Supporting Information

Base-mediated 1,3-dipolar cycloaddition of pyridinium bromides with bromoallyl sulfones: A facile access to indolizine scaffolds

Chetna Jadala,^{‡, a} Velma Ganga Reddy,^{‡, b,c} Namballa Hari Krishna,^{a,b,d} Nagula Shankaraiah,^{*a} and Ahmed Kamal^{*a, b, e}

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.

^bMedicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.

^cCentre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia

^dDepartment of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA

^eSchool of Pharmaceutical Education and Research (SPER) Jamia Hamdard, New Delhi, 110062, India.

‡ Both the authors share equal authorship

*Corresponding authors: Dr. Ahmed Kamal, E-mail.: <u>ahmedkamal@iict.res.in</u> and Dr. Nagula Shankaraiah, E-mail.: <u>shankar.niperhyd@gov.in</u>

Contents	Page No
ESI-MS Data	S2-S23
¹ H NMR and ¹³ C NMR spectra	S24-S38

¹H NMR (500 MHz, DMSO- d_6) spectrum of **5e.**

¹H NMR (500 MHz, DMSO- d_6) spectrum of **5g.**

¹³C NMR (125 MHz, DMSO- d_6) spectrum of **5h.**

¹H NMR (500 MHz, DMSO- d_6) spectrum of **6a**.

 13 C NMR (125 MHz, DMSO- d_6) spectrum of **6b**.

 13 C NMR (125 MHz, DMSO- d_6) spectrum of **6d.**

¹H NMR (500 MHz, DMSO- d_6) spectrum of **5a'**.

¹H NMR (500 MHz, DMSO- d_6) spectrum of **5c'**.

 $^{13}\mathrm{C}$ N MR (125 MHz, DMSO- $d_6)$ spectrum of 5g'.

Figure S1a. ESI-MS of 5a.

Figure S1b. ESI-MS of 5b.

Figure S1c. ESI-MS of 5c.

Figure S1d. ESI-MS of 5d.

Figure S1e. ESI-MS of 5e.

Figure S1f. ESI-MS of 6a.

Figure S1g. ESI-MS of 6b.

Figure S1h. ESI-MS of 6d.

Figure S1i. ESI-MS of 5a'.

Figure S1j. ESI-MS of 5b'.

Figure S1k. ESI-MS of 5c'.

Figure S11. ESI-MS of 5d'.

Figure S1m. ESI-MS of 5e'.

Figure S1n. ESI-MS of 5f'.

Figure S10. ESI-MS of 5g'.