Supporting Information

Facile synthesis of 1,4-oxazines by rutheniumcatalyzed tandem N-H insertion/cyclization of αamino ketones and diazo pyruvates

Farrukh Sajjad,^a Yanmei Chen,^a Xue Tian,^b Suzhen Dong,^a Alavala Gopi Krishna Reddy,^b Wenhao Hu,*^{a,b} and Dong Xing*^a

^[a]Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China.

E-mail: dxing@sat.ecnu.edu.cn

^[b]School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China. E-mail: huwh9@mail.sysu.edu.cn

Table of Contents

General Information	
Experimental Procedures and References	
Limitation of the Reaction (Table S1)	
Characterization Data of the Products	
NMR Spectra of the Products	
Cytotoxicity Data	

1. General Information

All the reactions were carried in a flame-dried or oven-dried flask containing a magnetic stir. All ¹H-NMR (400 MHz), and ¹³C-NMR (101 MHz) spectra were recorded on a Bruker spectrometer in DMSO-*d*₆. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for ¹H-NMR, DMSO ($\delta = 39.5$) were used as internal standards for ¹³C-NMR. Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet). HRMS spectra were recorded on IonSpec FT-ICR. α -amino ketones and diazopyruvates were synthesized from reported procedures.¹⁻³

2. Experimental Procedures

2.1. General procedure for the preparation of 1,4-oxazine (GP-1):

An oven-dried 10 mL test tube was charged with RuCl₃.xH₂O (10 mol%), α -amino ketone **1** (0.15 mmol, 24.5–43.6 mg), 4 Å MS (100 mg) and 1,4-dioxane (3 mL). To this well-stirred suspension was added diazo pyruvate **2a** (0.35 mmol) in 1,4-dioxane (1.5 mL) over 5 minutes via syringe at room temperature. Then, the mixture was allowed to stir for 1.2–1.8 hours at 45 °C before the reaction mixture was filtered through Celite and concentrated in vacuo to obtain the crude mixture. The crude mixture was purified by flash column chromatography on silica gel (eluent: petroleum ether / EtOAc= 18:1 to 10:1) to get the pure product **3** (51–88%).

2.2. Procedure for the gram-scale synthesis of 3b:

An oven-dried 100 mL flask was charged with RuCl₃.xH₂O (10 mol%, 85 mg), α -amino ketone **1** (3.8 mmol, 0.8 g), 4 Å MS (500 mg) and 1,4-dioxane (7 mL). To this well-stirred suspension was added diazo pyruvate **2a** (8.7 mmol, 1.4 g) in 1,4-dioxane (15 mL) over 15 minutes via syringe at room temperature. Then, the mixture was allowed to stir for 1.5 hours at 45 °C before the reaction mixture was filtered through celite and concentrated in vacuo to get the crude mixture. The crude mixture was purified by flash column chromatography on silica gel (eluent: petroleum ether / EtOAc= 16:1 to 12:1) to get the pure product **3b** (0.95g, 74%).

2.3. CCK-8 Assay

HCT116 cells (human colon cancer) was purchased from Cell bank of China Science Academy (Shanghai, China), and cultured aseptically in 5% CO₂ at 37°C with the corresponding medium supplemented with 10% (V/V) fetal bovine serum and each of penicillin G and streptomycin (100 units per ML). *In vitro* cytotoxicity of the compounds was evaluated by CCK-8 assay. HCT116 cells were seeded in 96-well plates at a concentration 3000-3500 cells/well and incubated for 24 h before compound administration. Each tested compound was dissolved in DMSO (30 mM) and diluted in media. Then the compound was added to the cells at 20 μ M. The control cells were treated with the vehicle DMSO. After 72 h incubation, the old medium was removed and 100 μ L new medium containing 10 μ L CCK-8 solution (5 gL-1) was added to each well, incubated for additional 4 h. Finally, the optical density (OD) was measured at 450 nm and 620 nm (reference wavelength) using a microplate reader (spectraMax M5/M5e, Sunnyvale, CA, USA). IC₅₀ value was determined by testing the inhibitory effects of the compound with 10 gradient-dilution concentrations with at least three replicates per concentration.

