Electronic Supplementary Information

Enantioselective hydrophosphinylation of 1-alkenylphosphine oxides catalyzed by chiral strong Brønsted base

Azusa Kondoh, ${ }^{* a}$ Sho Ishikawa, ${ }^{b}$ and Masahiro Terada* ${ }^{b}$
${ }^{a}$ Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku
University, Sendai 980-8578, Japan
${ }^{b}$ Department of Chemistry, Graduate School of Science Tohoku University, Sendai 980-8578, Japan

Contents

1. General Information S2
2. Additional Experimental Results S3
3. Experimental Procedure and Analytical Data S4
4. References S17
5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra S18
6. SFC and HPLC Charts S47

1. General Information

Unless otherwise noted, the reactions were carried out with dried glassware under argon or nitrogen atmosphere. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECA600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$, TMS: 0.00 $\mathrm{ppm})$. Data are reported as follows: chemical shift, integration, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=\operatorname{doublet}, \mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad) and coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECA600 (150 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL JNM-ECA600 $(243 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ solution as an external standard (0.0 ppm in CDCl_{3}). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$). Flash column chromatography was performed on silica gel 60 N (spherical, neutral, 40-50 $\mu \mathrm{m}$; Kanto Chemical Co., Inc.). Optically rotations were measured on a Jasco P-1020 digital polarimeter with a sodium lamp and reported as follows; $[\alpha]^{\mathrm{T}^{\circ} \mathrm{C}}{ }_{\mathrm{D}}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent). HPLC was performed on JASCO HPLC systems consisting of the following: pump, PU-2080 plus; degasser, DG-2080-53; mixer, MX-2080-32; UV/Vis detector, UV2077 plus; CD detector, CD-2095; Oven, CO-2067 plus. SFC was performed on JASCO SFC systems consisting of the following: HPLC pump, PU-2080 plus; CO_{2} delivery pump, PU-2080- CO_{2} plus; solvent selection unit, LV-2080-03; Back Pressure Regulators, BP-2080 and BP-2080 plus; Photodiode detector, MD-2018 plus; Oven, CO-4065. Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. High resolution mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T FT-ICR-MS spectrometer and a JEOL JMS-T100GCV Time-of-Flight Mass Spectrometer at Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

Materials: Unless otherwise noted, materials were purchased from Wako Pure Chemical Industries, Ltd., Tokyo Chemical Industry Co., LTD., Aldrich Inc., and other commercial suppliers and were used without purification. Dichloromethane, tetrahydrofuran, diethyl ether and toluene were supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Other solvents were purchased from commercial suppliers as dehydrated solvents, and used under argon atmosphere.

2. Additional Experimental Results

Determination of Absolute Configuration of Diphosphine Dioxides 4

The reaction of $\mathbf{2 g}$ with $\mathbf{3 a}$ under the optimized reaction conditions provided diphosphine dioxide $\mathbf{4 g a}$, which is the dioxide of prophos, with 67% ee (Scheme S1).

Scheme S1

On the other hand, the authentic sample of dioxide of (R)-prophos was synthesized by the oxidation of commercially available (R)-prophos (Scheme S2).

Scheme S2

The comparison of the SFC chart and the optical rotation of 4ga synthesized by our method with those of the authentic sample determined the absolute configuration of 4 as (S).

Transformation of Phosphine-Borane Complex 6ae to of 1,2-Diphosphinoalkane 5ae

1,2-Diphosphinoalkane 5ae is air-sensitive and easily oxidized under air. Although the isolation of 5ae from a crude mixture obtained by the direct reduction of 4ae was unsuccessful, 5ae was isolated in a relatively pure form through the decomplexation of phosphine-borane complex 6ae with DABCO (Scheme S3). The experimental procedure and the NMR data are provided in the following sections.

Scheme S3

3. Experimental Procedure and Analytical Data

Preparation of Chiral Urea 1

Chiral ureas $\mathbf{1 b} \mathbf{- 1 e}$ were synthesized according to the procedure reported in our previous work. ${ }^{1}$

Urea 1e:

Ratio of rotamers $=76: 24$
Yellow powder; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{26}=-22.6\left(\mathrm{c} 0.175, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.76(\mathrm{~s}, 2.16 \mathrm{H}), 0.79(\mathrm{~s}, 6.84 \mathrm{H}), 1.267(\mathrm{~s}, 6.84 \mathrm{H}), 1.269(\mathrm{~s}$, $2.16 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.81(\mathrm{~s}, 0.72 \mathrm{H}), 2.97(\mathrm{~s}, 2.28 \mathrm{H}), 4.32(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.76 \mathrm{H})$, $4.33(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.24 \mathrm{H}), 4.60(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.24 \mathrm{H}), 4.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $0.76 \mathrm{H}), 4.69(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.76 \mathrm{H}), 4.75(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 0.76 \mathrm{H}), 4.82(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.24 \mathrm{H}), 4.84(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $0.24 \mathrm{H}), 5.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.24 \mathrm{H}), 5.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.76 \mathrm{H}), 5.15(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.24 \mathrm{H}), 5.18(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, 0.76 H), 5.23 (br, 0.24 H), 5.26 (br, 0.76 H$), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.76 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.24 \mathrm{H}), 7.10-7.31$ (m, $15 \mathrm{H}), 7.393(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.76 \mathrm{H}), 7.395(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 0.24 \mathrm{H}), 8.20(\mathrm{~s}, 0.76 \mathrm{H}), 8.23(\mathrm{~s}, 0.24 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.4,26.44,29.5,31.4,33.5,34.1,35.1,35.67,35.69,35.9,51.1,54.3,55.3,60.4,78.11,78.15$, $117.7,126.4,127.37,127.43,127.5,127.56,127.64,127.7,127.8,128.0,128.2,128.3,128.6,128.7,136.1,136.7$, $136.8,139.47$, 139.50, 140.2, 156.6, 156.9, 157.9, 167.9, 172.7, 172.9; IR (ATR): 3371, 3062, 3030, 3002, 2957, $2870,1679,1626,1591,1539,1495,1478,1454,1441,1414,1393,1362,1273,1250,1214,1173,1090,1029$, $755,699 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 711.4245$, Found 711.4244; mp. 142.0-145.0 ${ }^{\circ} \mathrm{C}$.

Preparation of 1-Alkenylphosphine Oxides 2

Method A

Synthesis of $\mathbf{2 a}$ is representative.

Synthesis of S1

To a solution of methyl(diphenyl)phosphine oxide ($1.1 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (20 mL) was added $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $3.8 \mathrm{~mL}, 6.0 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$. After stirring for 15 min , cyclohexanecarboxaldehyde ($0.70 \mathrm{~mL}, 5.5$ mmol) was added dropwise to the mixture at the same temperature. The resulting mixture was then warmed up to room temperature and stirred for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to afford $\mathbf{S 1}(1.1 \mathrm{~g}$, $3.4 \mathrm{mmol}, 67 \%$) as a white powder.

