Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

NCS-Promoted Thiocyanation and Selenocyanation of

Pyrrolo[1,2-a]quinoxalines

Zhen Yang^a, Jing He^a, Yueting Wei^a, Weiwei Li^a, Ping Liu^a*, Jixing Zhao^b and Yu Wei^a*

^aSchool of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City, 832003, China.

^bAnalysis and Testing Center of Shihezi University, Shihezi City, 832003, China.

Table of Contents

Experimental section	S2
¹ H, ¹³ C NMR, and ¹⁹ F NMR Spectra for Products	S13
Single Crystal Data of 3a	S53

Experimental section

General Information Unless otherwise noted, all synthetic steps were performed under the air atmosphere using Schlenk tubes. The materials obtained from commercial sources were used without further purification. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Brucker Advance III HD 400 MHz spectrometer in CDCl₃ or DMSO- d_6 solution. All chemical shifts were reported in ppm (δ) relative to the internal standard TMS (0 ppm). High-resolution mass spectra (HRMS) were acquired in electrospray ionization (ESI/APCI) mode using a TOF mass analyzer.

General procedure for NCS-promoted thiocyanation of pyrrolo[1,2-*a*]quinoxaline and KSCN or NH₄SCN.

A Schlenk tube (25 mL) was charged with pyrrolo[1,2-*a*]quinoxaline **1** (0.5 mmol), KSCN or NH₄SCN **2** (1 mmol), NCS (1.5 equiv.), and MeCN (2 mL) in air. Then the mixture was stirred at room temperature for 24 h. After reaction completion, the solution was extracted with dichloromethane (3 \times 10 mL). Then, the combined organic layer was dried over anhydrous Na₂SO₄, the solvent was removed under reduced pressure and the crude was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give the final products **3**.

1-Thiocyanatopyrrolo[*1,2-a*]*quinoxaline* (3a)

Yield: 96%; Yellow solid; mp 146.2–147.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.27 (dd, J = 8.5, 0.9 Hz, 1H), 8.86 (s, 1H), 8.07 (dd, J = 8.0, 1.5 Hz, 1H), 7.71–7.63 (m, 1H), 7.63–7.55 (m, 1H), 7.28 (d, J = 4.3 Hz, 1H), 6.95 (d, J = 4.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.3, 137.2, 131.6, 131.0, 129.4, 128.8, 127.6, 126.6, 115.7, 109.1, 108.0, 104.5. HRMS (ESI): m/z calcd for C₁₂H₇N₃S [M+H]⁺ 226.04342, found: 226.04344.

8-Methyl-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3b)

Yield: 83%; Yellow solid; mp 149.7–150.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 8.77 (s, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.37 (dd, J = 8.2, 1.1 Hz, 1H), 7.23 (d, J = 4.3 Hz, 1H), 6.89 (d, J = 4.3 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

144.4, 139.4, 135.3, 131.7, 130.7, 129.2, 127.8, 127.5, 115.7, 109.2, 107.6, 103.9, 22.4. HRMS (APCI): m/z calcd for C₁₃H₉N₃S [M+H]⁺ 240.05899, found: 240.05865. *8-Fluoro-1-thiocyanatopyrrolo*[1,2-a]quinoxaline (**3c**)

Yield: 76%; Yellow solid; mp 162.8–163.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (dd, J = 10.6, 2.6 Hz, 1H), 8.79 (s, 1H), 8.02 (dd, J = 9.0, 6.2 Hz, 1H), 7.34 – 7.24 (m, 2H), 6.93 (d, J = 4.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, $J_{C-F} = 249.7$ Hz), 144.5 (d, $J_{C-F} = 2.9$ Hz), 134.0 (d, $J_{C-F} = 2.4$ Hz), 132.8 (d, $J_{C-F} = 9.9$ Hz), 131.3 , 129.7 (d, $J_{C-F} = 11.6$ Hz), 128.1 , 114.6 (d, $J_{C-F} = 23.3$ Hz), 108.7 , 108.0 , 104.6 , 102.7 (d, $J_{C-F} = 29.5$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.03. HRMS (APCI): m/z calcd for C₁₂H₆FN₃S [M+H]⁺ 244.03392, found:244.03362.

