.2 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₉H₂₆N 508.2060; Found 508.2047.

N-(1,5-di(naphthalen-2-yl)penta-1,4-diyn-3-yli dene)naphthalen-2-amine (3m): pale brown solid, m.p. 129.6-131.6 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H), 7.97–7.66 (m, 12H), 7.60–7.45 (m, 7H), 7.35 (dd, J = 8.5, 1.5 Hz, 1H)

ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 133.9, 133.7, 133.6, 133.6, 133.5, 132.9, 132.7, 132.1, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1, 128.1, 127.9, 127.8, 127.7, 127.6, 126.9, 126.9, 126.4, 125.7, 122.0, 118.9, 118.6, 117.9, 95.8, 90.9, 88.9, 84.9 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₃₅H₂₂N 456.1747; Found 456.1738.

N-(1,5-di(thiophen-3-yl)penta-1,4-diyn-3-ylidene)napht halen-2-amine (3n): brown solid, m.p. 131.8-133.6 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.84 (m, 3H), 7.77 (dd, J = 2.8, 1.2 Hz, 1H), 7.73 (d, J = 1.9 Hz, 1H), 7.52–7.43 (m, 4H), 7.36–7.32 (m, 2H), 7.23 (dd, J = 5.0,

3.0 Hz, 1H), 6.98 (dd, J = 5.0, 1.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.5, 133.8, 133.6, 132.4, 132.1, 131.9, 130.2, 129.8, 128.3, 128.1, 127.8, 126.4, 125.9, 125.8, 125.7, 121.9, 120.5, 119.9, 118.7, 90.6, 88.3, 85.7, 84.4 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₄NS₂ 368.0562; Found 368.0562.

N-(1,5-di(thiophen-2-yl)penta-1,4-diyn-3-ylidene)napht halen-2-amine (30): brown solid, m.p. 66.1-68.9 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.87–7.73 (m, 3H), 7.67 (d, J = 1.6 Hz, 1H), 7.46–7.36 (m, 4H), 7.31 (dd, J = 5.1, 1.0 Hz, 1H), 7.19 (s, 1H), 7.14 (dd, J = 3.7, 1.0 Hz, 1H), 7.01 (dd,

J = 5.1, 3.7 Hz, 1H), 6.90 (dd, J = 5.1, 3.7 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 135.1, 135.1, 133.6, 132.9, 132.1, 130.7, 130.0, 128.4, 128.2, 127.8, 127.5, 127.5, 126.4, 125.8, 122.0, 121.2, 120.6, 118.9, 92.2, 89.2, 88.6, 84.3 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₄NS₂ 368.0562; Found 368.0555.

N-(1,5-dicyclopropylpenta-1,4-diyn-3-ylidene)naphthale n-2-amine (3p): pale brown solid, m.p. 86.4-89.1 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (dt, J = 7.8, 5.6 Hz, 3H), 7.56–7.39 (m, 3H), 7.30 (dd, J = 8.5, 1.8 Hz, 1H), 1.61–1.42 (m, 1H), 1.25 (ddd, J = 9.8, 6.6, 4.1 Hz, 1H), 1.01–0.88 (m,

4H), 0.83–0.73 (m, 2H), 0.65–0.54 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.6, 134.4, 133.4, 131.4, 127.9, 127.7, 127.6, 126.1, 125.1, 121.6, 117.9, 101.3, 95.6, 76.1, 72.0, 9.2, 9.1, 0.1, 0.0 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₈N 284.1434; Found 284.1424.

N-(pentadeca-6,9-diyn-8-ylidene)naphthalen-2 -amine (3q): yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (t, J = 7.5 Hz, 3H), 7.51 (d, J = 1.7 Hz, 1H), 7.43 (pd, J = 6.9, 1.4 Hz, 2H), 7.29 (dd, J = 8.7, 2.0 Hz, 1H), 2.45 (t, J = 7.2 Hz, 2H),

2.20 (t, J = 7.0 Hz, 2H), 1.71 - 1.61 (m, 2H), 1.50-1.30 (m, 6H), 1.07 (td, J = 7.6, 5.0 Hz, 4H), 0.93 (t, J = 7.2 Hz, 3H), 0.71 (dd, J = 9.2, 4.7 Hz, 3H) ppm; ¹³C NMR (100 S11

MHz, CDCl₃): δ 147.8, 134.9, 133.6, 131.6, 128.2, 127.9, 127.7, 126.1, 125.2, 121.6, 117.8, 97.9, 92.4, 80.8, 77.4, 31.2, 30.7, 27.8, 27.3, 22.2, 22.0, 19.4, 19.3, 13.9, 13.7 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₀N 344.2373; Found 344.2367.