3. References

- G. E. B.-Medina, S. O.-Soto, A. Cabrera and M. A.-Valencia, *Eur. J. Org. Chem.* 2019, 23, 3763–3770.
- V. L. Pietra, L. Marinelli, S. Cosconati, F. S. D. Leva, E. Nuti, S. Santamaria, I. Pugliesi, M. Morelli, F. Casalini, A. Rossello, C. L. Motta, S. Taliani, R. Visse, H. Nagase, F. D. Settimo and E. Novellino, *Eur. J. Med. Chem.* 2012, 47, 1433–152.
- 3) P.Muller and S. Chappellet, Helv. Chim. Acta, 2005, 88, 1010.
- 4) V. Ručilova, M. Malo, and M. Soural, Eur. J. Org. Chem. 2018, 564-570.

4. Table S1: Limitation of the Reaction:

entry	X	Y	3
1	-NH ₂	Ph	N.D
2	-NHCH ₂ CH ₃	Ph	N.D
3	-SH	Ph	N.D
4	-OH	Ph	N.D
5	-CH ₂ -NH-Ph	Ph	N.D
6	-NH-Ph	2-thiophene	<10% (NMR is not clean, unstable)

5. Characterization Data of the Products:

Ethyl 2-hydroxy-2,4-diphenyl-3,4-dihydro-2H-1,4-oxazine-6-carboxylate (3a):

Synthesized from α -amino ketone **1a** (31 mg) and ethyl diazopyruvate **2a** (49.1 mg) by following **GP-1** on a 0.15 mmol scale of **1a**. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to 12:1) to afford 1,4-oxazine **3a** (33.1 mg, 69%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 7.56 (m, 2H), 7.48 (s, 1H), 7.45 – 7.27 (m, 5H), 7.23 (s, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.01 (t, *J* = 6.8 Hz, 1H), 4.18 (q, *J* = 7.1, 2H), 3.75 (d, *J* = 12.1 Hz, 1H), 3.46 (d, *J* = 12.1 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.99, 144.04, 141.43, 129.37, 128.48, 128.08, 126.12, 124.16, 121.75, 119.92, 115.97, 93.39, 59.49, 53.37, 14.41.

HRMS (ESI): calcd. for $C_{19}H_{19}NO_4Na [M+Na]^+ = 348.1212$ found 348.1227.

Isopropyl 2-hydroxy-2,4-diphenyl-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (3b):

Synthesized from α -amino ketone **1a** (31.2 mg) and isopropyl diazopyruvate **2b** (50 mg) by following **GP-1** on a 0.15 mmol scale of **1a**. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to 12:1) to afford 1,4-oxazine **3b** (43.4 mg, 86%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.56 (d, *J* = 7.2 Hz, 2H), 7.46 – 7.37 (m, 4H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.23 (br s, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.00 (t, *J* = 7.2 Hz, 1H), 5.02 (hept, *J* = 6.2 Hz, 1H), 3.74 (d, *J* = 12.1 Hz, 1H), 3.46 (d, *J* = 12.1 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.52, 144.07, 141.45, 129.37, 128.47, 128.08, 126.12, 124.43, 121.71, 119.75, 115.95, 93.42, 66.74, 53.35, 21.84, 21.81. HRMS (ESI): calcd. for C₂₀H₂₂NO₄ [M+H]⁺ = 340.1549 found 340.1572.

