Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Conversion of aryl carboxylic acids into aryl nitriles through multi-versions of Cu-mediated decarboxylative cyanation under aerobic conditions

Zhengjiang Fu,*^{a,b} Xihan Cao,^a Shuiliang Wang,^a Shengmei Guo,^a and Hu Cai*^a

^aCollege of Chemistry, Nanchang University, Nanchang 330031, China ^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China

E-mail: fuzhengjiang@ncu.edu.cn; caihu@ncu.edu.cn

TABLE OF CONTENTS

Contents	Page Number
1) General considerations	S2
2) Experimental procedures	S2 - S7
3) Diversification of 7p	S8 - S9
4) References	S10
5) ¹ H, ¹³ C and ¹⁹ F NMR spectra	S11 - S29

General considerations. The reagents used for experiments were commercially available and used as received unless otherwise noted. DMSO and DMF were distilled from CaH₂ under reduced pressure and stored under nitrogen. All reactions were performed under dioxygen with the strict exclusion of moisture using Schlenk techniques. Column chromatography was performed on silica gel 300-400 mesh. The yields reported are the isolated yields and the average of two runs. ¹H, ¹³C and ¹⁹F NMR spectra of all compounds were recorded at 400 and 100 MHz with CDCl₃ as solvent respectively, except for ¹H and ¹³C NMR spectra of compounds **6p**, **16p**, **17p** and **18p** with d₆-DMSO as solvent. All coupling constants (*J* values) were reported in Hertz (Hz).

General procedure for Cu-catalyzed decarboxylative cyanation of aryl carboxylic acids using malononitrileor AMBN as cyanide source

Procedure A: An oven-dried Schlenk tube equipped with a stir bar was charged with aryl carboxylic acid (0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv) and K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times. Under dioxygen, solvent (2 mL) was added via syringe. The rubber septum was replaced with a Teflon screwcap under dioxygen flow. With stirring, the reaction mixtures were heated at indicated temperature for 20 h, then cooled down to room temperature. The reaction mixtures were diluted with EtOAc and filtered through a short plug of silica gel that was then washed with EtOAc. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel to provide corresponding product.

Procedure B: An oven-dried Schlenk tube equipped with a stir bar was charged with aryl carboxylic acid (0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuX (0.24 mmol, 1.2 equiv) and potassium salt (0.2 mmol, 1.0 equiv). The tube was fitted with a rubber septum, and then it was evacuated and refilled with dioxygen three times. Under dioxygen, solvent (2 mL) was added via syringe. The rubber septum was replaced with a Teflon screwcap under dioxygen flow. With stirring, the reaction mixtures were heated at 160 °C for 20 h, then cooled down to room temperature. The reaction mixtures were diluted with EtOAc and filtered through a short plug of silica gel that was then washed with EtOAc. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel to provide corresponding product.

4,5-Dimethoxy-2-nitrobenzonitrile (1p)

Procedure A was followed using 4,5-dimethoxy-2-nitrobenzoic acid (45.4 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (25% ether in hexane) to afford 17.5 mg (42%) of the product as a yellow solid.

Procedure B was followed using 4,5-dimethoxy-2-nitrobenzoic acid (45.4 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv) and DMSO (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (25% ether in hexane) to afford 7.9 mg (19%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.^{1,2} ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1 H), 7.22 (s, 1 H), 4.02 (s, 3 H), 4.01 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 153.44, 152.23, 142.78, 115.49, 115.44, 107.95, 100.80, 56.99, 56.84.

5-Methoxy-2-nitrobenzonitrile (2p).

Procedure A was followed using 5-methoxy-2-nitrobenzoic acid (39.4 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (15% ether in hexane) to afford 18.9 mg (53%) of the product as a yellow solid.

Procedure B was followed using 5-methoxy-2-nitrobenzoic acid (39.4 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (15% ether in hexane) to afford 17.1 mg (48%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 9.3 Hz, 1 H), 7.32 (d, J = 2.7 Hz, 1 H), 7.21 (dd, J = 9.3, 2.8 Hz, 1 H), 3.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.70, 141.43, 127.94, 120.62, 118.23, 115.10, 109.97, 56.68.

4-Methoxy-2-nitrobenzonitrile (3p)

Procedure A was followed using 4-methoxy-2-nitrobenzoic acid (39.4 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL). The reaction mixtures were heated at 170 °C for 20 h and purified by flash column chromatography on silica gel (20% ether in hexane) to afford 21.7 mg (61%) of the product as a yellow solid.

