Supporting Information

Chemo- and regioselective synthesis of polysubstituted 2-aminothiophenes by the cyclization of *gem*-dibromo or *gem*-dichoroalkenes with β-keto tertiary thioamides

Xuxue Zhang,*^{a, b} Chuan Liu,^a Yupian Deng^a and Song Cao*^a

[a] Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (*ECUST*), Shanghai 200237, China.

[b] College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China.

*Corresponding author. E-mail address: scao@ecust.edu.cn, zxx8912@163.com.

Table of contents

1.	General information	S2
2.	The gem-dibromoalkenes (1a–1), gem-dichloroalkenes (1m–r) and β -keto tertiary thioamides (2a–g	g) used in
	this reaction	S2
3.	General procedure for the synthesis of compounds 3	S3
4.	Characterization data of compounds 3	S3
5.	¹ H, ¹³ C and HRMS (EI) spectra of compounds 3	S10
6.	X-ray crystal structure of compound 3ba	S37

1. General information

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. DMSO and other solvents were dried by standard method prior to use. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C NMR, respectively) using TMS as internal standard. The GC and GC-MS were recorded on HP 5973 MSD with 6890 GC. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

2. The *gem*-dibromoalkenes (1a–l), *gem*-dichloroalkenes (1m–r) and β-keto tertiary thioamides (2a–g) used in this reaction

(1) The gem-dibromoalkenes (1a–l) used in this reaction

The *gem*-dibromoalkenes (**1a**–**l**) were prepared according to the reported procedure (J. Liu, F. Dai, Z. Yang, S. Wang, K. Xie, A. Wang, X. Chen and Z. Tan, *Tetrahedron Lett.*, 2012, **53**, 5678–5683).

(2) The gem-dichloroalkenes (1m-r) used in this reaction

The *gem*-dichloroalkenes (**1m**–**r**) were prepared according to the reported procedure (S. G. Newman, C. S. Bryan, D. Perez and M. Lautens, *Synthesis*, 2011, 342).

(3) The β -keto tertiary thioamides (2a–g) used in this reaction

The β-keto tertiary thioamides (**2a–g**) were prepared according to the reported procedures (Q. Liu and T. Rovis, *Org. Lett.*, 2009, **11**, 2856; G. C. Nandi, M. S. Singh, H. Ila and H. Junjappa, *Eur. J. Org. Chem.*, 2012, 967).

3. General procedure for the synthesis of compounds 3

A 25 mL of dried round-bottom flask was charged with 1,1-dihaloalkene **1** (1.0 mmol), β -ketothioamide **2** (1.2 mmol), K₂CO₃ (2.5 mmol, 345.0 mg), and DMSO (5 mL) under argon atmosphere. The mixture was stirred at 120 °C for 4 h (monitored by TLC). After the reaction completed, the reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine (2×10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was then purified by column chromatography on silica gel to afford the pure target compounds **3**.

4. Characterization data of compounds 3

(4-(4-Chlorophenyl)-2-(piperidin-1-yl)thiophen-3-yl)(phenyl)methanone (3aa=3ma): Yellow solid; yield: 90% (3aa), 82% (3ma); mp: 97.0–97.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.6 Hz, 2H), 7.53–7.49 (m, 1H), 7.41–7.37 (m, 2H), 7.20–7.15 (m, 4H), 6.70 (s, 1H), 2.91 (t, *J* = 5.0 Hz, 4H), 1.35–1.27 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.0, 162.9, 141.0, 137.9, 135.2, 133.0, 132.9, 129.9, 129.6, 128.3, 128.1, 124.9, 113.1, 55.7, 25.3, 23.5. HRMS (EI) calcd for C₂₂H₂₀CINOS [M]⁺: 381.0952, found: 381.0953.

4-(4-Benzoyl-5-(piperidin-1-yl)thiophen-3-yl)benzonitrile (3ba): Yellow solid; yield: 92%; mp: 94.8–95.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.6 Hz, 2H), 7.55–7.49 (m, 3H), 7.42–7.38 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.76 (s, 1H), 2.92 (t, *J* = 5.2 Hz, 4H), 1.28–1.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 193.5, 163.6, 141.4, 140.5, 137.7, 133.1, 132.0, 129.9, 129.0, 128.2, 124.2, 118.9, 114.3, 110.6, 55.6, 25.3, 23.4. HRMS (EI) calcd for C₂₃H₂₀N₂OS [M]⁺: 372.1296, found: 372.1298.