N-(1,5-dicyclohexylpenta-1,4-diyn-3-ylidene)naphthale n-2-amine (3r): yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (dd, J = 10.3, 7.8 Hz, 3H), 7.53 (d, J = 1.7 Hz, 1H), 7.46–7.39 (m, 2H), 7.30 (dd, J = 8.6, 2.0 Hz, 1H), 2.75–2.54 (m, 1H), 2.44 (tt, J = 7.7, 3.7 Hz, 1H), 1.92 (dd,

J = 9.6, 3.6 Hz, 2H), 1.77 (dt, J = 9.7, 4.8 Hz, 2H), 1.65–1.54 (m, 5H), 1.47–1.28 (m, 8H), 1.21–1.08 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.9, 135.2, 133.6, 131.6, 128.1, 127.9, 127.7, 126.1, 125.1, 121.7, 117.9, 101.3, 96.0, 80.9, 77.4, 32.0, 31.4, 29.7, 29.2, 25.8, 25.6, 24.9, 24.1 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₃₀N 368.2373; Found 368.2363.

N-(1,5-dicyclopropylpenta-1,4-diyn-3-ylidene)-2,6-dimethy lbenzenamine (3s): yellow solid, m.p. 68.3-71.3 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.97 (d, J = 7.5 Hz, 2H), 6.91–6.85 (m, 1H), 2.02 (s, 6H), 1.52–1.40 (m, 1H), 1.15–1.05 (m, 1H), 0.97–0.88 (m, 4H), 0.70 (tt, J = 4.0, 2.7

Hz, 2H), 0.42–0.29 (m, 2H) ppm; ¹³C **NMR** (100 MHz, CDCl₃): δ 149.2, 136.5, 127.4, 126.1, 123.5, 101.3, 94.8, 75.0, 71.4, 17.7, 9.4, 8.9, -0.0, -0.3 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀N 262.1590; Found 262.1584.

2-Chloro-*N***-(1,5-diphenylpenta-1,4-diyn-3-ylidene)-6**methylbenzenamine (3t): yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.75–7.63 (m, 2H), 7.45–7.23 (m, 7H), 7.19–7.11 (m, 3H), 7.01 (t, J = 7.8 Hz, 1H), 2.19 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 138.4, 132.8,

132.6, 130.3, 130.1, 129.4, 128.6, 128.6, 128.5, 127.1, 125.0, 123.6, 121.0, 120.5,

96.0, 91.1, 87.2, 83.8, 18.3 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₇NCl 354.1044; Found 354.1036.

N-(1,5-diphenylpenta-1,4-diyn-3-ylidene)-4-fluorobenz enamine (3u): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 7.9, 1.5 Hz, 2H), 7.44–7.25 (m, 10H), 7.16–7.06 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 161.1 (d, ¹J_{CF} = 244 Hz), 145.9 (d, ⁴J_{CF} = 3.0 Hz), 133.9,

133.9, 132.6, 132.5, 130.3, 129.9, 128.6 (d, ${}^{3}J_{CF} = 8.0 \text{ Hz}$), 123.3 (d, ${}^{3}J_{CF} = 8.0 \text{ Hz}$), 121.2, 120.7, 115.4 (d, ${}^{2}J_{CF} = 23.0 \text{ Hz}$), 95.3, 90.4, 88.3, 84.1 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₅NF 324.1183; Found 324.1175.

N-(4-methoxyphenyl)-1,5-diphenylpenta-1,4-diyn-3-imi ne (3v): yellow solid, m.p. 176.9-179.2 °C; 1H NMR (500 MHz, CDCl₃): δ 7.65 (d, *J* = 6.5 Hz, 2H), 7.47–7.34 (m, 10H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 158.5, 142.8, 132.5, 132.4,

131.3, 130.0, 129.7, 128.6, 128.5, 124.0, 121.5, 121.1, 113.8, 94.6, 89.6, 88.9, 84.8, 55.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₁₈NO 336.1383; Found 336.1385.

(*E*)-1-(*tert*-butyl)-5-(*tert*-butylimino)-4-(4-(pentyloxy)ph enyl)-1,5-dihydro-2*H*-pyrrol-2-one (4): yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.12 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 6.18 (s, 1H), 3.97 (t, *J* = 6.5 Hz, 2H), 1.83–1.78 (m, 2H), 1.66 (s, 9H), 1.46–1.37 (m, 4H), 1.07 (s,

9H), 0.94 (t, J = 7.0 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 169.9, 159.4, 147.7, 142.8, 133.3, 129.9, 127.3, 114.0, 68.1, 57.3, 56.0, 32.1, 29.8, 28.9, 28.2, 22.5, 14.1 ppm; ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 159.4, 147.7, 142.8, 133.3, 129.9,

127.3, 114.0, 68.1, 57.3, 56.0, 32.1, 29.8, 28.9, 28.2, 22.5, 14.1 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₃₅N₂O₂ 371.2693; Found 371.2699.