7-Methyl-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3d)

Yield: 82%; Yellow solid; mp 174.2–175.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.15 (d, J = 8.7 Hz, 1H), 8.84 (s, 1H), 7.85 (s, 1H), 7.48 (dd, J = 8.7, 1.9 Hz, 1H), 7.25 (d, J = 4.3 Hz, 1H), 6.93 (d, J = 4.3 Hz, 1H), 2.54 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.3, 137.3, 136.6, 131.5, 130.8, 129.9, 127.3, 127.2, 115.4, 109.2, 107.8, 104.0, 21.1. HRMS (APCI): m/z calcd for C₁₃H₉N₃S [M+H]⁺ 240.05899, found: 240.05855. *7-Thiocyanatoindolo*[1,2-a]quinoxaline (**3e**)

Yield: 87%; Yellow solid; mp 183.7–184.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.51 (d, *J* = 8.7 Hz, 1H), 8.49–8.46 (m, 1H), 8.16 (dd, *J* = 5.9, 3.1 Hz, 1H), 8.12 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.76–7.70 (m, 1H), 7.69–7.62 (m, 2H), 7.59–7.54 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.3, 136.4, 132.6, 131.5, 131.3, 129.9, 129.7, 129.7, 125.9, 125.6, 124.9, 120.4, 115.2, 115.2, 110.3, 88.0. HRMS (APCI): m/z calcd for C₁₆H₉N₃S [M+H]⁺ 276.05899, found: 276.05884.

3-Iodo-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3f)

Yield: 65%; Yellow solid; mp 202.3–204.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.22 (dd, J = 8.5, 1.1 Hz, 1H), 8.79 (s, 1H), 8.10 (dd, J = 8.0, 1.6 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.64 – 7.59 (m, 1H), 7.41 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 137.6, 133.6, 131.6, 131.4, 129.2, 128.9, 127.2, 115.4, 108.6, 106.3, 61.0. HRMS (APCI): m/z calcd for C₁₂H₆IN₃S [M+H]⁺ 351.93999, found: 351.93954.

3-Bromo-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3g)

Yield: 29%; White solid; mp 197.3–198.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.22 (dd, J = 8.5, 0.9 Hz, 1H), 8.89 (s, 1H), 8.10 (dd, J = 8.0, 1.6 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.64 – 7.59 (m, 1H), 7.32 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 137.5, 131.4, 129.2, 129.0, 128.9, 128.5, 127.2, 115.6, 108.5, 104.8, 95.3. HRMS (APCI): m/z calcd for C₁₂H₆BrN₃S [M+H]⁺ 303.95386, found: 303.95346.

3-Phenyl-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3h)

Yield: 56%; Yellow solid; mp 154.2–155.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.26 (dd, J = 8.6, 1.1 Hz, 1H), 9.04 (s, 1H), 8.06 (dd, J = 8.0, 1.6 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.60 – 7.47 (m, 5H), 7.45 – 7.40 (m, 1H), 7.38 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 137.5, 132.4, 131.0, 129.3, 128.8, 128.7, 128.1, 127.8, 126.7, 126.6, 124.0, 115.7, 109.0, 104.5. HRMS (APCI): m/z calcd for C₁₈H₁₁N₃S [M+H]⁺ 302.07464, found: 302.07413.

1-Thiocyanato-3-(4-vinylphenyl)pyrrolo[1,2-a]quinoxaline (3i)

Yield: 61%; Yellow solid; mp 150.1–151.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.23 (dd, J = 8.6, 1.2 Hz, 1H), 9.02 (s, 1H), 8.04 (dd, J = 8.0, 1.6 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.60 – 7.48 (m, 5H), 7.36 (s, 1H), 6.77 (dd, J = 17.6, 10.9 Hz, 1H), 5.83 (d, J = 17.6 Hz, 1H), 5.33 (d, J = 10.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 137.5, 137.3, 136.2, 131.8, 131.0, 129.3, 128.8, 128.7, 127.8, 127.1, 126.6, 126.6, 123.6, 115.7, 114.7, 109.0, 104.6. HRMS (APCI): m/z calcd for C₂₀H₁₃N₃S [M+H]⁺ 328.09029, found: 328.08993.

4-Phenyl-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3j)

Yield: 81%; Yellow solid; mp 159.2–159.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.32 (dd, J = 8.5, 1.3 Hz, 1H), 8.14 (dd, J = 8.0, 1.7 Hz, 1H), 7.93–7.89 (m, 2H), 7.69–7.64 (m, 1H), 7.62–7.54 (m, 4H), 7.29 (d, J = 4.4 Hz, 1H), 7.02 (d, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.2, 137.5, 137.5, 131.2, 131.0, 130.3, 128.9, 128.8, 128.6, 128.3, 127.6, 126.7, 115.5, 109.4, 109.3, 104.8. HRMS (ESI): m/z calcd for C₁₈H₁₁N₃S [M+H]⁺ 302.07458, found: 302.07455.