(4-([1,1'-Biphenyl]-4-yl)-2-(piperidin-1-yl)thiophen-3-yl)(phenyl)methanone (3ca=3oa): Yellow solid; yield: 88% (3ca), 78% (3oa); mp: 135.6–136.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.92–7.90 (m, 2H), 7.57–7.47 (m, 5H), 7.43–7.39 (m, 4H), 7.35–7.30 (m, 3H), 6.79 (s, 1H), 2.95 (t, *J* = 5.2 Hz, 4H), 1.37–1.31 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.2, 162.7, 141.8, 140.8, 139.8, 138.1, 135.7, 132.8, 130.0, 128.7, 128.1, 127.2, 127.0, 126.9, 125.4, 113.1, 55.7, 25.4, 23.5. HRMS (EI) calcd for C₂₈H₂₅NOS [M]⁺: 424.1683, found: 424.1685.

Phenyl(4-phenyl-2-(piperidin-1-yl)thiophen-3-yl)methanone (**3da=3pa**): Yellow oil; yield: 80% (**3da**), 72% (**3pa**). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.2 Hz, 2H), 7.49–7.45 (m, 1H), 7.38–7.34 (m, 2H), 7.24–7.16 (m, 5H), 6.71 (s, 1H), 2.91 (t, *J* = 4.8 Hz, 4H), 1.34–1.29 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.2, 162.6, 142.2, 138.1, 136.7, 132.7, 129.9, 128.3, 128.2, 128.1, 127.0, 125.4, 112.9, 55.7, 25.4, 23.5. HRMS (EI) calcd for C₂₂H₂₁NOS [M]⁺: 347.1347, found: 347.1346.

Phenyl(2-(piperidin-1-yl)-4-(*p***-tolyl)thiophen-3-yl)methanone (3ea=3qa)**: Yellow solid; yield: 80% (3ea), 80% (3qa); mp: 85.0–86.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 7.6 Hz, 2H), 7.53–7.50 (m, 1H), 7.42–7.38 (m, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.72 (s, 1H), 2.93 (t, *J* = 4.8 Hz, 4H), 2.29 (s, 3H), 1.34–1.29 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 162.3, 142.1, 138.1, 136.7, 133.8, 132.7, 129.9, 128.9, 128.2, 128.0, 125.6, 112.6, 55.7, 25.4, 23.5, 21.2. HRMS (EI) calcd for C₂₃H₂₃NOS [M]⁺: 361.1506, found: 361.1504.

(4-(4-Methoxyphenyl)-2-(piperidin-1-yl)thiophen-3-yl)(phenyl)methanone (3fa=3ra): Yellow solid; yield: 75% (3fa), 50% (3ra); mp: 68.5–69.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.2 Hz, 2H), 7.52–7.49 (m, 1H), 7.41–7.37 (m, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.68 (s, 1H), 3.75 (s, 3H), 2.92 (t, *J* = 5.0 Hz, 4H), 1.31–1.28 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 162.3, 158.7, 141.7, 138.1, 132.7, 129.9, 129.4, 129.3, 128.1, 125.5, 113.6, 112.2, 55.7, 55.2, 25.4, 23.5. HRMS (EI) calcd for C₂₃H₂₃NO₂S [M]⁺: 377.1451, found: 377.1452.

Phenyl(5'-(piperidin-1-yl)-[2,3'-bithiophen]-4'-yl)methanone (3ga): Yellow oil; yield: 85%. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 7.2 Hz, 2H), 7.53–7.49 (m, 1H), 7.41–7.38 (m, 2H), 7.12–7.10 (m, 1H), 6.92–6.91 (m, 1H), 6.87–6.85 (m, 2H), 2.93 (t, J = 4.8 Hz, 4H), 1.35–1.31 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.4, 161.8, 138.0, 137.9, 133.7, 132.9, 129.8, 128.1, 127.2, 125.7, 125.2, 124.6, 113.4, 55.6, 25.4, 23.5. HRMS (EI) calcd for C₂₀H₁₉NOS₂ [M]⁺: 353.0912, found: 353.0910.