Synthesis of $2 \boldsymbol{a}$ from $\mathbf{S 1}$

To a solution of $\mathbf{S 1}(1.1 \mathrm{~g}, 3.4 \mathrm{mmol})$ and triethylamine $(0.56 \mathrm{~mL}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added a solution of methanesulfonyl chloride ($0.31 \mathrm{~mL}, 4.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was heated at $40^{\circ} \mathrm{C}$ for 13 h . After cooled to room temperature, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was used in the next step without purification.
The crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\mathrm{DBU}(0.75 \mathrm{~mL}, 5.0 \mathrm{mmol})$ was added to the solution at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 13 h . The reaction was then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=30: 1\right)$ followed by recrystallization from a hexane/AcOEt mixture to afford $\mathbf{2 a}(0.65 \mathrm{~g}, 2.1 \mathrm{mmol}$, 63% yield, over 2 steps) as a white powder.

Method B

Synthesis of $\mathbf{S} 2$

To a solution of ethyl(diisopropyl)amine ($1.6 \mathrm{~mL}, 11.0 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ was added $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $6.9 \mathrm{~mL}, 11.0 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min . A solution of methyl(diphenyl)phosphine oxide ($1.1 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (10 mL) was then added dropwise at $-78{ }^{\circ} \mathrm{C}$. After stirred for 10 min , a solution of diethyl chlorophosphate ($0.76 \mathrm{~mL}, 5.3 \mathrm{mmol}$) in THF (5.0 mL) was added dropwise at the same temperature. The resulting mixture was warmed up to room temperature and stirred for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt . The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$ to afford $\mathbf{S} 2(1.6 \mathrm{~g}, 4.6 \mathrm{mmol}, 92 \%)$ as a white powder.

Synthesis of $\mathbf{2 k}$ from $\mathbf{S} \mathbf{2}$

To a suspension of sodium hydride ($52 \mathrm{mg}, 1.3 \mathrm{mmol}$) in THF (3.0 mL) was added $\mathbf{S} 2(0.35 \mathrm{~g}, 1.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min . Pivalaldehyde $(0.14 \mathrm{~mL}, 1.3 \mathrm{mmol})$ was then added dropwise to the mixture at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 2 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=30: 1\right)$ followed by recrystallization from a hexane/AcOEt mixture to afford $\mathbf{2 k}(0.20 \mathrm{~g}, 0.69$ $\mathrm{mmol}, 69 \%$ yield) as a white powder.

Method \mathbf{C}^{2}

Synthesis of $\mathbf{2 c}$ is representative.
To a solution of di(para-tolyl)phosphine oxide $(0.16 \mathrm{~g}, 0.70 \mathrm{mmol})$ and cyclohexyl acetylene ($96 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) in toluene $(1.8 \mathrm{~mL})$ was added $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(19 \mathrm{mg}, 0.021 \mathrm{mmol})$ at room temprature. The mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 14 h . After cooled to room temperature, the resulting solution was concentrated under reduced pressure The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right)$ followed by reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to afford $\mathbf{2 c}(0.16 \mathrm{~g}, 0.49 \mathrm{mmol}, 69 \%$ yield $)$ as a white powder.

(E)-2-Cyclohexyl-1-(diphenylphosphoryl)ethene (2a):

42% yield (Method A, over 3 steps); White powder; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12-1.22(\mathrm{~m}$, $3 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.26(\mathrm{~m}$, $1 \mathrm{H}), 6.16$ (ddd, $J=24.6,17.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (ddd, $J=19.8,17.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}$ $4 \mathrm{H}), 7.51(\mathrm{ddd}, J=7.8,7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{ddd}, J=12.0,8.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.7$, $25.9,31.6,42.3(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 119.0(\mathrm{~d}, J=103.4 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.6(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}$), 133.4 (d, $J=103.4 \mathrm{~Hz}$), 157.6; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4$; IR (ATR): 3429, 3073, 3054, 2925, 2850, 1617, 1438, 1219, 1183, 1120, 1109, 1071, 1003, 818, 772, 749, 719, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 333.1379$, Found 333.1378; mp. 129.0-131.0 ${ }^{\circ} \mathrm{C}$.

(E)-1-Bis(4-(trifluoromethyl)phenyl)phosphoryl-2-cyclohexylethene (2b):

59% yield (Method C); Yellow powder; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.13-1.24 (m, $3 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.86(\mathrm{~m}, 2 \mathrm{H})$, $2.20-2.30(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{ddd}, J=26.4,16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=20.4,16.8,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.82(\mathrm{dd}, J=11.4,8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.6,25.8,31.5,42.5(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 123.5(\mathrm{q}, J=271.5 \mathrm{~Hz}), 125.6(\mathrm{dq}$, $J=11.4,4.4 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 133.8(\mathrm{q}, J=33.0 \mathrm{~Hz}), 137.2(\mathrm{~d}, J=102.0 \mathrm{~Hz}), 159.9 ;{ }^{31} \mathrm{P}$ NMR (243 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.1$; IR (ATR): 3420, 3043, 2993, 2927, 2903, 2853, 1611, 1450, 1399, 1324, 1189, 1167, 1130, 1102, 1063, 1018, 997, 836, 818, 771, 710, $700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 469.1126$, Found 469.1126 ; mp. $189.0-191.0^{\circ} \mathrm{C}$.
(E)-2-Cyclohexyl-1-(di-para-tolylphosphoryl)ethene (2c):

69% yield (Method C); White powder; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11-1.21(\mathrm{~m}, 3 \mathrm{H})$, $1.24-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.23$ (m, 1H), 2.39 (s, 6H), 6.13 (ddd, $J=24.6,16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (ddd, $J=19.8,16.8,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{dd}, J=12.0,7.8 \mathrm{~Hz}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,25.8,25.9,31.7,42.3(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 119.4(\mathrm{~d}, J=103.4 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 130.2$ $(\mathrm{d}, J=106.4 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 141.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 157.0 ;{ }^{31} \mathrm{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.8$; IR
(ATR): 3385, 3053, 3034, 3020, 2983, 2923, 2898, 2849, 1641, 1626, 1603, 1501, 1447, 1398, 1179, 1117, 1110, 1009, 811, 714, 654, $630 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+}$361.1692, Found 361.1691; mp. $154.0-155.0^{\circ} \mathrm{C}$.
(E)-1-Bis(3,5-dimethylphenyl)phosphoryl-2-cyclohexylethene (2d):

46% yield (Method C); Yellow-brown powder; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.13-1.23(\mathrm{~m}$, $3 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 12 \mathrm{H}), 6.14(\mathrm{ddd}, J=24.6,16.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{ddd}, J=19.2,16.8,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,25.7$, 25.9, 31.7, $42.3(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 119.3(\mathrm{~d}, J=101.9 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.3(\mathrm{~d}, J$ $=102.0 \mathrm{~Hz}), 138.0(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 156.9 ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.5$; IR (ATR): 3440, 3031, 2997, 2923, $2851,1630,1601,1448,1418,1274,1182,1128,991,872,851,810,692 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{OP}$ $[\mathrm{M}+\mathrm{Na}]^{+} 389.2005$, Found 389.2004; mp. 151.0-153.0 ${ }^{\circ} \mathrm{C}$.