Tert-butyl 2-hydroxy-2,4-diphenyl-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (3c):

Synthesized from α -amino ketone **1a** (41.9 mg) and *tert*-butyl diazopyruvate **2c** (66 mg) by following **GP-1** on a 0.2 mmol scale of

1a. Isolated by flash chromatography on silica gel (PE/EtOAc = 18:1 to 14:1) to afford 1,4-oxazine **3c** (54.2 mg, 77%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.56 (d, *J* = 6.7 Hz, 2H), 7.47 – 7.26 (m, 6H), 7.18 (d, *J* = 1.5 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 2H), 7.01 (t, *J* = 7.2 Hz, 1H), 3.73 (d, *J* = 12.1 Hz, 1H), 3.41 (d, *J* = 12.1 Hz, 1H), 1.49 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.27, 144.16, 141.53, 129.37, 128.43, 128.05, 126.10, 125.06, 121.54, 119.29, 115.84, 93.42, 79.43, 53.25, 28.03.

HRMS (ESI): calcd. for $C_{21}H_{23}NO_4Na [M+Na]^+ = 376.1525$ found 376.1512.

Methyl 2-hydroxy-2,4-diphenyl-3,4-dihydro-2H-1,4-oxazine-6-carboxylate (3d):

Synthesized from α -amino ketone **1a** (31.6 mg) and methyl diazopyruvate **2d** (44.2 mg) by following **GP-1** on a 0.15 mmol scale of **1a**. Isolated by flash chromatography on silica gel (PE/EtOAc = 15:1 to 10:1) to afford 1,4-oxazine **3d** (33.6 mg, 72%) as white solid.

¹H NMR (400 MHz, DMSO- d_6) δ 7.56 (d, J = 6.0 Hz, 2H), 7.50 (s, 1H), 7.47 – 7.27 (m, 5H), 7.23 (s, 1H), 7.12 (d, J = 7.2 Hz, 2H), 7.00 (t, J = 6.1 Hz, 1H), 3.75 (d, J = 12.1 Hz, 1H), 3.70 (s, 3H), 3.46 (d, J = 12.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.44, 144.01, 141.41, 129.36, 128.49, 128.08, 126.11, 123.93, 121.79, 120.08, 115.99, 93.33, 53.38, 50.99.

HRMS (ESI): calcd. for $C_{18}H_{17}NO_4Na [M+Na]^+ = 334.1055$ found 334.1053.

Allyl 2-hydroxy-2,4-diphenyl-3,4-dihydro-2H-1,4-oxazine-6-carboxylate (3e):

Synthesized from α -amino ketone **1a** (31.2 mg) and allyl diazopyruvate **2e** (51 mg) by following **GP-1** on a 0.15 mmol scale of **1a**. Isolated by flash chromatography on silica gel (PE/EtOAc = 18:1 to 14:1) to afford 1,4-oxazine **3e** (36 mg, 72%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.60 – 7.49 (m, 3H), 7.46 – 7.28 (m, 5H), 7.25 (s, 1H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.01 (t, *J* = 7.0 Hz, 1H), 6.10-5.94 (m, 1H), 5.36 (d, *J* = 17.2 Hz, 1H), 5.23 (d, *J* = 10.1 Hz, 1H), 4.67 (s, 2H), 3.76 (d, *J* = 12.1 Hz, 1H), 3.47 (d, *J* = 12.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.62, 144.01, 141.41, 133.16, 129.38, 128.50, 128.09, 126.11, 123.83, 121.87, 120.32, 117.60, 116.06, 93.37, 63.98, 53.44. HRMS (ESI): calcd. for C₂₀H₂₀NO₄ [M+H]⁺ = 338.1392 found 338.1369.

