Supporting Information

An ATP responsive fluorescent supramolecular assembly based on polyelectrolyte and AIE active tetraphenylethylene derivative

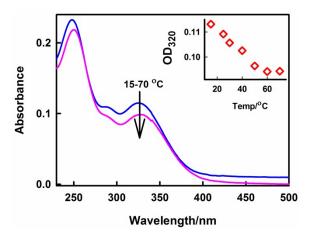
Vidya R. Singh,^a Jotiram N. Malegaonkar,^{b,c} Sidhanath V. Bhosale,^{b,c} and Prabhat K. Singh^{a,d,*}

^aRadiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085,

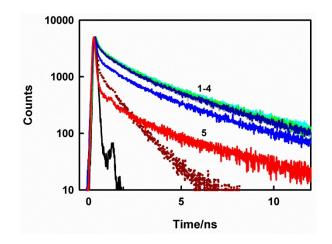
INDIA

^bPolymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology,

Hyderabad- 500 007, INDIA


CACADE CACADE CACENTRY CACENTRY CACENTRY OF Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, INDIA

^bHomi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094,


INDIA

*Authors for correspondence: Email: prabhatk@barc.gov.in; prabhatsingh988@gmail.com

Tel. 91-22-25590894, Fax: 91-22-5505151

Figure S1: Ground state absorption spectra of Su-TPE (9.5 μ M)-PAH (0.17 μ M) at 15°C (blue line) and 70°C (pink line). **Inset:** Variation of absorbance at 320 nm with increase in temperature.

Figure S2: Transient decay trace (λ_{ex} =374 nm, λ_{em} =470 nm) of Su-TPE (9.5 µM)-PAH (0.054µM) on interaction with various analytes at same concentration (1) ADP (2) AMP (3) Na₂HPO₄ (4) PPi (5) ATP. Dotted line represents decay traces of Su-TPE in water. The solid black line represents instrument response function (IRF).

LOD Determination

- 1. The fluorescence emission spectra of 10 blank measurements (Su-TPE-PAH aggregate, without the analyte of interest, which is ATP here) were recorded and fluorescence emission intensity at 470 nm was noted.
- 2. The standard deviation (σ) of the fluorescence intensity at 470 nm (aggregate emission band) was calculated using the standard formula.

- 3. The slope (S) was found from the linear regression equation of the calibration curve
- 4. The LOD is calculated using the formula LOD= $3.3(\sigma/S)$ which uses standard deviation of the 10 blank measurements (σ) and the slope of the calibration curve (S).