(E)-2-Cyclopentyl-1-(diphenylphosphoryl)ethane (2e):

60% yield (Method C); White powder; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.56-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.74(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{ddd}, J=24.6,16.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.74 (ddd, $J=19.8,16.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{ddd}, J=12.0$, $7.8,1.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.2,32.2,44.9(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 119.4(\mathrm{~d}, J=103.4 \mathrm{~Hz}), 128.4(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=103.4 \mathrm{~Hz}), 156.8 ;{ }^{31} \mathrm{P}$ NMR $(243 \mathrm{MHz}$, CDCl_{3}) $\delta 24.1$; IR (ATR): 3457, 3075, 3052, 3008, 2963, 2915, 2865, 1632, 1604, 1485, 1439, 1178, 1118, 1104, $1073,1007,809,772,752,714,700 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 319.1222$, Found 319.1222; mp. $112.0-114.0^{\circ} \mathrm{C}$.

(E)-2-Cyclopropyl-1-(diphenylphosphoryl)ethene (2f):

$\stackrel{{ }^{\|}}{\stackrel{\circ}{P} \mathrm{Ph}_{2}} 50 \%$ yield (Method C); White powder; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.60-0.69(\mathrm{~m}, 2 \mathrm{H})$, 0.88-0.97 (m, 2H), 1.64-1.71 (m, 1H), 6.18 (ddd, $J=19.2,16.8,7,8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=24.0$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{ddd}, J=12.0,8.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.5,16.4(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.5$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 156.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.7$; IR (ATR): 3432, 3074, 3057, 3007, 2972, 2936, 2874, 1621, 1438, 1182, 1120, 1104, 998, 955, 794, 771, 752, 720, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+}$291.0909, Found 291.0909; mp. 131.0-133.0 ${ }^{\circ} \mathrm{C}$.

(\boldsymbol{E})-1-(Diphenyphosphoryl)prop-1-ene (2 g):

 7.43-7.49 (m, 4H), 7.49-7.54 (m, 2H), $7.70(\mathrm{ddd}, J=12.0,8.4,1.8 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.4(\mathrm{~d}$, $J=18.6 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=103.5 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.2(\mathrm{~d}$, $J=104.9 \mathrm{~Hz}), 147.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8$; IR (ATR): 3403, 3058, 2993, 2966, 2940, 1631, 1591, 1560, 1485, 1439, 1220, 1181, 1120, 1106, 1071, 1027, 996, 791, 773, 751, 718, $698 \mathrm{~cm}^{-1}$; HRMS
(ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+}$265.0753, Found 265.0752; mp. 128.0-130.0 ${ }^{\circ} \mathrm{C}$.

(E)-1-(Diphenylphosphoryl)hex-1-ene (2h):

78% yield (Method C); White powder; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.35(\mathrm{qt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{tt}, J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.34(\mathrm{~m}, 2 \mathrm{H}), 6.23$ (ddt, $J=24.6$, $16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{ddt}, J=19.8,16.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.69$ (ddd, $J=12.0$, $8.4,1.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.7,22.1,29.9,34.1(\mathrm{~d}, J=17.3 \mathrm{~Hz}), 121.6(\mathrm{~d}, J=102.0 \mathrm{~Hz})$, $128.4(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 152.8 ;{ }^{31} \mathrm{P}$ NMR (243 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0$; IR (ATR): $3439,3055,2957,2928,2871,1630,1591,1484,1465,1437,1379,1308,1183$, $1119,1105,1070,1028,998,930,815,746,719,695 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 307.1222$, Found 307.1222; mp. 73.0-75.0 ${ }^{\circ} \mathrm{C}$.

(\boldsymbol{E})-1-(Diphenylphosphoryl)-3-phenylprop-1-ene (2i):

53% yield (Method C); White powder; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.62$ (ddd, $J=6.0,2.4,1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.21(\mathrm{ddt}, J=24.0,16.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{ddt}, J=18.6,16.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{ddd}, J=7.8,7.2,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.52(\mathrm{td}, J$ $=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{ddd}, J=12.0,7.8,1.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.6(\mathrm{~d}, J=17.1 \mathrm{~Hz})$, $123.3(\mathrm{~d}, ~ J=102.0 \mathrm{~Hz}), 126.7,128.5(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}), 128.7,128.9,131.3(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.7,133.0(\mathrm{~d}, J=$ 104.9 Hz), $137.5,150.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0$; IR (ATR): $3410,3055,3025,2993$, 2967, 2937, 1632, 1618, 1601, 1495, 1485, 1454, 1439, 1180, 1120, 1108, 1072, 1001, 852, 776, 745, 720, 696 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 341.1066$, Found 341.1065; mp. 125.0-127.0 ${ }^{\circ} \mathrm{C}$.

(E)-1-(Diphenylphosphoryl)-6-(methoxymethyl)oxyhex-1-ene (2j):

 $2.31-2.38(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 6.25(\mathrm{ddt}, J=24.6$, $16.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (ddt, $J=19.2,16.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.55$ (m, 2H), 7.69 (ddd, $J=11.4$, $8.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.6,29.2,34.1(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 55.1,67.2,96.3,122.0(\mathrm{~d}, J=$ $102.0 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 152.2 ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.9$; IR (ATR): 3435, 3056, 2990, 2937, 2877, 2832, 1631, 1438, 1187, 1146, 1119, 1107, 1071, 1041, 998, 917, 809, 748, 720, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+} 367.1434$, Found 367.1433; mp. 59.0-61.0 ${ }^{\circ} \mathrm{C}$.

(E)-1-(Diphenylphosphoryl)-3,3-dimethylbut-1-ene (2k):

 (ddd, $J=12.0,8.4,1.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.6,35.2(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=103.5 \mathrm{~Hz})$, $128.5(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 162.3 ;{ }^{31} \mathrm{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.1$; IR (ATR): 3341, 3054, 3018, 2964, 2929, 2900, 2867, 1644, 1605, 1486, 1439, 1270, 1245, 1180, 1119, 1105, 1073, 1033, 1006, 828, 820, 745, 721, 711, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+} 307.1222$, Found 307.1222; mp. $163.0-165.0^{\circ} \mathrm{C}$.