4-(4-Fluorophenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3k)

Yield: 90%; Yellow solid; mp 168.3–170.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.32 (dd, J = 8.5, 1.0 Hz, 1H), 8.12 (dd, J = 8.0, 1.6 Hz, 1H), 7.95–7.90 (m, 2H), 7.69–7.64 (m, 1H), 7.62–7.57 (m, 1H), 7.30 (d, J = 4.4 Hz, 1H), 7.26 (d, J = 5.3 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 6.99 (d, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 165.4, 162.9, 153.1, 137.4, 133.6, 133.6, 131.2, 130.9, 130.8, 130.8, 128.5, 128.5, 127.7, 126.8, 116.1, 115.9, 115.6, 109.2, 109.2, 105.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.15. HRMS (ESI): m/z calcd for C₁₈H₁₀FN₃S [M+H]⁺ 320.0652, found: 320.0657. *4-(4-Chlorophenyl)-1-thiocyanatopyrrolo*[*1,2-a*]*quinoxaline* (**3**)

Yield: 68%; Yellow solid; mp 190.2–190.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.31 (d, J = 8.5 Hz, 1H), 8.11 (dd, J = 8.0, 1.5 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.70–7.64 (m, 1H), 7.62–7.57 (m, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 4.3 Hz, 1H), 6.98 (d, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.0, 137.4, 136.5, 135.9, 131.2, 130.7, 130.2, 129.2, 128.6, 128.6, 127.7, 126.8, 115.6, 109.2, 109.2, 105.2. HRMS (APCI): m/z calcd for C₁₈H₁₀ClN₃S [M+H]⁺ 336.03567, found: 336.03491.

4-(4-Bromophenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3m)

Yield: 74%; Yellow solid; mp 191.3–192.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.31 (dd, J = 8.6, 0.8 Hz, 1H), 8.11 (dd, J = 8.0, 1.5 Hz, 1H), 7.80 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.66 (dd, J = 8.6, 1.5 Hz, 1H), 7.62–7.56 (m, 1H), 7.29 (d, J = 4.4 Hz, 1H), 6.98 (d, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.0, 137.4, 136.4, 132.1, 131.2, 130.6, 130.4, 128.6, 128.5, 127.7, 126.8, 124.8, 115.6, 109.2, 109.1, 105.2. HRMS (ESI): m/z calcd for C₁₈H₁₀BrN₃S [M+Na]⁺ 401.9671, found: 401.9675.

1-Thiocyanato-4-(p-tolyl)pyrrolo[1,2-a]quinoxaline (**3n**)

Yield: 80%; Yellow solid; mp 179.5–180.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.31 (dd, J = 8.5, 1.1 Hz, 1H), 8.13 (dd, J = 8.0, 1.6 Hz, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.68–7.62 (m, 1H), 7.61–7.56 (m, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.28 (d, J = 4.3 Hz, 1H), 7.03 (d, J = 4.4 Hz, 1H), 2.47 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.2, 140.5, 137.6, 134.7, 131.1, 131.1, 129.6, 128.8, 128.5, 128.2, 127.6, 126.6, 115.5,

109.4, 109.4, 104.6, 21.6. HRMS (ESI): m/z calcd for $C_{19}H_{13}N_3S [M+H]^+$ 316.0903, found: 316.0908.

4-(4-Methoxyphenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (30)

Yield: 78%; Yellow solid; mp 173.1–174.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.30 (dd, J = 8.5, 1.1 Hz, 1H), 8.12 (dd, J = 7.9, 1.5 Hz, 1H), 7.90 (d, J = 8.8 Hz, 2H), 7.66–7.61 (m, 1H), 7.60–7.55 (m, 1H), 7.28 (d, J = 4.3 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 7.04 (d, J = 4.4 Hz, 1H), 3.90 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.4, 153.7, 137.6, 131.0, 131.0, 130.3, 130.0, 128.4, 128.0, 127.6, 126.6, 115.5, 114.3, 109.4, 104.6, 55.6. HRMS (ESI): m/z calcd for C₁₉H₁₃N₃OS [M+H]⁺ 332.0852, found: 332.0854.