Procedure B was followed using 4-methoxy-2-nitrobenzoic acid (39.4 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv) and DMSO (2 mL). The reaction mixtures were heated at 160 °C for 20 h and purified by flash column chromatography on silica gel (20% ether in hexane) to afford 16.0 mg (45%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 7.81 - 7.78 (m, 2 H), 7.27 (dd, J = 8.8, 2.6 Hz, 1 H), 3.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.21, 150.14, 136.66, 120.02, 115.34, 111.12, 99.39, 56.59.

4-Methyl-2-nitrobenzonitrile (4p).

Procedure A was followed using 4-methyl-2-nitrobenzoic acid (36.2 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were heated at 170 °C for 20 h and purified by flash column chromatography on silica gel (10% ether in hexane) to afford 23.0 mg (71%) of the product as a yellow solid.

Procedure B was followed using 4-methyl-2-nitrobenzoic acid (36.2 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 13.0 mg (40%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1 H), 7.79 (d, J = 7.9 Hz, 1 H), 7.61 (d, J = 7.8 Hz, 1 H), 2.56 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 148.49, 145.65, 135.31, 134.91, 126.06, 115.21, 105.10, 21.80.

2-Methyl-6-nitrobenzonitrile (5p).

Procedure A was followed using 2-methyl-6-nitrobenzoic acid (36.2 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were heated at 170 °C for 20 h and purified by flash column chromatography on silica gel (10% ether in hexane) to afford 22.7 mg (70%) of the product as a white solid.

Procedure B was followed using 2-methyl-6-nitrobenzoic acid (36.2 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 17.2 mg (53%) of the product as a white solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.12 (dd, J = 6.8, 2.6 Hz, 1 H), 7.72 - 7.67 (m, 2 H), 2.70 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 149.29, 145.79, 135.65, 132.77, 122.92, 113.81, 107.84, 21.09.

5-Amino-2-nitrobenzonitrile (6p).

Procedure A was followed using 5-amino-2-nitrobenzoic acid (36.4 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (20% ether in hexane) to afford 7.2 mg (22%) of the product as a yellow liquid.

Exhibited spectral data in accordance with previous report.^{1,3} ¹H NMR (400 MHz, d₆-DMSO): δ 8.09 (d, J = 9.3 Hz, 1 H), 7.15 (s, 2 H), 7.01 (d, J = 2.5 Hz, 1 H), 6.83 (dd, J = 9.3, 2.6 Hz, 1 H). ¹³C NMR (100 MHz, d₆-DMSO): δ 155.22, 135.13, 128.99, 119.17, 116.79, 116.01, 109.66.

2-Nitrobenzonitrile (7p).

Procedure A was followed using 2-nitrobenzoic acid (33.4 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 23.7 mg (80%) of the product as a yellow solid.

Procedure B was followed using 2-nitrobenzoic acid (33.4 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 15.4 mg (52%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.^{1,2} ¹H NMR (400 MHz, CDCl₃): δ 8.34 (dd, J = 6.3, 3.3 Hz, 1 H), 7.94 (dd, J = 7.6, 3.8 Hz, 1 H), 7.87 (dt, J = 6.1, 3.4, 2.7 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 148.48, 135.61, 134.44, 133.83, 125.57, 114.99, 107.93.

4-Chloro-2-nitrobenzonitrile (8p).

Procedure A was followed using 4-chloro-2-nitrobenzoic acid (40.3 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 15.7 mg (43%) of the product as a yellow solid.

Procedure B was followed using 4-chloro-2-nitrobenzoic acid (40.3 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 7.7 mg (21%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J = 2.0 Hz, 1 H), 7.87 (d, J = 8.2 Hz, 1 H), 7.81 (dd, J = 8.2, 2.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 149.11, 140.45, 136.18, 134.42, 126.04, 114.06, 106.39.

5-Chloro-2-nitrobenzonitrile (9p).

Procedure A was followed using 5-chloro-2-nitrobenzoic acid (40.3 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 15.4 mg (42%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.9 Hz, 1 H), 7.89 (d, J = 2.2 Hz, 1 H), 7.80 (dt, J = 8.9, 2.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 146.78, 141.35, 135.23, 133.87, 126.90, 113.79, 109.64.

4-Fluoro-2-nitrobenzonitrile (10p)

Procedure A was followed using 4-fluoro-2-nitrobenzoic acid (37.0 mg, 0.2 mmol),

malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMSO (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 9.3 mg (28%) of the product as a yellow solid.

Procedure B was followed using 4-fluoro-2-nitrobenzoic acid (37.0 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv) and DMSO (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 8.3 mg (25%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, J = 7.9, 2.6 Hz, 1 H), 7.97 (dd, J = 8.6, 5.1 Hz, 1 H), 7.59 - 7.54 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 165.63, 163.02, 137.51 (d, J = 9.1 Hz), 121.99 (d, J = 22.2 Hz), 114.04 (d, J = 27.3 Hz), 114.11, 104.27 (d, J = 4.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃): δ - 97.79 - 97.84 (m, 1 F)

2-Nitro-4-(trifluoromethyl)benzonitrile (11p).

