Supporting Information

Total Synthesis and Absolute Structure of N55, a Positive Modulator of GLP-1 Signaling

Nai-Pin Lin and Rong-Jie Chein*

Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan

Table of Contents	Page
HPLC analysis of ent-8	S2
The MS/MS spectra of N55 (Figure S1)	S3
Comparative ¹ H and ¹³ C NMR spectra data between isolated N55 and	S4
synthetic N55 (Table S1)	
Comparative ¹ H NMR spectra between isolated N55 and synthetic N55	S5
(Figure S2)	
Comparative ¹³ C NMR spectra between isolated N55 and synthetic N55	S6
(Figure S3)	
¹ H and ¹³ C NMR spectra of isolated N55 in CD ₃ OD	S7
COSY and HSQC NMR spectra of isolated N55 in CD ₃ OD	S8
HMBC NMR spectrum of isolated N55	S9
¹ H and ¹³ C NMR spectra of compound 8	S10
¹ H and ¹³ C NMR spectra of compound 22	S11
¹ H and ¹³ C NMR spectra of compound 24	S12
¹ H and ¹³ C NMR spectra of compound 25	S13
¹ H and ¹³ C NMR spectra of compound 20	S14
¹ H and ¹³ C NMR spectra of compound 21 (<i>ent</i> - N55) in CDCl ₃	S15
¹ H and ¹³ C NMR spectra of compound 21 (<i>ent</i> - N55) in CD ₃ OD	S16
¹ H and ¹³ C NMR spectra of compound 4	S17
¹ H and ¹³ C NMR spectra of compound 10	S18
¹ H and ¹³ C NMR spectra of compound 2 in CDCl ₃	S19
¹ H and ¹³ C NMR spectra of compound 26	S20
¹ H and ¹³ C NMR spectra of compound 27	S21

HPLC analysis of ent-8

HPLC condition: Chiralpak-AS, 1.0 mL/min, 220 nm, hexane/*i*-PrOH 97/3, 21.7 (minor) and 30.9 min (major).

Racemic 8:

ent-8 with >99% ee:

Figure S1. The MS/MS spectra of N55

Table S1. Comparative 1 H and 13 C NMR spectra data between isolated N55 and synthetic N55

	Source	Isolated N55 ^a	Synthetic N55 ^a	Isolated N55 ^a	Synthetic N55 ^a
Position		$\delta_{\rm H}(\rm ppm)$	$\delta_{\rm H} (ppm)$	δ_{C} (ppm)	δ _C (ppm)
2		-	-	176.2 (s)	176.2 (s)
3		4.38 (d, <i>J</i> = 11.8 Hz)	4,38 (d, <i>J</i> = 11.8 Hz)	57.5 (d)	57.5 (d)
4		2.17-2.04 (m)	2.17-2.04 (m)	45.6 (d)	45.6 (d)
5		4.19 (dt, <i>J</i> = 9.8, 6.1 Hz)	4.19 (dt, <i>J</i> = 9.8, 6.1 Hz)	81.4 (d)	81.4 (d)
6		1.13 (d, <i>J</i> = 6.6 Hz)	1.13 (d, <i>J</i> = 6.6 Hz)	14.0 (q)	14.0 (q)
7		1.41 (d, <i>J</i> = 6.1 Hz)	1.41 (d, <i>J</i> = 6.1 Hz)	18.8 (q)	18.8 (q)
1'		-	-	176.5 (s)	176.5 (s)
2'		2.26 (t, <i>J</i> = 7.4 Hz)	2.26 (t, <i>J</i> = 7.5 Hz)	36.9 (t)	36.9 (t)
3'		1.66-1.60 (m)	1.66-1.60 (m)	26.8 (t)	26.8 (t)
4'-7' & 15	·'-17'	1.40-1.28 (m)	1.40-1.28 (m)	33-23 (t)	33-23 (t)
8' & 14'		2.06 (m)	2.06 (m)	28.2 (t)	28.2 (t)
9', 10', 12	* & 13	5.39-5.29 (m)	5.39-5.29 (m)	130.9 & 129.1 (d)	130.9 & 129.1 (d)
11'		2.78 (t, <i>J</i> = 6.5 Hz)	2.78 (t, <i>J</i> = 6.5 Hz)	26.5 (t)	26.5 (t)
18'		0.91 (t, <i>J</i> = 6.8 Hz)	0.91 (t, <i>J</i> = 6.9 Hz)	14.4 (q)	14.4 (q)

^a 500 MHz NMR in *d*₄-methanol (δ_H = 3.31 ppm; δ_C = 49.0 ppm)

Figure S2. Comparative 500 MHz ¹H NMR spectra between isolated N55 (upper) and synthetic N55 (lower) in d_4 -methanol ($\delta_H = 3.31$ ppm)

Figure S3. Comparative 125 MHz ¹³C NMR spectra between isolated N55 (upper) and synthetic N55 (lower) in d_4 -methanol ($\delta_C = 49.0$ ppm)

S7

S15

S18