Isopropyl 2-(3-chlorophenyl)-2-hydroxy-4-phenyl-3,4-dihydro-2*H*-1,4-oxazine-6-carboxylate (3f):

Ph Λr Synthesized from α -amino ketone **1b** (36.7 mg) and isopropyl diazopyruvate **2b** (54.1 mg) by following **GP-1** on a 0.15 mmol scale of **1b**. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 **3f** to 12:1) to afford 1,4-oxazine **3f** (34 mg, 61%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.59 – 7.56 (m, 1H), 7.54 – 7.43 (m, 4H), 7.37 (d, J = 1.5 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.12 (d, J = 7.9 Hz, 2H), 7.01 (t, J = 7.3 Hz, 1H), 5.02 (hept, J = 6.2 Hz, 1H), 3.79 (d, J = 12.1 Hz, 1H), 3.50 (d, J = 12.1 Hz, 1H), 1.27 (d, J = 6.2, 3H), 1.25 (d, J = 6.3, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.40, 143.97, 143.80, 132.86, 130.14, 129.37, 128.47, 126.18, 124.94, 124.19, 121.83, 119.94, 116.05, 93.02, 66.82, 52.92, 21.83, 21.79.

HRMS (ESI): calcd. for $C_{20}H_{21}NO_4Cl [M+H]^+ = 374.1159$ found 374.1141.

Isopropyl 2-hydroxy-4-phenyl-2-(*p*-tolyl)-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (3g):

Synthesized from α -amino ketone 1c (33.6 mg) and isopropyl diazopyruvate 2b (54 mg) by following GP-1 on a 0.15 mmol scale of 1c. Isolated by flash chromatography on silica gel (PE/EtOAc = 18:1 to 14:1) to afford 1,4-oxazine 3g (34.7 mg, 66%) as white solid.

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.45 – 7.40 (m, 3H), 7.36 – 7.29 (t, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 1.5 Hz, 1H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.99 (t, *J* = 7.3 Hz, 1H), 5.01 (hept, *J* = 6.2 Hz, 1H), 3.70 (d, *J* = 12.1 Hz, 1H), 3.44 (d, *J* = 12.1 Hz, 1H), 2.32 (s, 3H), 1.26 (d, *J* = 6.2, 3H), 1.24 (d, *J* = 6.2, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.53, 144.05, 138.59, 137.71, 129.38, 128.60, 126.02, 124.44, 121.67, 119.68, 115.89, 93.47, 66.71, 53.33, 21.84, 21.80, 20.69. HRMS (ESI): calcd. for C₂₁H₂₃NO₄Na [M+Na]⁺ = 376.1525 found 376.1512.

Isopropyl 2-(4-bromophenyl)-2-hydroxy-4-phenyl-3,4-dihydro-2*H*-1,4-oxazine-6carboxylate carboxylate (3h):

Ph
$$\Lambda$$
 Ar
 CO_2i -pr
 $3h$
 $(Ar=4-Br-C_6H_4)$
Synthesized from α -amino ketone 1d (43.2 mg) and isopropyl
diazopyruvate 2b (54.9 mg) by following GP-1 on a 0.15 mmol scale
S7

of 1d. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to 12:1) to afford 1,4-oxazine **3h** (39.2 mg, 63%) as white solid.

¹H NMR (400 MHz, DMSO- d_6) δ 7.63 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.44 (s, 1H), 7.33 (t, J = 8.0 Hz, 3H), 7.10 (d, J = 7.9 Hz, 2H), 7.00 (t, J = 7.3 Hz, 1H), 5.02 (hept, J = 6.2 Hz, 1H), 3.75 (d, J = 12.1 Hz, 1H), 3.46 (d, J = 12.1 Hz, 1H), 1.26 (d, J = 6.2, 3H), 1.24 (d, J = 6.2, 3H).

¹³C NMR (101 MHz, DMSO-d₆) δ 162.41, 143.98, 140.83, 131.06, 129.38, 128.47, 124.27, 121.90, 121.81, 119.86, 116.00, 93.22, 66.80, 53.00, 21.83, 21.79.

HRMS (ESI): calcd. for $C_{20}H_{21}NO_4Br [M+H]^+ = 418.0654$ found 418.0676.