(*E*)-Phenyl(2-(piperidin-1-yl)-4-styrylthiophen-3-yl)methanone (3ha): Yellow oil; yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.52–7.49 (m, 1H), 7.42–7.37 (m, 4H), 7.27–7.23 (m, 2H), 7.18–7.15 (m, 1H), 7.11 (d, *J* = 16.4 Hz, 1H), 6.91 (d, *J* = 16.0 Hz, 1H), 6.90 (s, 1H), 2.85 (t, *J* = 5.2 Hz, 4H), 1.27–1.26 (m, 2H), 1.17–1.12 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 193.8, 163.8, 138.8, 138.2, 137.5, 132.7, 130.0, 129.6, 128.6, 128.1, 127.5, 126.5, 123.6, 122.8, 109.7, 55.7, 25.2, 23.4. HRMS (EI) calcd for C₂₄H₂₃NOS [M]⁺: 373.1500, found: 373.1501.

(4-(4-Chlorophenyl)-2-(dimethylamino)thiophen-3-yl)(phenyl)methanone (3ad=3md): Yellow oil; yield: 86% (3ad), 75% (3md). ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.74 (m, 2H), 7.44–7.40 (m, 1H), 7.31–7.27 (m, 2H), 7.10 (s, 4H), 6.51 (s, 1H), 2.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 162.4, 141.3, 138.6, 135.5, 132.8, 132.7, 129.8, 129.6, 128.2, 120.7, 109.8, 45.6. HRMS (EI) calcd for C₁₉H₁₆ClNOS [M]⁺: 341.0639, found: 341.0641.

(4-([1,1'-Biphenyl]-4-yl)-2-morpholinothiophen-3-yl)(phenyl)methanone (3cc=3oc): Yellow solid; yield: 88% (3cc), 76% (3oc); mp: 134.5–135.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.84–7.82 (m, 2H), 7.52–7.43 (m, 5H), 7.40–7.34 (m, 4H), 7.31–7.29 (m, 3H), 6.87 (s, 1H), 3.46 (t, *J* = 4.8 Hz, 4H), 2.98 (t, *J* = 4.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 160.6, 141.6, 140.6, 139.9, 138.0, 135.2, 133.0, 129.8, 128.7, 128.6, 128.2, 127.3, 127.2, 127.0, 126.9, 114.1, 66.4, 54.4. HRMS (EI) calcd for C₂₇H₂₃NO₂S [M]⁺: 425.1450, found: 425.1452.

(4-([1,1'-Biphenyl]-4-yl)-2-(dimethylamino)thiophen-3-yl)(phenyl)methanone (3cd=3od): Yellow solid; yield: 90% (3cd), 81% (3od); mp: 127.1–128.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.77 (m, 2H), 7.48–7.46 (m, 2H), 7.37–7.34 (m, 5H), 7.28–7.22 (m, 5H), 6.57 (s, 1H), 2.79 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.6, 162.2, 142.1, 140.7, 139.6, 138.8, 136.0, 132.7, 129.9, 128.7, 128.2, 127.2, 127.0, 126.8, 121.4, 109.9, 45.7. HRMS (EI) calcd for C₂₅H₂₁NOS [M]⁺: 383.1344, found: 383.1346.

(4-(4-(Methylthio)phenyl)-2-morpholinothiophen-3-yl)(phenyl)methanone (3ic): Yellow oil; yield: 78%. ¹H NMR (400 MHz, CDCl₃): δ 7.81–7.79 (m, 2H), 7.50–7.48 (m, 1H), 7.39–7.35 (m, 2H), 7.17–7.08 (m, 4H), 6.81 (s, 1H), 3.46 (t, *J* = 4.6 Hz, 4H), 2.96 (t, *J* = 4.6 Hz, 4H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.3, 160.5, 141.4, 137.9, 137.5, 133.3, 129.7, 128.6, 128.2, 127.1, 126.4, 113.8, 66.4, 54.4, 15.7. HRMS (EI) calcd for C₂₂H₂₁NO₂S₂ [M]⁺: 395.1014, found: 395.1015.