4-(1-Thiocyanatopyrrolo[1,2-a]quinoxalin-4-yl)benzonitrile (3p)

Yield: 51%; Yellow solid; mp 221.2–222.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (dd, J = 8.6, 1.0 Hz, 1H), 8.14 (dd, J = 8.0, 1.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 2H), 7.87 (d, J = 8.5 Hz, 2H), 7.76–7.68 (m, 1H), 7.66–7.61 (m, 1H), 7.34 (d, J = 4.4 Hz, 1H), 6.98 (d, J = 4.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.1, 141.7, 137.2, 132.7, 131.4, 130.3, 129.6, 129.2, 128.6, 127.8, 127.0, 118.5, 115.6, 114.0, 109.0, 108.9, 105.7. HRMS (APCI): m/z calcd for C₁₈H₁₀N₄O₂S [M+H]⁺ 327.06989, found: 327.06940.

4-(4-Nitrophenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3q)

Yield: 61%; Yellow solid; mp 194.7–195.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (dd, J = 8.6, 0.8 Hz, 1H), 8.42 (d, J = 8.8 Hz, 2H), 8.15 (dd, J = 8.2, 1.5 Hz, 1H), 8.12 (d, J = 8.8 Hz, 2H), 7.76 – 7.70 (m, 1H), 7.67 – 7.60 (m, 1H), 7.35 (d, J = 4.4 Hz, 1H), 6.99 (d, J = 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 148.9, 143.4, 137.2, 131.5, 130.3, 129.9, 129.3, 128.6, 127.9, 127.0, 124.1, 115.7, 109.0, 108.9, 105.8. HRMS (APCI): m/z calcd for C₁₈H₁₀N₄O₂S [M+H]+ 347.05972, found: 347.05942.

2-(1-Thiocyanatopyrrolo[1,2-a]quinoxalin-4-yl)phenol (**3r**)

Yield: 59%; Yellow solid; mp 183.1–184.2 °C; ¹H NMR (400 MHz, DMSO-*d6*) δ 10.27 (s, 1H), 9.35 (d, J = 8.4 Hz, 1H), 8.05 (dd, J = 8.0, 1.3 Hz, 1H), 7.82–7.74 (m, 1H), 7.70–7.62 (m, 1H), 7.53 (dd, J = 7.6, 1.5 Hz, 1H), 7.45 (d, J = 4.3 Hz, 1H), 7.43–

7.32 (m, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 4.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, DMSO-*d6*) δ 155.8, 153.2, 136.2, 131.2, 130.3, 130.1, 129.9, 128.4, 128.0, 127.0, 126.5, 123.2, 119.1, 116.5, 115.7, 111.3, 109.6, 107.2. HRMS (APCI): m/z calcd for C₁₈H₁₁N₃OS [M+H]⁺ 318.06956, found: 318.06918. *4-(2,4-Dichlorophenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline* (**3s**)

Yield: 73%; Yellow solid; mp 209.7–210.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (dd, J = 8.6, 1.0 Hz, 1H), 8.13 (dd, J = 8.1, 1.5 Hz, 1H), 7.76–7.70 (m, 1H), 7.65–7.60 (m, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.52–7.41 (m, 2H), 7.27 (d, J = 4.3 Hz, 1H), 6.60 (d, J = 4.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.9, 137.0, 136.3, 134.5, 134.0, 131.7, 131.3, 130.9, 130.2, 129.1, 128.9, 127.7, 127.7, 126.8, 115.6, 109.2, 109.1, 105.1. HRMS (APCI): m/z calcd for C₁₈H₉Cl₂N₃S [M+H]⁺ 369.99670, found: 369.99634.

4-(Furan-2-yl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3t)

Yield: 81%; Yellow solid; mp 169.3–170.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.28 (dd, J = 8.4, 1.1 Hz, 1H), 8.08 (dd, J = 7.9, 1.6 Hz, 1H), 7.72 (d, J = 0.8 Hz, 1H), 7.64–7.59 (m, 1H), 7.59–7.53 (m, 2H), 7.43 (d, J = 3.4 Hz, 1H), 7.33 (d, J = 4.4 Hz, 1H), 6.66 (dd, J = 3.5, 1.7 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.8, 144.9, 142.9, 137.0, 130.8, 128.6, 128.3, 128.1, 127.9, 126.6, 115.4, 113.6, 112.3, 109.3, 109.2, 104.5. HRMS (APCI): m/z calcd for C₁₆H₉N₃OS [M+H]⁺ 292.05391, found: 292.05350.