Isopropyl 4-(3-bromophenyl)-2-hydroxy-2-phenyl-3,4-dihydro-2H-1,4-oxazine-6carboxylate (3i):

Synthesized from α -amino ketone 1e (43.6 mg) and isopropyl diazopyruvate 2b (55.6 mg) by following GP-1 on a 0.15 mmol scale of 1e. Isolated by flash chromatography on silica gel (PE/EtOAc = 18:1to 14:1) to afford 1,4-oxazine 3i (41.5 mg, 67%) as white solid.

(Ar=3-Br-C₆H₄) ¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.58 – 7.51 (m, 2H), 7.46–7.36 (m, 4H), 7.30 - 7.23 (m, 3H), 7.18 - 7.09 (m, 2H), 5.02 (hept, J = 6.2 Hz, 1H), 3.78 (d, J =12.1 Hz, 1H), 3.42 (d, J = 12.1 Hz, 1H), 1.27 (d, J = 6.2, 3H), 1.25 (d, J = 6.2, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.42, 145.50, 141.22, 131.12, 128.52, 128.07, 126.15, 125.36, 124.09, 122.51, 118.79, 118.41, 114.85, 93.61, 67.00, 53.21, 21.80, 21.77.

HRMS (ESI): calcd. for $C_{20}H_{21}NO_4Br [M+H]^+ = 418.0654$ found 418.0625.

Isopropyl 4-(3-bromophenyl)-2-hydroxy-2-phenyl-3,4-dihydro-2H-1,4-oxazine-6carboxylate (3j):

(hept, J = 6.2 Hz, 1H), 3.76 (d, J = 12.1 Hz, 1H), 3.45 (d, J = 12.1 Hz, 1H), 2.48 (s,

Synthesized from α -amino ketone **1f** (39.1 mg) and isopropyl diazopyruvate 2b (57.6 mg) by following GP-1 on a 0.15 mmol scale of 1f. Isolated by flash chromatography on silica gel (PE/EtOAc =16:1 to 12:1) to afford 1,4-oxazine 3j (29.9 mg, 51%) as Semi-solid.

 $(Ar=3-SCH_3-C_6H_4)$

3H), 1.27 (d, J = 6.2, 3H), 1.25 (d, J = 6.2, 3H).

¹H NMR (400 MHz, DMSO- d_6) δ 7.56 (d, J = 7.2 Hz, 2H), 7.41 – 7.38 (m, 4H), 7.26 (t, J = 8.1 Hz, 1H), 7.22 (s, 1H), 6.89 (s, 2H), 6.88 (s, 1H), 5.02 ¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.50, 144.62, 141.38, 139.62, 129.75, 128.48, 128.07, 126.16, 124.75, 119.50, 119.09, 113.16, 112.71, 93.50, 66.84, 53.34, 21.83, 21.80, 14.51.

HRMS (ESI): calcd. for $C_{21}H_{23}NO_4NaS [M+Na]^+ = 408.1245$ found 408.1271.

Isopropyl 4-(4-chlorophenyl)-2-hydroxy-2-phenyl-3,4-dihydro-*2H*-1,4-oxazine-6carboxylate (3k):

Synthesized from α -amino ketone **1g** (36 mg) and isopropyl diazopyruvate **2b** (56.1 mg) by following **GP-1** on a 0.15 mmol scale of **1g**. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 **3k** to 12:1) to afford 1,4-oxazine **3k** (42.3 mg, 77%) as white solid.

^(Ar=4-Cl-C₆H₄) ¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.55 (d, *J* = 6.7 Hz, 2H), 7.46 – 7.31 (m, 6H), 7.26 (d, *J* = 1.2 Hz, 1H), 7.14 (d, *J* = 9.0 Hz, 2H), 5.02 (hept, *J* = 6.2 Hz, 1H), 3.73 (d, *J* = 12.1 Hz, 1H), 3.44 (d, *J* = 12.1 Hz, 1H), 1.26 (d, *J* = 6.2, 3H), 1.24 (d, *J* = 6.2, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.44, 142.93, 141.26, 129.07, 128.52, 128.09, 126.12, 125.37, 124.95, 119.14, 117.52, 93.51, 66.90, 53.29, 21.81, 21.78.