Preparation of Diarylphosphine Oxides 3^{3}

Synthesis of $\mathbf{3 e}$ is representative.
To a mixture of magnesium ($0.43 \mathrm{~g}, 17.5 \mathrm{mmol}$) and THF (10 mL) was added a solution of 1-bromo-3,5-dimethylbenzene ($2.4 \mathrm{~mL}, 17.5 \mathrm{mmol}$) in THF (10 mL) dropwise with a dropping funnel at $50{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h . After cooled to $0^{\circ} \mathrm{C}$, a solution of diethyl phosphite ($0.65 \mathrm{~mL}, 5.0 \mathrm{mmol}$) in THF (10 mL) was added dropwise with a dropping funnel at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/AcOEt $=1: 1$) followed by recrystallization from a hexane/AcOEt mixture to afford $3 \mathrm{e}(0.82 \mathrm{~g}, 3.2 \mathrm{mmol}, 64 \%)$ as a white powder.

General Procedure for Hydrophosphinylation of 1-Alkenylphosphine Oxides Catalyzed By a Chiral Ureate

The reaction of $\mathbf{2 a}$ with $\mathbf{3 e}$ is representative (Scheme 2).
To a solution of urea $\mathbf{1 e}(6.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ was added a solution of $\mathrm{NaO} t \mathrm{Bu}$ in THF $(2.0 \mathrm{M}$, $10 \mu \mathrm{~L}, 0.020 \mathrm{mmol}$) at room temperature. The mixture was cooled to $-20^{\circ} \mathrm{C}$ and stirred for 10 min . Then, diarylphosphine oxide $\mathbf{3 e}(31 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added at $-20{ }^{\circ} \mathrm{C}$. After stirring for 5 min , (E)-1-alkenyl(diphenyl)phosphine oxide 2a ($31 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 1 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the product was extracted with AcOEt. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right)$ to afford $\mathbf{4} \mathbf{a e}$ ($56 \mathrm{mg}, 0.098$ $\mathrm{mmol}, 98 \%$ yield, $91 \% \mathrm{ee}$) as a white powder. Recrystallization from a mixture of hexane and methanol improved the enantiomeric purity of $\mathbf{4 a e}$ (> 99% ee, 24 mg from 32 mg of 4ae with 91% ee).

(S)-1-Cyclohexyl-1,2-bis(diphenylphosphoryl)ethane (4aa):

$43 \mathrm{mg}, 84 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right) 5.4$ (minor), 7.1 (major) min; 76% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{28}=+7.6\left(\mathrm{c} 0.165, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.71-0.96(\mathrm{~m}, 4 \mathrm{H})$, 1.31-1.43 (m, 2H), 1.44-1.54 (m, 2H), 1.54-1.60 (m, 1H), 1.62-1.77 (m, 2H), 2.55-2.73 (m, 2H), 2.98-3.07 (m, 1H), 7.29 (ddd, $J=7.8,7.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.72$ (ddd, $J=11.4$, 8.4, 1.2 Hz, 2H), 7.76-7.83 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.9(\mathrm{~d}, J=68.9 \mathrm{~Hz}), 25.8,26.7,26.8,30.7$,
$31.8(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}), 36.7(\mathrm{dd}, J=68.9,4.4 \mathrm{~Hz}), 38.3,128.47(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.49(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.60(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}), 128.64(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 131.1(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}), 131.4(2 \mathrm{C}), 131.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=93.5 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=93.3 \mathrm{~Hz})$, 133.3 (d, $J=97.7 \mathrm{~Hz}$), $133.7(\mathrm{~d}, J=97.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.4(\mathrm{~d}, J=42.8 \mathrm{~Hz}), 37.4(\mathrm{~d}, J=$ 42.8 Hz); IR (ATR): $3425,3095,3054,3024,2987$, 2925, 2850, 1591, 1486, 1438, 1410, 1343, 1182, 1117, 1100, 1071, 999, 818, 750, 718, 697, 662, $612 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 535.1926$, Found 535.1926; mp. 246.0-248.0 ${ }^{\circ} \mathrm{C}$.

(S)-1-Cyclohexyl-2-(diphenylphosphoryl)-1-(di-para-tolyl)phosphorylethane (4ab):

$\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
$47 \mathrm{mg}, 86 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 6.2 (minor), 9.3 (major) min; 55% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{28}=+4.9\left(\mathrm{c} 0.170, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77-0.99(\mathrm{~m}, 4 \mathrm{H})$, $1.29-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.36$ (s, 3H), 2.59-2.69 (m, 2H), 2.93-3.02 (m, 1H), $7.13(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (ddd, $J=7.8,7.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{ddd}, J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{ddd}, J=7.8,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=10.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=10.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (ddd, $J=11.4,8.4$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.46,21.50,24.8(\mathrm{~d}, J=69.0 \mathrm{~Hz}), 25.8,26.7,26.9,30.6,31.9(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}), 36.8(\mathrm{dd}, J=67.5,4.2 \mathrm{~Hz}), 38.3,128.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=12.9 \mathrm{~Hz})$, $129.3(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=96.2 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 130.64(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.70(\mathrm{~d}, J=8.6$ $\mathrm{Hz}), 130.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=99.2 \mathrm{~Hz})$, $134.0(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 141.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 141.8 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.4(\mathrm{~d}, J=39.6 \mathrm{~Hz}), 37.8(\mathrm{~d}, J$ $=39.6 \mathrm{~Hz}$) IR (ATR): 3426, 3055, 3023, 2966, 2925, 2852, 1602, 1499, 1484, 1450, 1438, 1400, 1374, 1312, 1262, $1178,1114,1099,1070,1020,998,893,808,745,722,695,658,634 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 563.2239$, Found 563.2239; mp. 235.0-238.0 ${ }^{\circ} \mathrm{C}$.

(S)-1-Cyclohexyl-2-(diphenylphosphoryl)-1-(di-meta-tolyl)phosphorylethane (4ad):

$\mathrm{Ar}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$
$41 \mathrm{mg}, 76 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 5.0 (minor), 6.6 (major) min; 90% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+15.7\left(\mathrm{c} 0.130, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75-0.97(\mathrm{~m}, 4 \mathrm{H})$, $1.22-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.70$ $(\mathrm{m}, 2 \mathrm{H}), 2.95-3.05(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{ddd}, J=10.8,9.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (ddd, $J=7.8,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{ddd}, J=7.8,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{ddd}, J=11.4,8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,24.8(\mathrm{~d}, J=68.9 \mathrm{~Hz})$, 25.8, 26.7, 26.9, 30.6, $32.0(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 36.7(\mathrm{dd}, J=67.5,2.9 \mathrm{~Hz}), 38.2,127.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.59(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 130.6(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.64(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=93.5 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=93.3 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=$ $97.7 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=11.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.3$ (d, $J=42.8 \mathrm{~Hz}), 37.9(\mathrm{~d}, J=42.8 \mathrm{~Hz})$; IR (ATR): 3437, 3054, 2926, 2852, 1593, 1483, 1450, 1438, 1408, 1317,

1262, 1182, 1117, 1088, 1068, 998, 870, 819, 788, 745, 733, 721, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 563.2239$, Found 563.2239; mp. 213.0-216.0 ${ }^{\circ} \mathrm{C}$.
(S)-1-(Bis(3,5-dimethylphenyl)phosphoryl)-1-cyclohexyl-2-(diphenylphosphoryl)ethane (4ae):