7-Chloro-4-(4-methoxyphenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (3u)

Yield: 71%; mp 161.2–162.7 °C; Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, J = 9.1 Hz, 1H), 8.05 (d, J = 2.5 Hz, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.55 (dd, J = 9.1, 2.5 Hz, 1H), 7.27 (d, J = 4.4 Hz, 1H), 7.09–7.03 (m, 3H), 3.90 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.6, 154.7, 138.6, 131.8, 130.7, 130.36, 130.1, 129.5, 127.8, 127.7, 126.9, 116.6, 114.3, 109.9, 109.1, 105.1, 55.6. HRMS (APCI): m/z calcd for C₁₉H₁₂ClN₃OS [M+H]⁺ 366.04624, found: 366.04596.

7-*Chloro-4-(4-nitrophenyl)-1-thiocyanatopyrrolo*[1,2-a]quinoxaline (**3v**)

Yield: 70%; Yellow solid; mp 210.5–211.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.36 (d, *J* = 9.2 Hz, 1H), 8.44 (d, *J* = 8.9 Hz, 2H), 8.20 (d, *J* = 8.9 Hz, 2H), 8.14 (d, *J* = 2.5 Hz, 1H), 7.88 (dd, *J* = 9.2, 2.6 Hz, 1H), 7.59 (d, *J* = 4.4 Hz, 1H), 7.19 (d, *J* = 4.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 152.7, 148.5, 142.3, 137.6, 130.5, 130.2, 129.4, 128.7, 128.6, 127.5, 126.9, 123.9, 117.6, 110.9, 109.8, 109.4. HRMS (APCI): m/z calcd for C₁₈H₉ClN₄O₂S [M+H]⁺ 381.02075, found: 381.02008.

4-(4-Methoxyphenyl)-7-methyl-1-thiocyanatopyrrolo[1,2-a]quinoxaline (**3w**)

Yield: 84%; Yellow solid; mp 175.3–176.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 8.7 Hz, 3H), 7.38 (dd, J = 8.7, 1.9 Hz, 1H), 7.18 (d, J = 4.3 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 4.4 Hz, 1H), 3.88 (s, 3H), 2.49 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.2, 153.4, 137.4, 136.4, 130.6, 130.5, 130.2, 130.0, 129.1, 127.0, 126.1, 115.0, 114.1, 109.4, 109.0, 104.0, 55.5, 21.0. HRMS (APCI): m/z calcd for C₂₀H₁₅N₃OS [M+H]⁺ 346.10086, found: 346.10049. 7-Methyl-4-(4-nitrophenyl)-1-thiocyanatopyrrolo[1,2-a]quinoxaline (**3x**)

Yield: 49%; Yellow solid; mp 221.8–222.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, J = 8.7 Hz, 1H), 8.42 (d, J = 8.8 Hz, 2H), 8.11 (d, J = 8.9 Hz, 2H), 7.95–7.93 (m, 2H), 7.54 (dd, J = 8.8, 1.8 Hz, 1H), 7.31 (d, J = 4.4 Hz, 1H), 6.97 (d, J = 4.4 Hz, 1H), 2.56 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.6, 148.8, 143.5, 138.6, 137.2, 137.1, 133.3, 131.1, 130.5, 130.2, 129.9, 127.5, 126.5, 124.1, 115.3, 109.1, 108.7, 105.3, 21.1. HRMS (APCI): m/z calcd for C₁₉H₁₂N₄O₂S [M+H]⁺ 361.07537, found: 361.07471.

General procedure for NCS-promoted selenocyanation of pyrrolo[1,2-*a*]quinoxaline and KSeCN.

A Schlenk tube (25 mL) was charged with pyrrolo[1,2-*a*]quinoxaline 1 (0.5 mmol), KSeCN (1 mmol), NCS (1.5 equiv.), and EtOAc (2 mL) in air. Then the mixture was stirred at room temperature for 24 h. After reaction completion, the solution was extracted with dichloromethane (3×10 mL). Then, the combined organic layer was dried over anhydrous Na₂SO₄, the solvent was removed under reduced pressure and

the crude was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give the final products **4**.