HRMS (ESI): calcd. for $C_{20}H_{21}NO_4Cl [M+H]^+ = 374.1159$ found 374.1141.

Ethyl 2-hydroxy-4-(4-methoxyphenyl)-2-phenyl-3,4-dihydro-2H-1,4-oxazine-6carboxylate (3l):

 $\begin{array}{ll} \text{Ar}_{N} & \text{Ph} \\ & \text{OH} \\ & \text{CO}_{2}Et \end{array} \end{array} \begin{array}{ll} \text{Synthesized from α-amino ketone 1h (35.9 mg) and ethyl} \\ & \text{diazopyruvate 2a (50.4 mg) by following GP-1 on a 0.15 mmol scale} \\ & \text{of 1h. Isolated by flash chromatography on silica gel (PE/EtOAc = 3I \\ & \text{Ar}_{-} \text{OMe-C}_{6}H_{4}) \end{array}$

¹H NMR (400 MHz, DMSO- d_6) δ 7.53 (s, 2H), 7.45 – 7.32 (m, 4H), 7.16 (s, 1H), 7.06 (d, J = 7.6 Hz, 2H), 6.90 (d, J = 7.5 Hz, 2H), 4.15 (br, 2H), 3.72 (s, 3H), 3.66 (d, J = 12.1 Hz, 1H), 3.46 (d, J = 12.1 Hz, 1H), 1.24 (br, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.02, 154.75, 141.54, 138.20, 128.41, 128.05, 126.10, 123.26, 121.17, 117.92, 114.58, 93.08, 59.30, 55.29, 54.17, 14.43.

HRMS (ESI): calcd. for $C_{20}H_{22}NO_5 [M+H]^+ = 356.1498$ found 356.1480.

Isopropyl 2-hydroxy-4-(naphthalen-2-yl)-2-phenyl-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (3m): Ar N Ph OH CO_2i -pr $Synthesized from <math>\alpha$ -amino ketone **1i** (42.8 mg) and isopropyl diazopyruvate **2b** (57 mg) by following **GP-1** on a 0.15 mmol scale of **1i** Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to **3m** (Ar=4-Ph-C₆H₄) 10:1) to afford 1,4-oxazine **3m** (37.1 mg, 60%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.66 – 7.61 (m, 4H), 7.58 (d, *J* = 6.8 Hz, 2H), 7.50 (s, 1H), 7.46 – 7.38 (m, 5H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.26 (m, 1H), 7.20 (d, *J* = 8.8 Hz, 2H), 5.03 (hept, *J* = 6.2 Hz, 1H), 3.80 (d, *J* = 12.1, 1H), 3.50 (d, *J* = 12.1, 1H), 1.28 (d, *J* = 6.2 Hz, 1H), 1.26 (d, *J* = 6.2 Hz, 1H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.50, 143.39, 141.40, 139.47, 133.32, 128.89, 128.50, 128.10, 127.52, 126.86, 126.13, 126.07, 124.73, 119.38, 116.28, 93.53, 66.83, 53.31, 21.81, 21.85.

HRMS (ESI): calcd. for $C_{26}H_{26}NO_4$ [M+H]⁺ = 416.1862 found 416.1838.

Isopropyl 4-(3,5-dimethylphenyl)-2-hydroxy-2-phenyl-3,4-dihydro-*2H*-1,4oxazine-6-carboxylate (3n):

Synthesized from α -amino ketone **1j** (35.9 mg) and isopropyl diazopyruvate **2b** (54.1 mg) by following **GP-1** on a 0.15 mmol scale of **1j**. Isolated by flash chromatography on silica gel (PE/EtOAc = 18:1 to 14:1) to afford 1,4-oxazine **3n** (42.1 mg, 76%) as white solid.