$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
$56 \mathrm{mg}, 98 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 4.0 (minor), 4.9 (major) min; 91% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+12.0\left(\mathrm{c} 0.190, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}{ }^{27}=+10.8\left(\mathrm{c} 0.05, \mathrm{CHCl}_{3}\right)$ after enhancement of enantiomeric purity ($>99 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.75-0.97(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.35-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.80(\mathrm{~m}, 5 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.58-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.96-3.05(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{ddd}, J=8.4,7.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{ddd}, J=10.8,8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H})$, 7.41 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.71$ (ddd, $J=11.4,8.4$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.3,24.7(\mathrm{~d}, J=67.5 \mathrm{~Hz}), 25.9,26.7,26.9,30.4,32.2(\mathrm{~d}, J=11.4 \mathrm{~Hz})$, $36.6(\mathrm{dd}, J=67.5,4.4 \mathrm{~Hz}), 38.1,128.3(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.3,131.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.66(\mathrm{~d}, J=93.3 \mathrm{~Hz}), 132.72$ $(\mathrm{d}, J=94.8 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.3,133.7(\mathrm{~d}, J=99.2 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=11.4 \mathrm{~Hz})$, 138.3 (d, $J=11.6 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.2$ (d, $J=42.8 \mathrm{~Hz}$), 38.4 (d, $J=42.8 \mathrm{~Hz}$); IR (ATR): 3427, $3055,3025,2925,2853,1600,1485,1453,1438,1418,1378,1273,1182,1121,1102,1071,1044,997,870,850$, 818, 749, 735, 721, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$591.2552, Found 591.2552; mp. $256.0-258.0^{\circ} \mathrm{C}$.

(S)-1-Cyclohexyl-1-(di(2-naphthyl)phosphoryl)-2-(diphenylphosphoryl)ethane (4af):

Ar = 2-naphthyl
$45 \mathrm{mg}, 74 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right.$) 20.4 (minor), 33.9 (major) $\mathrm{min} ; 25 \% \mathrm{ee}$; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+12.0\left(\mathrm{c} 0.090, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.74-0.91(\mathrm{~m}$, $3 H), 0.94-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.88(\mathrm{~m}$, $2 \mathrm{H}), 2.69-2.83(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.38(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{ddd}, J=7.8,7.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{ddd}, J=7.8,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{ddd}, J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.58(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{ddd}, J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.75-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.8(\mathrm{~d}, J=67.5 \mathrm{~Hz}), 25.8,26.6,26.8,30.6,32.0(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}), 36.4(\mathrm{dd}, J=67.5,4.2 \mathrm{~Hz}), 38.6,125.7(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 126.7,126.9,127.7$, $127.8,127.96,128.03,128.2(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.59(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.63(\mathrm{~d}, J=11.4$ $\mathrm{Hz}), 128.9,129.0,129.9(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=10.1 \mathrm{~Hz})$, $131.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.7,132.5(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 132.7,132.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 133.01(\mathrm{~d}$, $J=99.2 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 30.3$ (d, $J=39.6 \mathrm{~Hz}$), 37.8 (d, $J=39.6 \mathrm{~Hz}$); IR (ATR): $3426,3055,2964,2927,2852,1627,1591,1500,1450$, 1438, 1341, 1271, 1181, 1134, 1118, 1086, 859, 820, 745, 718, 696, 658, $615 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 635.2239$, Found 635.2239; mp. 254.0-256.0 ${ }^{\circ} \mathrm{C}$.
(S)-1-(Bis(3,5-dimethylphenyl)phosphoryl)-2-(bis(4-trifluoromethylphenyl)phosphoryl)-1-cyclohexylethane
 (4be):
$42 \mathrm{mg}, 60 \%$ yield; White powder; SFC analysis DAICEL Chiralpak IA-3/SFC 4.6×150 $\mathrm{mm}\left(\mathrm{CO}_{2} / \mathrm{MeOH}=95 / 5,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 3.2 (major), 4.9 (minor) min; 93% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{28}=+17.2\left(\mathrm{c} 0.135, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.81-1.05(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.76(\mathrm{~m}, 4 \mathrm{H})$, $1.82-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 2.55-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.07(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.82(\mathrm{dd}, J=10.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.1,21.3,23.7(\mathrm{~d}, J=70.4 \mathrm{~Hz}), 25.8,26.3,26.7$, $29.7,32.4(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 36.4(\mathrm{dd}, J=67.5,4.4 \mathrm{~Hz}), 38.3,123.4(\mathrm{qd}, J=271.5,2.9 \mathrm{~Hz}), 125.1(\mathrm{dq}, J=11.6,4.4$ $\mathrm{Hz}), 125.7(\mathrm{dq}, J=11.6,4.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=$ $94.8 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=93.3 \mathrm{~Hz}), 133.2(\mathrm{q}, J=33.0 \mathrm{~Hz}), 133.4,133.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.8(\mathrm{qd}, J=33.2,2.9 \mathrm{~Hz})$, $136.9(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 138.26,138.35,138.6(\mathrm{~d}, J=92.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.3(\mathrm{~d}, J=33.0 \mathrm{~Hz})$, 37.4 (d, $J=33.0 \mathrm{~Hz}$); IR (ATR): $3435,3038,2990$, 2926, 2854, 1602, 1450, 1400, 1320, 1273, 1168, 1127, 1101, 1062, 1017, 871, 848, 819, 788, 755, 722, 707, 696, 665, 627, $605 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{P}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 727.2300$, Found 727.2300 ; mp. 246.0-248.0 ${ }^{\circ} \mathrm{C}$.

(S)-1-(Bis(3,5-dimethylphenyl)phosphoryl)-1-cyclohexyl-2-(di-para-tolylphosphoryl)ethane (4ce):

78% yield (NMR); White powder; SFC analysis DAICEL Chiralpak ID-3/SFC 4.6×150 $\mathrm{mm}\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right) 4.3$ (minor), 5.7 (major) min; 89% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+24.9\left(\mathrm{c} 0.150, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.76-0.99(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.76(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H})$, $2.32(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.93-3.02(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $7.06(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=10.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=7.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd} J=10.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.26$, $21.28,21.4,21.5,24.7(\mathrm{~d}, J=68.9 \mathrm{~Hz}), 25.9,26.7,26.9,30.4,32.1(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 36.6(\mathrm{dd}, J=67.5,4.4 \mathrm{~Hz})$, $38.1,128.5(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=$ $100.1 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=103.5 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=93.5 \mathrm{~Hz}), 132.7(\mathrm{~d}$, $J=93.3 \mathrm{~Hz}), 133.0,133.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 138.1(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 141.5(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $141.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.7(\mathrm{~d}, J=42.8 \mathrm{~Hz}$), 38.5 ($\mathrm{d}, J=42.8 \mathrm{~Hz}$); IR (ATR): 3436, $3038,2980,2924,2853,1652,1602,1449,1418,1272,1183,1118,1100,888,871,850,809,742,728,705,651$ cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$619.2865, Found 619.2865; mp. 242.0-244.0 ${ }^{\circ} \mathrm{C}$.