1-Selenocyanatopyrrolo[1,2-a]quinoxaline (4a)

Yield: 72%; Yellow solid; mp 167.7–168.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.08 (dd, J = 8.0, 1.5 Hz, 1H), 8.02 (d, J = 2.8 Hz, 1H), 7.92 (dd, J = 8.2, 1.2 Hz, 1H), 7.68–7.62 (m, 1H), 7.60–7.54 (m, 1H), 7.17 (d, J = 2.9 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.9, 136.2, 130.9, 129.2, 128.4, 127.1, 126.7, 120.9, 115.4, 113.9, 101.12, 92.4. HRMS (APCI): m/z calcd for C₁₂H₇N₃Se [M+H]⁺ 273.98780, found: 273.98737.

7-Methyl-1-selenocyanatopyrrolo[1,2-a]quinoxaline (4b)

Yield: 47%; Yellow solid; mp 180.1–181.9 °C; ¹H NMR (400 MHz, DMSO-*d6*) δ 9.29 (d, J = 8.7 Hz, 1H), 8.98 (s, 1H), 7.80 (s, 1H), 7.55 (dd, J = 8.8, 2.0 Hz, 1H), 7.34 (d, J = 4.1 Hz, 1H), 7.13 (d, J = 4.2 Hz, 1H), 2.48 (s, 3H). ¹³C{¹H} NMR (101 MHz, DMSO-*d6*) δ 145.6, 136.6, 135.6, 130.0, 129.8, 129.0, 127.6, 126.9, 115.6, 108.5, 106.1, 105.2, 20.4. HRMS (APCI): m/z calcd for C₁₃H₉N₃Se [M+H]⁺ 288.00345, found: 288.00290.

8-Fluoro-1-selenocyanatopyrrolo[1,2-a]quinoxaline (4c)

Yield: 40%; Yellow solid; mp 147.1–148.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.09 (dd, J = 10.7, 2.6 Hz, 1H), 8.84 (s, 1H), 8.05 (dd, J = 9.0, 6.2 Hz, 1H), 7.33 (d, J = 4.1 Hz, 1H), 7.32 – 7.28 (m, 1H), 6.97 (d, J = 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, $J_{C-F} = 249.4$ Hz), 144.5 (d, $J_{C-F} = 2.5$ Hz), 134.0, 132.8 (d, $J_{C-F} = 9.9$ Hz), 131.6, 130.1 (d, $J_{C-F} = 11.1$ Hz), 129.7, 114.6 (d, $J_{C-F} = 23.3$ Hz), 108.5, 102.8 (d, $J_{C-F} = 29.6$ Hz), 100.6, 99.7. HRMS (APCI): m/z calcd for C₁₂H₆FN₃Se [M+H]⁺ 291.97837, found: 291.97837.

4-Phenyl-1-selenocyanatopyrrolo[1,2-a]quinoxaline (4d)

Yield: 68%; Yellow solid; mp 170.5–171.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.27 (dd, J = 8.5, 1.0 Hz, 1H), 8.08 (dd, J = 7.9, 1.6 Hz, 1H), 7.93–7.87 (m, 2H), 7.62–7.56 (m, 1H), 7.55–7.50 (m, 4H), 7.23 (d, J = 4.3 Hz, 1H), 6.97 (d, J = 4.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.9, 137.4, 137.3, 130.9, 130.8, 130.2, 128.9, 128.7,

128.7, 128.5, 127.9, 126.3, 115.4, 109.6, 100.7, 100.4. HRMS (APCI): m/z calcd for $C_{18}H_{11}N_3$ Se [M+H]⁺ 350.01910, found: 350.01868.

4-(4-Methoxyphenyl)-1-selenocyanatopyrrolo[1,2-a]quinoxaline (4e)

Yield: 50%; Yellow solid; mp 197.0–197.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.32 (dd, J = 8.4, 1.1 Hz, 1H), 8.10 (dd, J = 7.9, 1.6 Hz, 1H), 7.89 (d, J = 8.9 Hz, 2H), 7.64–7.59 (m, 1H), 7.58–7.53 (m, 1H), 7.29 (d, J = 4.3 Hz, 1H), 7.07 (d, J = 8.9 Hz, 2H), 7.04 (d, J = 4.3 Hz, 1H), 3.90 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.3, 153.6, 137.5, 131.1, 130.9, 130.3, 130.1, 129.1, 128.6, 127.8, 126.5, 115.5, 114.3, 109.7, 100.6, 100.5, 55.6. HRMS (APCI): m/z calcd for C₁₉H₁₃N₃OSe [M+H]⁺ 380.02966, found: 380.02905.