(Z)-4-cyclopropyl-1-(2,4,4-trimethylpentan-2-yl)-5-((2,4,4-trimethylpentan-2-yl)imino)-1,5-dihydro-2*H*-pyrrol-2-one
(5): yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 5.78 (d, J = 0.8 Hz, 1H), 1.99 (s, 2H), 1.94 (s, 2H), 1.92–1.84 (m, 1H), 1.70 (s, 6H),

1.58 (s, 6H), 1.10–1.04 (m, 2H), 1.01 (s, 9H), 0.92 (s, 9H), 0.77–0.70 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 149.3, 146.1, 126.0, 60.9, 59.2, 55.1, 50.4, 33.1, 32.1, 31.9, 31.7, 31.6, 31.2, 12.1, 12.0 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₄₁N₂O 361.3213; Found 361.3219.

2-Iodo-1-phenyl-3-(2-phenylethynyl)benzo[f]quinoline (6a): yellow solid, m.p. 84.5-85.3 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (m, 2H), 7.89 (t, J = 9.2 Hz, 1H), 7.78 (d, J = 3.1 Hz, 1H), 7.71–7.56 (m, 4H), 7.56–7.37 (m, 5H), 7.34–7.29 (m, 2H), 7.18 (d, J = 7.3 Hz, 1H) ppm; ¹³C NMR

(100 MHz, CDCl₃): δ 162.3, 154.2, 153.2, 148.7, 146.0, 133.1, 132.3, 129.9, 129.5, 129.0, 128.9, 128.7, 128.5, 128.5, 128.4, 128.3, 127.4, 126.5, 124.5, 122.0, 105.7, 101.0, 91.9 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₇H₁₇IN 482.0400; Found 482.0402.

1-(4-*Tert*-butylphenyl)-3-(2-(4-tert-butylphenyl) ethynyl)-2-iodobenzo[f]quinoline (6b): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.15–7.98 (m, 2H), 7.90–7.83 (m, 1H), 7.79–7.59 (m, 3H), 7.52 (dd, J = 33.4, 10.2 Hz, 4H), 7.29–7.05 (m, 4H), 1.50 (s,

9H), 1.38 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 162.5, 148.9, 143.1, 142.8, 142.5, 133.5, 132.6, 132.1, 129.2, 128.9, 128.6, 128.5, 128.3, 128.2, 127.1, 126.6,

126.2, 125.5, 125.3, 119.1, 105.9, 101.4, 91.7, 34.9, 34.8, 31.5, 31.3 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₃₅H₃₃IN 594.1652; Found 594.1655.

2-Iodo-1-(4-(pentyloxy)phenyl)-3-(2-(4-(pentyloxy)phenyl)ethynyl)benzo[f]quinoline
(6c): yellow solid, m.p. 88.2-90.3 °C; ¹H
NMR (400 MHz, CDCl₃) δ 7.96 (dt, J = 14.8, 8.9 Hz, 2H), 7.78 (t, J = 7.0 Hz, 1H), 7.60 (d,

J = 8.7 Hz, 1H), 7.55–7.30 (m, 3H), 7.21–7.03 (m, 5H), 6.92–6.74 (m, 2H), 4.03 (t, J = 6.5 Hz, 2H), 3.92 (m, 2H), 1.87–1.78 (m, 2H), 1.72 (m, 2H), 1.50–1.30 (m, 8H), 0.88 (m, 6H) ppm; ¹³C NMR (100MHz, CDCl₃) δ 160.4, 159.6, 153.7, 138.0, 134.0, 133.2, 132.6, 130.7, 130.1, 129.8, 129.0, 128.5, 128.2, 127.3, 126.6, 124.7, 115.8, 114.7, 114.2, 113.6, 106.9, 102.2, 91.3, 68.3, 68.2, 29.0, 28.9, 28.3, 28.2, 22.6, 22.5, 14.1, 14.0 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₇INO₂ 654.1863; Found 654.1858.

Copies of ¹H and ¹³C NMR spectra of all compounds

7.28 7.29 7.20

$\begin{array}{c} 7.89\\ 7.728\\ 7.7$

$\begin{array}{c} 7.2 \\$

$\begin{array}{c} 7.81\\ 7.7.7\\ 7.7$

$\begin{array}{c} 7.8 \\ 7.8 \\ 7.8 \\ 7.7 \\$

7.81 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.747.74

S33

S34

- 2011年1月11日 - 2011年1日 -

S39

8, 13 8, 13 8, 15 8,