(Ar=3,5-Me₂-C₆H₃) ¹H NMR (400 MHz, DMSO- d_6) δ 7.54 (d, J = 6.7 Hz, 2H), 7.48 – 7.33 (m, 4H), 7.18 (d, J = 1.5 Hz, 1H), 6.72 (s, 2H), 6.64 (s, 1H), 5.01 (hept, J = 6.2 Hz, 1H), 3.71 (d, J = 12.1 Hz, 1H), 3.42 (m, 1H), 2.25 (s, 6H), 1.26 (d, J = 6.2, 3H), 1.24 (d, J = 6.2, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.62, 144.07, 141.49, 138.56, 128.44, 128.07, 126.11, 124.15, 123.45, 119.91, 113.74, 93.35, 66.72, 53.48, 21.86, 21.82, 21.01. HRMS (ESI): calcd. for C₂₂H₂₅NO₄Na [M+Na]⁺ = 390.1681 found 390.1654.

Isopropyl 2-hydroxy-4-(naphthalen-2-yl)-2-phenyl-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (30):

Synthesized from α -amino ketone **1k** (39 mg) and isopropyl diazopyruvate **2b** (55.7 mg) by following **GP-1** on a 0.15 mmol scale of **1k**. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to 12:1) to afford 1,4-oxazine **3o** (44.5 mg, 76%) as brown solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.89 (d, *J* = 8.8 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.67 – 7.56 (m, 3H), 7.51 – 7.32 (m, 7H), 7.29 (d, *J* = 1.5 Hz, 1H), 5.04 (hept, *J* = 6.2 Hz, 1H), 3.90 (d, *J* = 12.1 Hz, 1H), 3.57 (d, *J* = 12.1 Hz, 1H), 1.29 (d, *J* = 6.2, 3H), 1.27 (d, *J* = 6.2, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.57, 141.60, 141.42, 133.84, 129.20, 128.81, 128.51, 128.11, 127.41, 126.95, 126.63, 126.17, 124.80, 124.04, 119.63, 117.06, 111.25, 93.59, 66.87, 53.48, 21.87, 21.83.

HRMS (ESI): calcd. for $C_{24}H_{24}NO_4$ [M+H]⁺ = 390.1705 found 390.1675.

Ph.

Ethyl 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (3p):

Synthesized from α -amino ketone 11 (24.5 mg) and ethyl diazopyruvate 2a (49.9 mg) by following GP-1 on a 0.15 mmol scale of 11. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to 10:1) to afford 1,4-oxazine 3p (31.2 mg, 73%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.45 – 7.25 (m, 3H), 7.09 (d, *J* = 7.2 Hz, 2H), 6.99 (br, 1H), 6.72 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.60 (d, *J* = 12.1 Hz, 1H), 3.34 – 3.37 (m, 1H), 1.46 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.98, 144.07, 129.38, 123.53, 121.50, 119.28, 115.59, 92.71, 59.38, 52.09, 24.87, 14.38.

HRMS (ESI): calcd. for $C_{14}H_{17}NO_4Na [M+Na]^+ = 286.1055$ found 286.1045.

Isopropyl 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-*2H*-1,4-oxazine-6carboxylate (3q):

Ph Me Synthesized from α -amino ketone 11 (29.8 mg) and isopropyl diazopyruvate 2b (72 mg) by following GP-1 on a 0.2 mmol scale of 11. Isolated by flash chromatography on silica gel (PE/EtOAc = 18:1 to 12:1) to afford 1,4-oxazine 3q (48.5 mg, 88%) as white solid.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 7.34 (t, *J* = 7.3 Hz, 3H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.99 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 1.0 Hz, 1H), 4.98 (hept, *J* = 6.2 Hz, 1H), 3.58 (d, *J* = 12.1 Hz, 1H), 3.35 (m, 1H), 1.46 (s, 3H), 1.23 (d, *J* = 6.2, 3H), 1.22 (d, *J* = 6.2, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.54, 144.11, 129.39, 123.83, 121.46, 119.11, 115.57, 92.76, 66.63, 52.06, 24.88, 21.80, 21.78.