(4-(3-Bromophenyl)-2-(pyrrolidin-1-yl)thiophen-3-yl)(phenyl)methanone (3jb): Yellow oil; yield: 86%. ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.63 (m, 2H), 7.30–7.26 (m, 2H), 7.19–7.16 (m, 2H), 7.12–7.09 (m, 1H), 7.01–6.99 (m, 1H), 6.89–6.85 (m, 1H), 6.26 (s, 1H), 3.19 (t, *J* = 6.6 Hz, 4H), 1.98–1.94 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 192.8, 159.7, 141.3, 139.8, 139.6, 132.0, 131.4, 129.7, 129.5, 129.2, 127.8, 127.0, 121.8, 114.8, 106.2, 53.3, 26.1. HRMS (EI) calcd for C₂₁H₁₈BrNOS [M]⁺: 413.0272, found: 413.0279.

Benzo[*d*][1,3]dioxol-5-yl(4-(3-bromophenyl)-2-(piperidin-1-yl)thiophen-3-yl)methanone (3je): Yellow oil; yield: 82%. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.41 (m, 2H), 7.35–7.34 (m, 1H), 7.31–7.29 (m, 1H), 7.11–7.03 (m, 2H), 6.76 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 6.01 (s, 2H), 2.94 (s, 4H), 1.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 161.8, 151.7, 147.9, 140.3, 138.7, 132.7, 131.1, 130.0, 129.6, 126.9, 126.8, 124.9, 122.2, 113.3, 109.2, 107.7, 101.8, 55.5, 25.5, 23.6. HRMS (EI) calcd for C₂₃H₂₀BrNO₃S [M]⁺: 471.0327, found: 471.0332.

(4-(Naphthalen-2-yl)-2-(pyrrolidin-1-yl)thiophen-3-yl)(phenyl)methanone (3kb): Yellow solid; yield: 78%; mp: 109.6–110.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.61 (m, 5H), 7.47 (d, J = 8.4 Hz, 1H), 7.37–7.30 (m, 2H), 7.24–7.21 (m, 1H), 7.11–7.01 (m, 3H), 6.35 (s, 1H), 3.19 (t, J = 6.6 Hz, 4H), 1.95–1.92 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 193.4, 159.4, 143.0, 139.8, 135.2, 133.0, 132.1, 131.9, 129.8, 127.8, 127.7, 127.5, 127.3, 127.0, 126.8, 125.9, 125.5, 115.3, 106.2, 53.3, 26.1. HRMS (EI) calcd for C₂₅H₂₁NOS [M]⁺: 383.1344, found: 383.1346.

(5-Bromo-5'-(dimethylamino)-[2,3'-bithiophen]-4'-yl)(3,4,5-trimethoxyphenyl)methanone (3lf): Yellow oil; yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ 7.08 (s, 2H), 6.75 (d, *J* = 4.0 Hz, 1H), 6.62 (s, 1H), 6.52 (d, *J* = 3.6 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 6H), 2.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 193.1, 161.2, 152.8, 142.6, 139.7, 133.5, 133.4, 130.1, 126.0, 119.9, 110.9, 110.4, 107.3, 60.9, 56.3, 45.5. HRMS (EI) calcd for C₂₀H₂₀BrNO₄S₂ [M]⁺: 482.9997, found: 483.0000.

(5-Bromo-5'-morpholino-[2,3'-bithiophen]-4'-yl)(furan-2-yl)methanone (3lg): Yellow oil; yield: 80%. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 4.0 Hz, 1H), 7.00 (d, J = 3.6 Hz, 1H), 6.86 (s, 1H), 6.83 (d, J = 4.0 Hz, 1H), 6.67 (d, J = 3.6 Hz, 1H), 6.48 (dd, J = 3.2, 1.6 Hz, 1H), 3.65 (t, J = 4.6 Hz, 4H), 3.05–3.03 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 180.9, 160.7, 153.1, 147.2, 139.1, 132.6, 130.3, 125.9, 125.3, 120.2, 114.3, 112.4, 111.3, 66.5, 54.4. HRMS (EI) calcd for C₁₇H₁₄BrNO₃S₂ [M]⁺: 424.9578, found: 424.9577.