4-(4-Bromophenyl)-1-selenocyanatopyrrolo[1,2-a]quinoxaline (4f)

Yield: 42%; Yellow solid; mp 181.1–182.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (dd, J = 8.5, 1.1 Hz, 1H), 8.11 (dd, J = 8.0, 1.6 Hz, 1H), 7.81 (d, J = 8.5 Hz, 2H), 7.72–7.63 (m, 3H), 7.62–7.56 (m, 1H), 7.31 (d, J = 4.3 Hz, 1H), 6.99 (d, J = 4.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.9, 137.4, 136.5, 132.1, 131.2, 130.8, 130.4, 129.2, 128.7, 128.4, 126.7, 124.8, 115.6, 109.5, 101.1, 100.3. HRMS (APCI): m/z calcd for C₁₈H₁₀BrN₃Se [M+H]⁺ 427.92961, found: 427.92892.

4-(4-Nitrophenyl)-1-selenocyanatopyrrolo[1,2-a]quinoxaline (4g)

Yield: 38%; Yellow solid; mp 185.9–186.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (d, J = 8.0 Hz, 1H), 8.42 (d, J = 8.8 Hz, 2H), 8.22 – 8.05 (m, 3H), 7.74 – 7.69 (m, 1H), 7.66 – 7.59 (m, 1H), 7.36 (d, J = 4.3 Hz, 1H), 6.99 (d, J = 4.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 148.9, 143.5, 137.2, 131.4, 130.4, 129.9, 129.4, 129.1, 128.8, 126.9, 124.1, 115.7, 109.3, 101.6, 100.1. HRMS (APCI): m/z calcd for C₁₈H₁₀N₄O₂Se [M+H]⁺ 395.00417, found: 395.00354.

General procedure for gram-scale experiment.

A 50 mL round-bottomed flask was charged with **1a** (6 mmol), 2a (12 mmol), NCS (1.5 equiv.), and MeCN (20 mL). The solution was stirred at room temperature for 24 h. After reaction completion, the solvent was removed under reduced pressure and the

crude was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give the final product **3a** (1.128 g, 83% yield).

Typical procedure for the synthesis of 3aa.

To a 25 mL Schlenk tube equipped with a magnetic stirring bar, **3a** (0.2 mmol), concentrated sulfuric acid (18 M) (0.1 mL), and CH_2Cl_2 (2 mL) were added. The reaction vessel was allowed to stir under the ice bath condition for 4 h. After completion of the reaction, the mixture was washed with the saturated NaHCO₃ aqueous solution (10 mL) and extracted with dichloromethane (3 × 10 mL). The organic phase was dried over Na₂SO₄ and concentrated in a vacuum. The crude was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give the final product pyrrolo[1,2-a]quinoxaline-1-thiol **3aa** in 84% yield.

Pyrrolo[1,2-a]quinoxaline-1-thiol (**3aa**)

Yield: 84%; Yellow solid; mp 126.3–127.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, J = 8.0 Hz, 1H), 8.57 (s, 1H), 7.74 (dd, J = 8.1, 1.4 Hz, 1H), 7.26–7.21 (m, 1H), 6.94 (d, J = 4.2 Hz, 1H), 6.93–6.87 (m, 1H), 6.73 (d, J = 4.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.8, 136.7, 131.2, 130.2, 129.4, 127.9, 127.1, 125.5, 120.6, 115.4, 107.5. HRMS (APCI): m/z calcd for C₁₁H₇N₂S [M-H]⁺ 199.03245, found 199.03285.

Typical procedure for the synthesis of 3ab.

To a 25 mL Schlenk tube equipped with a magnetic stirring bar, **3a** (0.2 mmol), TMSCF₃ (2 equiv.), Cs_2CO_3 (2 equiv.) and MeCN (2 mL) were added. The reaction vessel was allowed to stir at room temperature for 15 h. After reaction completion, the solvent was removed under reduced pressure and the crude was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to give the final product **3ab** in 45% yield.