(S)-1-(Bis(3,5-dimethylphenyl)phosphoryl)-1-cyclopentyl-2-(diphenylphosphoryl)ethane (4ee):

$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
$46 \mathrm{mg}, 83 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 3.8 (minor), 5.3 (major) min; 95% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{28}=-5.3\left(\mathrm{c} 0.170, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13-1.41(\mathrm{~m}, 6 \mathrm{H})$, 1.48-1.56 (m, 1H), 2.11-2.19 (m, 1H), 2.22 (s, 6H), 2.33 (s, 6H), 2.41-2.49 (m, 1H), 2.76-2.87 (m, $1 \mathrm{H}), 3.35-3.44(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{ddd}, J=7.2,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}$,
$J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{ddd}, J=11.4,7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2,21.3,24.6,24.9,25.4(\mathrm{~d}, J=68.9 \mathrm{~Hz}), 29.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 31.6,33.9(\mathrm{dd}, J=69.0,4.4$ $\mathrm{Hz}), 39.6,128.2(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=93.3 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=$ $93.3 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.3,133.8(\mathrm{~d}, J=99.0 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 138.3$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.8(\mathrm{~d}, J=32.8 \mathrm{~Hz}$), 37.8 (d, $J=32.8 \mathrm{~Hz}$); IR (ATR): 3435, 3055, $3024,2956,2919,2868,1633,1601,1482,1452,1438,1418,1378,1308,1273,1179,1120,1104,1070,1040,997$, $943,872,851,802,747,732,696,665,621 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 577.2396$, Found 577.2395; mp. $143.0-146.0^{\circ} \mathrm{C}$.

(S)-1-(Bis(3,5-dimethylphenyl)phosphoryl)-1-cyclopropyl-2-(diphenylphosphoryl)ethane (4fe):

52 mg , 99% yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=85 / 15,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 5.2 (minor), 6.0 (major) min; 87% ee; Optical
$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ rotation $[\alpha]_{\mathrm{D}}{ }^{26}=-2.3\left(\mathrm{c} 0.160, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.48--0.97(\mathrm{~m}, 1 \mathrm{H})$, $-0.36-0.29(\mathrm{~m}, 1 \mathrm{H}),-0.04-0.03(\mathrm{~m}, 1 \mathrm{H}), 0.09-0.16(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.87(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H})$, 2.44-2.54 (m, 1H), 2.64-2.81 (m, 2H), $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=7.8,7.2,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{ddd}, J=12.0,9.0,1.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.0(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 6.6,10.7,21.16,21.22,29.8(\mathrm{~d}, J=69.0 \mathrm{~Hz}), 36.9(\mathrm{dd}, J=$ $68.9,4.4 \mathrm{~Hz}), 128.38(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.1(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.3,131.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=93.5 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=94.8 \mathrm{~Hz})$, $133.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 133.5,134.7(\mathrm{~d}, J=99.2 \mathrm{~Hz}), 137.8(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.7(\mathrm{~d}, J=42.8 \mathrm{~Hz}$), 38.2 (d, $J=42.8 \mathrm{~Hz}$); IR (ATR): 3429, 3080, 3056, 3008, 2976, 2965, 2919, 2863, 1743, 1658, 1601, 1489, 1438, 1368, 1273, 1219, 1178, 1121, 1029, 850, 738, 710, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$549.2083, Found 549.2082; mp. 163.0-166.0 ${ }^{\circ} \mathrm{C}$.

(S)-1,2-Bis(diphenylphosphoryl)propane (4ga):

$\mathrm{Ph}_{2} \mathrm{P}=0 \mathrm{O} \quad 44 \mathrm{mg}, 99 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$
 rotation $[\alpha]_{\mathrm{D}}{ }^{27}=-12.8\left(\mathrm{c} 0.030, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{dd}, J=17.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.62$ $(\mathrm{m}, 2 \mathrm{H}), 2.92-3.03(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.47-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 13.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 26.8(\mathrm{dd}, J=70.4,4.4 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=67.5 \mathrm{~Hz}), 128.59(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 128.67(\mathrm{~d}, J=11.6$ $\mathrm{Hz}), 128.71(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{C}), 131.03(\mathrm{~d}, J=95.4 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 131.76,131.77(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 131.8,131.9(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 132.6(\mathrm{~d}, J=99.1 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=97.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.8(\mathrm{~d}, J=49.3 \mathrm{~Hz}), 38.2(\mathrm{~d}, J$ $=49.3 \mathrm{~Hz}$) IR (ATR): 3430, 3078, 3057, 2976, 2940, 2904, 1653, 1590, 1484, 1438, 1404, 1311, 1179, 1119, 1102, 1072, 1028, 998, 805, 745, 723, 695, $677 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 467.1300$, Found 467.1300; mp. $169.0-171.0^{\circ} \mathrm{C}$.

(R)-1,2-Bis(diphenylphosphoryl)propane (ent-4ga):

$\mathrm{Ph}_{2} \mathrm{P}=0$ O Prepared from commercially available (R)-prophos, $44 \mathrm{mg}, 99 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right) 5.1$ (major), 7.2 (major) min; $>99 \%$ ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+22.9$ (c $\left.0.150, \mathrm{CHCl}_{3}\right)$.
(S)-2-(Bis(3,5-dimethylphenyl)phosphoryl)-1-(diphenylphosphoryl)propane (4ge):

$50 \mathrm{mg}, 99 \%$ yield; White sticky oil; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 3.8 (minor), 4.3 (major) min; 94% ee; Optical
$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ rotation $[\alpha]_{\mathrm{D}}{ }^{28}=-8.6\left(\mathrm{c} 0.115, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{dd}, J=16.8,7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 2.31(\mathrm{~s}, 12 \mathrm{H}), 2.43-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.91-3.02(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{ddd}, J=7.8,7.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 2 \mathrm{H})$, 7.53 (ddd, $J=10.8,7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (ddd, $J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.7$, 21.2, 21.3, $26.8(\mathrm{dd}, J=68.9,4.4 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=68.9 \mathrm{~Hz}), 128.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 128.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 128.60$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}), 128.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{C}), 131.0(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=94.7 \mathrm{~Hz})$, $131.6(\mathrm{~d}, ~ J=2.9 \mathrm{~Hz}), 131.7,133.0(\mathrm{~d}, J=104.9 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.5,133.6(\mathrm{~d}, J=103.5 \mathrm{~Hz}), 138.3(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=11.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.2(\mathrm{~d}, J=42.8 \mathrm{~Hz}), 38.4(\mathrm{~d}, J=42.8 \mathrm{~Hz}) ; \mathrm{IR}$ (ATR): 3445, 3054, 3023, 2972, 2919, 2857, 1747, 1601, 1438, 1274, 1181, 1122, 1104, 1072, 1038, 996, 873, 851, 805, 745, 721, 711, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$523.1926, Found 523.1926.