Procedure A was followed using 2-nitro-4-(trifluoromethyl)benzoic acid (47.0 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (10% ether in hexane) to afford 16.8 mg (39%) of the product as a yellow liquid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.60 (s, 1 H), 8.11 (d, J = 1.8 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 136.47, 130.94 - 130.87 (m), 123.16 - 122.84 (m), 122.44, 113.68, 111.40. ¹⁹F NMR (377 MHz, CDCl₃): δ - 63.50 (s, 3 F)

2,4,6-Trimethoxylbenzonitrile (12p)

Procedure A was followed using 2,4,6-trimethoxylbenzoic acid (42.4 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (30% ether in hexane) to afford 15.1 mg (39%) of the product as a yellow solid.

Procedure B was followed using 2,4,6-trimethoxylbenzoic acid (42.4 mg, 0.2 mmol), AMBN (154 mg, 0.8 mmol, 4 equiv), CuBr (35 mg, 0.24 mmol, 1.2 equiv), K_2CO_3 (28 mg, 0.2 mmol, 1.0 equiv) and DMSO (2 mL). In addition, Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%) was added as the catalyst. The reaction mixtures were purified by flash column chromatography on silica gel (30% ether in hexane) to afford 19.4 mg (50%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.¹ ¹H NMR (400 MHz, CDCl₃): δ 6.06 (s, 2 H), 3.88 (s, 6 H), 3.85 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 165.29, 163.77, 114.58, 90.32, 56.07, 55.66.

3-Methylbenzothiophene-2-nitrile (13p)

Procedure A was followed using 3-methylbenzothiophene-2-carboxylic acid (38.4

mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL). The reaction mixtures were heated at 170 °C for 20 h and purified by flash column chromatography on silica gel (1% ether in hexane) to afford 11.4 mg (33%) of the product as a white solid.

Procedure B was followed using 3-methylbenzothiophene-2-carboxylic acid (38.4 mg, 0.2 mmol), AMBN (153.6 mg, 0.8 mmol, 4 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 22.4 mg (65%) of the product as a white solid.

Exhibited spectral data in accordance with previous report.^{1,4,5} ¹H NMR (400 MHz, CDCl₃): δ 7.84 - 7.78 (m, 2H), 7.53 - 7.48 (m, 2H), 2.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.18, 140.75, 137.52, 127.87, 125.31, 123.48, 122.63, 114.53, 105.57, 13.72.

3-Methylbenzofuran-2-nitrile (14p).

Procedure A was followed using 3-methylbenzofuran-2-carboxylic acid (35.2 mg, 0.2 mmol), malononitrile (26.4 mg, 0.4 mmol, 2 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 15.1 mg (48%) of the product as a yellow solid.

Procedure B was followed using 3-methylbenzofuran-2-carboxylic acid (35.2 mg, 0.2 mmol), AMBN (153.6 mg, 0.8 mmol, 4 equiv), CuI (46 mg, 0.24 mmol, 1.2 equiv), K_3PO_4 (42.4 mg, 0.2 mmol, 1.0 equiv) and DMF (2 mL). The reaction mixtures were purified by flash column chromatography on silica gel (1% ether in hexane) to afford 14.8 mg (47%) of the product as a yellow solid.

Exhibited spectral data in accordance with previous report.^{1,6} ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dd, J = 8.0, 1.3 Hz, 1 H), 7.51 - 7.50 (m, 2 H), 7.38 - 7.34 (m, 1 H), 2.46 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 155.40, 129.79, 128.41, 126.92, 124.94, 123.97, 120.91, 112.10, 111.91, 8.78.

Diversification of 7p

2-Aminobenzonitrile (15p)

2-Aminobenzonitrile (**15p**) was synthesized according to literature.⁷ An oven-dried flask equipped with a stir bar was charged with 2-nitrobenzonitrile **7p** (29.6 mg, 0.2 mmol), B₂Pin₂ (157.5 mg, 0.62 mmol, 3.1 equiv), KO*t*Bu (26.9 mg, 0.24 mmol, 1.2 equiv) and *i*PrOH (2 mL). With stirring, the reaction mixtures were heated at 110 °C for 2 h under air, followed by cooling down to room temperature. The reaction mixtures were diluted with EtOAc. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel (15% EtOAc in petroleum ether) to afford 2-aminobenzonitrile **15p** in 98% yield (23.1 mg) as a red solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 12.7, 8.1 Hz, 2 H), 6.73 - 6.66 (m, 2 H), 4.48 (s, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 149.86, 134.05, 132.28, 117.84, 117.82, 115.26, 95.72.

