Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting Information (ESI)

for

Regioselectivity of the trifluoroethanol-promoted intramolecular *N*-Boc – epoxide cyclization towards 1,3oxazolidin-2-ones and 1,3-oxazinan-2-ones

Hemi Borgohain, Kangkan Talukdar, Bipul Sarma and Sajal Kumar Das* Department of Chemical Sciences, School of Science, Tezpur University, Napaam, Tezpur-74028, Assam, India email: sajalkd@tezu.ernet.in, sajalkdas@gmail.com

Table of Contents

1.	X-ray crystallographic data	S1
2.	References	S4
3.	Copies of ¹ H and ¹³ C NMR spectra of compounds	S4

1. X-ray crystallography data

X-ray reflections were collected on a Bruker APEX-II, CCD diffractometer using Mo K α (λ = 0.71073 Å) radiation. Data reduction was performed using Bruker SAINT Software.¹ Intensities for absorption were corrected using SADABS. Structures were solved and refined using SHELXL-2014 with anisotropic displacement parameters for non-H atoms. Hydrogen atom on O was experimentally located in the crystal structure. All C–H atoms were fixed geometrically using the HFIX command in SHELX-TL.² A check of the final CIF file using PLATON did not show any missed symmetry.^{3,4} The crystallographic parameters for **5d** and **6d** are summarized in Table ESI-1. X-ray crystallographic structures of **5e** and **5f** are shown in the Figures ESI-1 and ESI-1, respectively.

Crystal Data	5e	бе
Formula unit	C ₁₆ H ₁₅ NO ₃	C ₁₆ H ₁₅ NO ₃
Formula wt.	269.29	269.29
Crystal system	Triclinic	Orthorhombic
T [K]	100	100
<i>a</i> [Å]	7.3130(10)	14.3884(13)
<i>b</i> [Å]	9.4042(12)	26.944(3)
<i>c</i> [Å]	9.8866(13)	6.9828(6)
α[°]	97.320(7)	90
β[°]	95.213(7)	96
γ[°]	94.533(7)	90
Volume [Å ³]	668.77(15)	2707.1(4)
Space group	P-1	Pccn
Ζ	2	8
D _{calc} [g cm ⁻³]	1.337	1.321
μ/mm^{-1}	0.093	0.092
Reflns. Collected	22687	21415

Table ESI-1. Crystal data parameters of 5e and 6e

	-	-
Unique reflns.	3653	3356
Observed reflns.	2689	1667
R_1 [I>2 σ (I)], wR_2	0.0451, 0.1199	0.0620, 0.1681
GOF	0.780	0.767
Instrument	Bruker APEX-II CCD	Bruker APEX-II CCD
X-ray	МоК\а	МоК\а
CCDC Reference No.	1970676	1970675

Figure ESI-1. X-ray crystallographic structure of 5e.

Figure ESI-2. X-ray crystallographic structure of 6e.

2. References:

- 1. SAINT Plus, Bruker AXS Inc.: Madison, WI, 2008; BRUKER AXS (v 6.14).
- 2. Bruker AXS Inc.: Madison, WI, 2008.
- 3. PLATON, A Multipurpose Crystallographic Tool; A. L. Spek, Utrecht University: Utrecht, Netherland, 2002.
- 4. Spek, A. L. J. Appl. Crystallogr., 2003, 36, 7–13.

3. Copies of ¹H and ¹³C NMR spectra of compounds

¹H NMR (400 MHz, CDCl₃) spectrum of **4a**.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4a**.

 ^1H NMR (400 MHz, CDCl_3) spectrum of 4b.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4b**.

 ^{13}C NMR (100 MHz, CDCl₃) spectrum of 4c.

¹H NMR (400 MHz, CDCl₃) spectrum of **4d**.

¹H NMR (400 MHz, CDCl₃) spectrum of 4e.

¹H NMR (400 MHz, CDCl₃) spectrum of **4f**.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4f**.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4g**.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4k**.

¹H NMR (400 MHz, CDCl₃) spectrum of **4**l.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4**l.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4n**.

¹³C NMR (100 MHz, CDCl₃) spectrum of **40**.

¹H NMR (400 MHz, CDCl₃) spectrum of ${f 4p}$

¹³C NMR (100 MHz, CDCl₃) spectrum of **4p**.

 ^1H NMR (400 MHz, CDCl₃) spectrum of 4q.

 ^{13}C NMR (100 MHz, CDCl_3) spectrum of 4q.

¹³C NMR (100 MHz, CDCl₃) spectrum of **4r**.

¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of **5a**.

¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of **5b**.

¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of **5b**.

¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of **5c**.

¹³C NMR (CDCl₃, 100 MHz) spectrum of **5d**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **5e**.

S51

 ^{13}C NMR (DMSO- d_6 , 400 MHz) spectrum of **6e**.

S55

¹H NMR (DMSO- d_6 , 400 MHz) spectrum of **6f**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **6f**.

¹H NMR (CDCl₃, 400 MHz) spectrum of **5g**.

¹³C NMR (CDCl₃, 100 MHz) spectrum of **5g**.

¹H NMR (DMSO- d_6 , R00 MHz) spectrum of **6g**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **6g**.

 ^1H NMR (CDCl₃, 400 MHz) spectrum of $\mathbf{6h}.$

¹³C NMR (DMSO- d_6 , 100 MHz) spectrum of **6h**.

¹H NMR (DMSO- d_6 , 400 MHz) spectrum of **51**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **51**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **6**l.

S83

¹³C NMR (CDCl₃, 100 MHz) spectrum of **6m**.

¹H NMR (DMSO- d_6 , 400 MHz) spectrum of **5n**.

¹H NMR (DMSO-*d*₆, 400 MHz) spectrum of **50**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **50**.

¹³C NMR (CDCl₃, 100 MHz) spectrum of **5p**.

¹H NMR (DMSO- d_6 , 400 MHz) spectrum of **6p**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **6p**.

¹H NMR (DMSO- d_6 , 400 MHz) spectrum of **5q**.

¹³C NMR (DMSO-*d*₆, 100 MHz) spectrum of **6r**.