(S)-2-(Bis(3,5-dimethylphenyl)phosphoryl)-1-(diphenylphosphoryl)hexane (4he):

54 mg , 99% yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=90 / 10,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 11.7 (minor), 14.4 (major) $\mathrm{min} ; 96 \% \mathrm{ee}$; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{28}=+19.8\left(\mathrm{c} 0.300, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.53(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.77-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.99(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.77(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}$, $12 \mathrm{H}), 2.56-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.04(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{ddd}, J=8.4,7.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, 2 H), 7.42-7.52 (m, 8H), 7.74 (ddd, $J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13}{ }^{13} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.3,21.17,21.25$, $22.5,27.5(\mathrm{~d}, J=69.0 \mathrm{~Hz}), 27.9,29.0(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 31.1(\mathrm{dd}, J=68.9,2.9 \mathrm{~Hz}), 128.45(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.53$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.5,131.7(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $131.8(\mathrm{~d}, J=93.5 \mathrm{~Hz}, 2 \mathrm{C}), 133.18(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.35(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.50(\mathrm{~d}, J=99.0 \mathrm{~Hz}), 133.51(\mathrm{~d}, J=$ $96.2 \mathrm{~Hz}), 138.1(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=12.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.7(\mathrm{~d}, J=46.2 \mathrm{~Hz}), 38.4$ (d, $J=46.2 \mathrm{~Hz}$); IR (ATR): 3436, 3055, 3023, 2955, 2932, 2862, 1601, 1485, 1465, 1438, 1416, 1379, 1311, 1273, 1181, 1120, 1071, 997, 872, 850, 812, 743, 716, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 565.2396$, Found 565.2396; mp. $172.0-174.0^{\circ} \mathrm{C}$.

(S)-2-(Bis(3,5-dimethylphenyl)phosphoryl)-1-(diphenylphosphoryl)-3-phenylpropane (4ie):

$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

52 mg , 90% yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=80 / 20,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 6.5 (minor), 7.7 (major) min; 95% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+14.2\left(\mathrm{c} 0.195, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$, 2.53-2.68 (m, 2H), 3.01-3.17 (m, 2H), 3.39-3.49 (m, 1H), $6.90(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.96(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.38(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{ddd}, J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150
$\mathrm{MHz} \mathrm{CDCl} 3) ~ \delta 21.1, ~ 21.2, ~ 28.0(\mathrm{~d}, J=67.5 \mathrm{~Hz}), 33.2(\mathrm{dd}, J=67.5,4.2 \mathrm{~Hz}), 34.5,125.8,127.6,128.37(\mathrm{~d}, J=8.6$ $\mathrm{Hz}), 128.40(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.42(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 129.2,130.4(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{C})$, $131.48(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 131.4,131.5,132.0(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.36(\mathrm{~d}$, $J=99.2 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=99.2 \mathrm{~Hz}), 137.8(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 138.3(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 138.9(\mathrm{~d}, J=4.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}$ $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.3(\mathrm{~d}, J=39.4 \mathrm{~Hz}), 36.9(\mathrm{~d}, J=39.4 \mathrm{~Hz}$); IR (ATR): 3429, 3057, 3028, 2981, 2952, 2918, 2860, 1602, 1485, 1456, 1438, 1415, 1273, 1182, 1121, 1106, 1072, 1038, 1030, 997, 873, 850, 739, 718, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$599.2239, Found 599.2238; mp.82.0-84.0 ${ }^{\circ} \mathrm{C}$.

(S)-2-(Bis(3,5-dimethylphenyl)phosphoryl)-1-(diphenylphosphoryl)-6-(methoxymethyl)oxyhexane (4je):

$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
$60 \mathrm{mg}, 99 \%$ yield; White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=90 / 10,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right) 14.0$ (minor), 15.4 (major) $\mathrm{min} ; 97 \%$ ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+16.7\left(\mathrm{c} 0.220, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.00-1.09$ $(\mathrm{m}, 1 \mathrm{H}), 1.10-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H})$, 2.55-2.65 (m, 2H), 2.93-3.04 (m, 1H), 3.10-3.18 (m, 2H), $3.26(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{ddd}, J=7.8$, $7.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.73$ (ddd, $J=11.4,8.4$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.18,21.25,23.6(\mathrm{~d}, J=4.2 \mathrm{~Hz}$), $27.4(\mathrm{~d}, J=69.0 \mathrm{~Hz}), 28.2,29.5$, $31.2(\mathrm{dd}, J=69.0,4.4 \mathrm{~Hz}), 54.9,67.2,96.1,128.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.56(\mathrm{~d}, J=10.1 \mathrm{~Hz})$, $128.58(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 131.5,131.67(\mathrm{~d}, J=93.3 \mathrm{~Hz}), 131.71$, $131.71(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 133.31(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 133.35(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.40,133.51(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 138.2(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.7(\mathrm{~d}, J=45.9 \mathrm{~Hz}), 38.1(\mathrm{~d}, J=45.9 \mathrm{~Hz})$; IR (ATR): 3428, 3055, 2990, 2945, 2923, 2866, 2821, 1637, 1601, 1460, 1438, 1419, 1379, 1273, 1181, 1146, 1117, 1074, 1039, $998,918,872,850,817,741,716,696 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 625.2607$, Found 625.2606; mp. $139.0-142.0^{\circ} \mathrm{C}$.

(S)-2-(Bis(3,5-dimethylphenyl)phosphoryl)-1-(diphenylphosphoryl)-3,3-dimethylbutane (4ke):

$\mathrm{Ar}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
88% yield (NMR); White powder; SFC analysis DAICEL Chiralpak ID-3/SFC $4.6 \times 150 \mathrm{~mm}$ $\left(\mathrm{CO}_{2} / \mathrm{MeOH}=85 / 15,3.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right.$) 3.5 (minor), 4.2 (major) min; 49% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{28}=+8.8\left(\mathrm{c} 0.125, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H})$, $2.22(\mathrm{~s}, 6 \mathrm{H}), 2.45(\mathrm{dddd}, J=16.8,9.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (dddd, $J=23.4,16.8,12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (dddd, J $=22.8,6.0,6.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{ddd}, J=11.4,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.2,21.3,25.8(\mathrm{~d}, J=67.5 \mathrm{~Hz}), 30.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 35.4,40.6(\mathrm{dd}, J=67.5,4.4 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=11.6$ $\mathrm{Hz}), 128.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=8.6$ $\mathrm{Hz}), 130.8,131.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.7,133.0,133.5(\mathrm{~d}, J=94.8 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=99.0 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=91.8$ $\mathrm{Hz}), 135.4(\mathrm{~d}, J=97.7 \mathrm{~Hz}), 138.0(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 138.1(\mathrm{~d}, J=10.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.7(\mathrm{~d}, J$ $=26.5 \mathrm{~Hz}$), 36.7 (d, $J=26.5 \mathrm{~Hz}$); IR (ATR): 3437, 3055, 2960, 2916, 2871, 1601, 1470, 1438, 1371, 1271, 1182, 1119, 1107, 1071, 1041, 997, 869, 849, 824, 750, 729, 699, $665 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 565.2396, Found 565.2396; mp. 221.0-224.0 ${ }^{\circ} \mathrm{C}$.