1-((Trifluoromethyl)thio)pyrrolo[1,2-a]quinoxaline (3ab)

Yield: 45%; White solid; mp 94.2–94.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.58 (dd, J = 8.7, 0.8 Hz, 1H), 8.84 (s, 1H), 8.02 (dd, J = 7.9, 1.8 Hz, 1H), 7.61–7.56 (m, 1H), 7.56–7.50 (m, 1H), 7.25 (d, J = 4.2 Hz, 1H), 6.94 (d, J = 4.2 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.5, 137.2, 131.7, 130.8, 129.9, 129.8, 129.5, 128.2, 126.7,

126.2, 116.4, 107.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -44.44. HRMS (APCI): m/z calcd for C₁₂H₇F₃N₂S [M+H]⁺ 269.03548, found: 269.03510.

Typical procedure for the synthesis of 4aa.

To a 25 mL Schlenk tube equipped with a magnetic stirring bar, **4a** (0.1 mmol), phenylacetylene (0.1 mmol), Cu(OAc)₂ (5 mol%), Ag₂CO₃ (20 mol%), Cs₂CO₃ (1 equiv.), and NMP (1.5 mL) were added. The reaction vessel was allowed to stir at 100 ^oC for 8 h under argon atmosphere. After completion of the reaction, the mixture was washed with the saturated solution of NaCl (3 × 10 mL) and extracted with ethyl acetate (3 × 10 mL). The organic phase was dried over Na₂SO₄ and concentrated in a vacuum. The crude mixture was purified via column chromatography using ethyl acetate/petroleum ether as eluent to give the final product **4aa** in 44% yield.

1-((Phenylethynyl)selanyl)pyrrolo[1,2-a]quinoxaline (4aa)

Yield: 44%; White solid; mp 169.7–170.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.02 (dd, J = 8.0, 1.4 Hz, 1H), 7.94 (d, J = 2.6 Hz, 1H), 7.86 (dd, J = 8.2, 1.2 Hz, 1H), 7.54–7.60 (m, 1H), 7.53–7.47 (m, 1H), 7.41–7.37 (m, 2H), 7.27 (d, J = 2.1 Hz, 2H), 7.26 (d, J = 1.8 Hz, 1H), 7.13 (d, J = 2.8 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.0, 136.1, 131.8, 130.5, 128.5, 128.5, 128.4, 127.6, 127.1, 126.0, 123.2, 119.6, 114.6, 113.8, 100.7, 97.7, 70.5. HRMS (APCI): m/z calcd for C₁₉H₁₂N₂Se [M+H]⁺ 349.02385, found: 349.02347.

¹H, ¹³C NMR, and ¹⁹F NMR Spectra for Products

7.162.7 160.2 144.5 1144.5 1144.5 1133.3 1132.8 1132.8 1132.8 1132.8 1132.8 1145.5 1145.5 1145.6 1145.6 1102.6 1016.6 102.6 100.6 10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S16

S22

.0.5 10.0 9.5 9.0 5.0 4.5 f1 (ppm) 8.5 6.5 1.0 0.5 0.0 -0.5 7.0 6.0 5.5 3.0 2.0 1.5 4.0 3.5 2.5

S23

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S38

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Single Crystal Data of 3a

NCS	S1 C12 N3	
	C11 C10 C9 C5 C5 C6 C1 C2 C2 C5 C6 C1	
Structure of $2a$ (CCDC: 1042(42))		
Table 1 Crystal data and structure refinement for 3a		
Identification code	3a	
Empirical formula	$C_{12}H_7N_3S$	
Formula weight	225.27	
Temperature/K	150.0	
Crystal system	monoclinic	
Space group	Pn	
a/Å	16.2160(5)	
b/Å	8.5645(2)	
c/Å	16.5649(5)	
α/\circ	90	
β/°	117.9340(10)	
γ/°	90	
Volume/Å ³	2032.52(10)	
Ζ	8	
$\rho_{calc}g/cm^3$	1.472	
μ/mm^{-1}	0.289	
F(000)	928.0	
Crystal size/mm ³	$0.16 \times 0.12 \times 0.08$	
Radiation	MoK α ($\lambda = 0.71073$)	
2θ range for data collection/°	4.756 to 52.758	
Index ranges	$-20 \le h \le 20, -10 \le k \le 9, -20 \le l \le 20$	
Reflections collected	18145	
Independent reflections	7628 [$R_{int} = 0.0540, R_{sigma} = 0.0683$]	
Data/restraints/parameters	7628/2/577	
Goodness-of-fit on F ²	1.046	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0451, wR_2 = 0.0869$	
Final R indexes [all data]	$R_1 = 0.0683, wR_2 = 0.0997$	
Largest diff. peak/hole / e Å ⁻³	0.28/-0.27	
Flack parameter	0.09(7)	