4-(4-Benzoyl-5-(dimethylamino)thiophen-3-yl)benzonitrile (3nd): Yellow oil; yield: 88%. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.42–7.40 (m, 3H), 7.31–7.25 (m, 4H), 6.56 (s, 1H), 2.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 193.7, 163.0, 141.7, 140.8, 138.6, 133.0, 131.8, 129.7, 128.9, 128.3, 119.7, 118.9, 110.8, 110.4, 45.5. HRMS (EI) calcd for C₂₀H₁₆N₂OS [M]⁺: 332.0436, found: 332.0431.

5. ¹H, ¹³C NMR and HRMS (EI) spectra of compounds 3

88 122 122 122 122 122 122 122 122 122 1	911 111 112	347 324 224 266 274
NNNNNNNNNNN Ø	222	The second

HRMS (EI) of 3aa (3ma)

¹H NMR spectrum of 3ba

7,864 7,7545 7,7545 7,7546 7,7400 7,7400 7,7400 7,7400 7,740000000000	-2.916 -2.916 -2.904	1279
		\sim

¹³C NMR spectrum of 3ba

33.4 98	33.583	41,415 33,7055 33,055 33,055 33,055 33,055 33,055 28,27 28,234 14,288 12,242 28,240 14,288 14,288 14,288		5.251 3.390
¥	¥		č	202
Ĩ			ĩ	372

HRMS (EI) of 3ba

¹H NMR spectrum of 3ca (3oa)

38888844444468888444	945 945	371 346 346 311
N N N N N N N N N N N N N N N N N N N	200	

S13

HRMS (EI) of 3ca (3oa)

¹H NMR spectrum of 3da (3pa)

885 885 885 885 885 885 885 885 885 885	912 912	335 317 287
	000	1227
	*	- W-

¹³C NMR spectrum of 3da (3pa)

194.194 162.964 162.964 162.964 162.964 		~25.412 ~23.515
---	--	--------------------

HRMS (EI) of 3da (3pa)

¹H NMR spectrum of 3ea (3qa)

715 715 715 715 715 715 715 715 715 715	908 914	289	2813 2813 2813 2813 2813
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ada	2	5555

HRMS (EI) of 3ea (3qa)

¹H NMR spectrum of 3fa (3ra)

878 872 722 736 778 778 778 778 778 778 778 778 778 77	220 200 200 200	313 305 278	
KKKKKKKKKK ØØØ	6 6 6 9	555	

¹³C NMR spectrum of 3fa (3ra)

-194.396 -158.893 -158.893 138.105 138.105 129.897 129.897 129.897 129.807 120.807 129.807 129.807 120.807 100.807 100.807 100.807 100.807 100.807 100.807 100.807 100	55.685 55.184	~25.417 ~23.516
---	------------------	--------------------

HRMS (EI) of 3fa (3ra)

¹H NMR spectrum of 3ga

878 873 872 872 872 872 872 872 872 872 872 872	509 915	346 336 313
KKKKKKKKKKKGGGGGG	100	5555

HRMS (EI) of 3ga

¹H NMR spectrum of 3ha

88 8 2 2 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	882
KKKKKKKKKKKKKKKKC	ada

1.173 1.173 1.1169 1.1169 1.116

¹³C NMR spectrum of 3ha

HRMS (EI) of 3ha

¹H NMR spectrum of 3ad (3md)

7.7.76 7.7.74 7.7.756 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.776 7.7.7776 7.7.776 7.77776 7.77776 7.77776 7.77776 7.77776 7.77776 7.77776 7.77777777		2.802		
	CI CI CI Ph S N			
2.06.± 1.09.± 1.00.± 1.00.±		6.17		
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5	6.0 5.5 5.0 4.5 4.	0 3.5 3.0 2.5	2.0 1.5 1	1.0 0.5
- 194,289 132,882 132,882 132,883 133,883 133,883 133,883 133,883 133,883 134,883 134,883 134,883 135,883 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,893 14,993 14,993 14,935 14,955 14,955 14,955 14,955	-129.561 -128.785 -109.841	- 45,594		
	CI O Ph			
มหารแข่งกลาไทรแบบมหารแหญญาญมามาการแก้งสามหารแหน่งการแหน่งสามสามสามสามสามสามสามสามสามสามสามสามสามส	ขมาใหม่สามารถเหมืองข่างสามารถหมายมารุณการของสามารถ 	กระที่ในและการการการการการการการการการการการการการก	nyvitti ogunarnustinyttikologia (vite avaev	nantadaganan da nanwa ang