Procedure for Transformation of Diphosphine Dioxides 4

Transformation of 4ae into 6ae (Scheme 4) ${ }^{4}$

To a solution of $\mathbf{4 a e}(28 \mathrm{mg}, 0.049 \mathrm{mmol}, 90 \% \mathrm{ee})$ in toluene $(1.5 \mathrm{~mL})$ were sequentially added triethoxysilane (54 $\mu \mathrm{L}, 0.30 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{OiPr})_{4}(8.2 \mu \mathrm{~L}, 0.028 \mathrm{mmol})$ at room temperature. The mixture was heated at $120^{\circ} \mathrm{C}$ for 1 h . After cooled to room temperature, BH_{3}. THF $(0.16 \mathrm{~mL}, 0.15 \mathrm{mmol})$ was added. After stirring for 1 h , the resulting solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$) to afford $\mathbf{6 a e}(22 \mathrm{mg}, 0.039 \mathrm{mmol}, 79 \%$ yield, 89% ee) as a white powder.

(S)-1-(Bis(3,5-dimethylphenyl)phosphino)-1-cyclohexyl-2-(diphenylphosphino)ethane borane complex (6ae)

30 mg , 57% yield; White powder; HPLC analysis DAICEL Chiralcel OD-3 $4.6 \times 250 \mathrm{~mm}$ (hexane $/ \mathrm{iPrOH}=90 / 10,0.8 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 40^{\circ} \mathrm{C}$) 5.2 (major), 5.6 (minor) min ; 89% ee; Optical rotation $[\alpha]_{\mathrm{D}}{ }^{27}=+49.3\left(\mathrm{c} 0.105, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.34-0.51(\mathrm{~m}$, $3 H), 0.69-0.80(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.70-1.30(\mathrm{br}, 6 \mathrm{H}), 1.23-1.57(\mathrm{~m}, 6 \mathrm{H}), 2.20$ (dddd, J $=15.6,15.6,11.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.77-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.48(\mathrm{~m}, 1 \mathrm{H}), 7.077(\mathrm{~s}, 1 \mathrm{H})$, $7.083(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, J=10.8,8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{ddd}, J=7.8,7.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ (ddd, $J=10.8,8.4,1.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,21.4,23.9(\mathrm{dd}, J=31.5,5.7 \mathrm{~Hz}), 25.7,26.6(2 \mathrm{C}), 30.9,31.9(\mathrm{~d}, J=8.7$ $\mathrm{Hz}), 34.8(\mathrm{~d}, J=31.5 \mathrm{~Hz}), 38.9,128.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.77(\mathrm{~d}, J=51.2 \mathrm{~Hz}), 128.80(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 128.88(\mathrm{~d}$, $J=53.1 \mathrm{~Hz}), 128.95(\mathrm{~d}, J=51.8 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.6,131.1(\mathrm{~d}, J=57.5 \mathrm{~Hz})$, $131.2(\mathrm{~d}, ~ J=8.6 \mathrm{~Hz}), 131.7,132.9,133.1,133.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 138.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.2$, 22.9; IR (ATR): 3412, 3055, 3006, 2924, 2853, 2384, 2346, 2256, 1602, 1589, 1482, 1450, 1437, 1130, 1107, 1058, 1030, 996, 849, 823, 751, 737, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{P}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 587.3310$, Found 587.3310; mp. 171.0-174.0 ${ }^{\circ} \mathrm{C}$.

Transformation of 6ae into 5ae (Scheme S3)

Scheme S3

A solution of $\mathbf{6 a e}(28 \mathrm{mg}, 0.050 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ and DABCO $(22 \mathrm{mg}, 0.20 \mathrm{mmol})$ was heated at $50^{\circ} \mathrm{C}$ for 4 h . After cooled to room temperature, the resulting mixture was passed through a short pad of florisil ${ }^{\circledR}$ with toluene as an eluent under nitrogen stream, and the following evaporation provided 5ae in 91% NMR yield
(trimethyl phosphate was used as an internal standard) as a white solid.
(S)-1-(Bis(3,5-dimethylphenyl)phosphino)-1-cyclohexyl-2-(diphenylphosphino)ethane (5ae)
91% NMR yield; White solid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02-1.17(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.73(\mathrm{~m}$, $6 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.23-2.30(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.2,6.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{td}$, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.3,26.5,26.8,27.1,28.1(\mathrm{dd}, J=14.0,14.0 \mathrm{~Hz}), 30.9(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}), 32.0(\mathrm{dd}, J=10.1,4.2 \mathrm{~Hz}), 38.1(\mathrm{dd}, J=17.3,10.1 \mathrm{~Hz}), 40.3(\mathrm{dd}, J=14.4,5.9 \mathrm{~Hz}), 128.1,128.2(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 128.6,130.1,130.6,130.8(\mathrm{~d}, J=18.8 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=17.3 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=21.6$ $\mathrm{Hz}), 133.4(\mathrm{~d}, J=18.6 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 137.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 137.43(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 137.7(\mathrm{~d}, J=$ $12.9 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=14.4 \mathrm{~Hz}), 139.8(\mathrm{~d}, J=14.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7(\mathrm{~d}, J=16.3 \mathrm{~Hz}),-17.1$ (d, $J=16.3 \mathrm{~Hz}$).

4. References

1. A. Kondoh, S. Ishikawa and M. Terada, J. Am. Chem. Soc., 2020, 142, 3724-3728
2. V. Hornillos, C. Vila, E. Otten and B. L. Feringa, Angew. Chem., Int. Ed., 2015, 54, 7867-7871.
3. M. Jin and M. Nakamura, Chem. Lett., 2013, 42, 1035-1037
4. A. Allen, Jr., L. Ma and W. Lin, Tetrahedron Lett., 2002, 43, 3707-3710.

4ab

Peak	1	2
Retention Time (min)	6.2	9.3
Area (\%)	22.7	77.3

4ae

Peak	1	2
Retention Time (min)	4.0	4.9
Area (\%)	4.6	95.4

4fe

Peak	1	2
Retention Time (min)	5.2	6.0
Area (\%)	6.0	94.0

4ga

Peak	1	2
Retention Time (min)	6.1	7.8
Area (\%)	17.4	82.6

4ge

Peak	1	2
Retention Time (min)	3.8	4.3
Area (\%)	2.8	97.2

4he

Peak	1	2
Retention Time (min)	11.7	14.4
Area (\%)	2.1	97.9

$6 a e$

Peak	1	2
Retention Time (min)	5.2	5.6
Area (\%)	94.4	5.6