HRMS (ESI): calcd. for $C_{15}H_{20}NO_4 [M+H]^+ = 278.1392$ found 278.1369.

Ethyl 2-hydroxy-2-(2-oxo-2H-chromen-3-yl)-4-phenyl-3,4-dihydro-*2H*-1,4-oxazine-6-carboxylate (3r):

4b

Synthesized from α -amino ketone **1m** (41.9 mg) and ethyl diazopyruvate **2a** (49 mg) by following **GP-1** on a 0.15 mmol scale of **1m**. Isolated by flash chromatography on silica gel (PE/EtOAc = 16:1 to 12:1) to afford 1,4-oxazine **3r** (41.8 mg, 71%) as semi-solid.

¹**H NMR (400 MHz, DMSO-***d*₆**)** δ 8.19 (s, 1H), 7.85 (dd, J = 7.8, 1.4 Hz, 1H), 7.67 (m, 1H), 7.53 (s, 1H), 7.44 (t, J = 4.1 Hz, 2H), 7.42 – 7.31 (m, 3H), 7.09 (d, J = 7.9 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 4.10 (d, J = 12.0 Hz, 1H), 3.92 (d, J = 12.0 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 162.64, 158.19, 153.28, 143.97, 141.18, 132.65, 129.45, 129.26, 125.76, 124.81, 123.28, 121.98, 120.24, 118.11, 116.05, 115.87, 92.04, 59.65, 49.88, 14.39.

HRMS (ESI): calcd. for $C_{22}H_{19}NO_6Na [M+Na]^+ = 416.1110$ found 416.1075.

Isopropyl -4,6-diphenylmorpholine-2-carboxylate (4b):

Ph The desired product 4b (61%) was synthesized by using reported method.⁴ ¹H NMR (400 MHz, DMSO-d₆) δ 7.49 (d, J = 7.1 Hz, 2H), 7.40 (t, J = 7.3 Hz, 2H), 7.32 (m, 1H), 7.25 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 6.85 (t, J = 7.3 Hz, 1H), 5.02 (hept, J = 6.2 Hz, 1H), 4.77 (dd, J =

10.6, 2.4 Hz, 1H), 4.48 (dd, J = 10.9, 2.8 Hz, 1H), 3.85 (d, J = 11.7 Hz, 1H), 3.75 (d, J = 11.9 Hz, 1H), 2.77 (t, J = 11.5 Hz, 1H), 2.63 (dd, J = 12.2, 10.6 Hz, 1H), 1.26 (d, J = 6.2 Hz, 3H), 1.25 (d, J = 6.2 Hz, 3H).

¹³C NMR (126 MHz, DMSO) δ 168.72, 150.66, 139.73, 129.56, 128.71, 128.41, 126.90, 120.29, 116.41, 77.24, 74.76, 68.89, 54.63, 50.04, 21.96.

HRMS (ESI): calcd. for $C_{20}H_{24}NO_3$ [M+H]+ = 326.1756 found 326.1741.

6. NMR Spectra of the Products

¹³C NMR (101 MHz) spectrum of compound **3a** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3b** in DMSO- d_6

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹³C NMR (101 MHz) spectrum of compound 3c in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3d** in DMSO- d_6

¹H NMR (400 MHz) spectrum of compound 3e in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3e** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3f** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3g** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3h** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3i** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3j** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound $3\mathbf{k}$ in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3l** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3m** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3n** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **30** in DMSO-*d*₆

¹³C NMR (101 MHz) spectrum of compound **3p** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound **3q** in DMSO- d_6

¹³C NMR (101 MHz) spectrum of compound 3r in DMSO- d_6

¹³C NMR (126 MHz) spectrum of compound **4b** in DMSO- d_6

Cytotoxicity Data

Log[concentration(uM)]