HRMS (EI) of 3ad (3md)

¹H NMR spectrum of 3cc (3oc)

¹³C NMR spectrum of 3cc (3oc)

194.304	160.607	141,618 138,043 138,043 138,043 128,741 128,741 126,999 126,999	-66.390	54.427
---------	---------	--	---------	--------

200 190 180

7.778 7.777 7.466 7.467 7.467 7.467 7.373 7.373 7.381 7.381	77 285 77 285 77 285 77 286 77 286 77 286 77 286 77 286 77 286			2.786		
	Ph					
10.0 9.5 9.0 8.5 13C NMD superstrum of 2.0	8.0 7.5 7.0 6.5	6.0 5.5 5.0 4.	5 4.0 3.5 3.0	₹ 2.5 2.0	1.5 1.0	0.5 0.0
¹³ C NMR spectrum of 3c	(142,133 138,004 138,004 138,004 138,001 138,0000 138,0000 138,0000 138,000000000000000000000000000000000000	-127.218 -126.961 -109.523		-46.718		
		Ph				

S25

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

HRMS (EI) of 3cd (3od)

¹³C NMR spectrum of 3ic

2010 000 000 000 000 000 000 000 000 000	201 168 168	977 963 944
	e e e	

¹³C NMR spectrum of 3jb

- 192.72 - 156.71 - 129.23.88 - 129.23.88 - 129.23 - 129.23 - 129.24 - 129.24	63.312	26.109
--	--------	--------

HRMS (EI) of 3jb

¹³C NMR spectrum of 3je

302	841	880	728 333 332 333 332 333 333 333 333 333 3	8	48
8	5	5.4	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8	10 10	0,0
	=	÷ ÷		ΰ	ŇŇ
	1	11	1 56	Ĩ	17

208	941 941 927 918
e e e	

HRMS (EI) of 3kb

¹H NMR spectrum of 3lf

275 079 512 512 512	88.82	ŝ
	r, r	ŝ

484.0022

484.9987

m/z

¹³C NMR spectrum of 3lg

807	88	83	239	289 289 289 289	6	8
8	60	53	4	1 1 1 4 2 2 2 3 3 3 3	6 6	4
5	5	5	5	7777777777	φ	φ.

HRMS (EI) of 3lg

¹H NMR spectrum of 3nd

748	22	22	8	븅	313	ž	275	8	绕	8
r'	2	2	2	5	2	5	5	5	5	φ

¹³C NMR spectrum of 3nd

S36

6. X-ray crystal structure of compound 3ba

Figure S1. X-ray crystal structure of 3ba.

Single crystals of **3ba** (yellowish prisms) suitable for diffraction study were obtained by slow diffusion of hexane into a dichloromethane solution of compound **3ba**. X-ray crystallographic data for compound **3ba** (CCDC 1434924) has been deposited in the Cambridge Crystallographic Data Center. The data can be obtained free of charge via <u>http://www.ccdc.ac.ck./data_request/cif</u>. The X-ray crystallography data of **3ba** are listed below.

Empirical formula	C23 H20 N2 O S			
Formula weight	372.47			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 7.7469(8) Å	a= 90°.		
	b = 17.4348(19) Å	b= 92.609(2)°.		
	c = 14.3624(16) Å	$g = 90^{\circ}$.		
Volume	1937.9(4) Å ³			
Z	4			
Density (calculated)	1.277 Mg/m ³			
Absorption coefficient	0.182 mm ⁻¹			
F(000)	784			
Crystal size	0.220 x 0.170 x 0.130 mm ³			
Theta range for data collection	1.838 to 25.998°.			
Index ranges	-9<=h<=9, -21<=k<=20, -17<=l<=9			
Reflections collected	11485			
Independent reflections	3825 [R(int) = 0.0353]			
Completeness to theta = 25.242°	100.0 %			
Absorption correction	Semi-empirical from equivalents S37			

Max. and min. transmission	0.7457 and 0.6382
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3825 / 0 / 244
Goodness-of-fit on F ²	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.1297
R indices (all data)	R1 = 0.0731, wR2 = 0.1401
Extinction coefficient	n/a
Largest diff. peak and hole	0.246 and -0.191 e.Å ⁻³