2-Nitrobenzamide (16p)

2-Nitrobenzamide (16p) was synthesized according to literature.⁸ An oven-dried flask equipped with a stir bar was charged with 2-nitrobenzonitrile 7p (29.6 mg, 0.2 mmol), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 5 mol%), 2,2'-bipyridyl (1.6 mg, 0.01 mmol, 5 mol%) and H_2O (2 mL). With stirring, the reaction mixtures were heated at 70 °C for 24 h under air, followed by cooling down to room temperature. The reaction mixtures

were diluted with EtOAc. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel (30% EtOAc in petroleum ether) to afford 2-nitrobenzamide **16p** in 80% yield (26.6 mg) as a white solid. ¹H NMR (400 MHz, d₆-DMSO): δ 8.14 (s, 1H), 7.99 (dd, J = 8.0, 1.2 Hz, 1 H), 7.76 (td, J = 7.5, 1.3 Hz, 1 H), 7.69 - 7.64 (m, 2 H), 7.63 (dd, J = 7.4, 1.5 Hz, 1 H). ¹³C NMR (100 MHz, d₆-DMSO): δ 167.63, 147.69, 133.78, 133.04, 131.07, 129.29, 124.39.

2-Nitrobenzoic acid (17p)

2-Nitrobenzoic acid (17p) was synthesized according to literature.⁹ An oven-dried flask equipped with a stir bar was charged with 2-nitrobenzonitrile 7p (29.6 mg, 0.2 mmol), hydrobromic acid 33% in acetic acid (4 mL) and H₂O (2 mL). With stirring, the reaction mixtures were heated under reflux for 24 h, followed by cooling down to room temperature. The reaction mixtures were diluted with EtOAc. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel (EtOAc) to afford 2-nitrobenzoic acid 17p in 95% yield (31.7 mg) as a white solid. ¹H NMR (400 MHz, d₆-DMSO): δ 13.85 (s, 1 H), 7.97 (dq, J = 8.4, 1.7 Hz, 1 H), 7.87 - 7.84 (m, 1 H), 7.79 - 7.75 (m, 2 H). ¹³C NMR (100 MHz, d₆-DMSO): δ 166.37, 148.84, 133.55 (d, J = 2 Hz), 132.84 (t, J = 2 Hz), 130.34, 127.73, 124.15.

5-(2-Nitrophenyl)-1-H-tetrazole (18p)

5-(2-Nitrophenyl)-1-H-tetrazole (**18p**) was synthesized according to literature.¹⁰ An oven-dried flask equipped with a stir bar was charged with 2-nitrobenzonitrile **7p** (148 mg, 1.0mmol), Cu(NO₃)₂·3H₂O (24.2 mg, 0.1 mmol, 10 mol%), NaN₃ (130 mg, 2.0 mmol, 2 equiv.) and DMF (1 mL). With stirring, the reaction mixtures were heated at 120 °C for 16 h under air, followed by cooling down to room temperature. After acidified by HCl (3 M, pH 1.0), the reaction mixtures were diluted with EtOAc. Stirring was continued until there are no solid was present. The combined organic phase was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on silica gel (EtOAc) to afford 2-nitrobenzamide **18p** in 79% yield (150.9 mg) as a white solid. ¹H NMR (400 MHz, d₆-DMSO): δ 8.19 (dt, *J* = 8.1, 0.9 Hz, 1 H), 7.94 - 7.85 (m, 3 H). ¹³C NMR (100 MHz, d₆-DMSO): δ 154.20, 148.65, 134.14, 132.87, 132.01, 125.32, 119.70.

References

- 1 Z. Fu, Z. Li, Y. Song, R. Yang, Y. Liu and H. Cai, J. Org. Chem., 2016, 81, 2794-2803.
- 2 Y.-L. Ban, J.-L. Dai, X.-L. Jin, Q.-B. Zhang and Q. Liu, *Chem. Commun.*, 2019, 55, 9701-9704.
- 3 M. Mąkosza and M, Białecki, J. Org. Chem., 1998, 63, 4878-4888.
- 4 K. Murugesan, T. Senthamarai, M. Sohail, M. Sharif, N. V. Kalevaru and R. V. Jagadeesh, *Green. Chem.*, 2018, **20**, 266-273.
- 5 D. Hayrapetyan, R. K. Rit, M. Kratz, K. Tschulik and L. J. Gooßen, *Chem. Eur. J.*, 2018, **24**, 11288-11291.
- 6 Z. Shu, W. Ji, X. Wang, Y. Zhou, Y. Zhang and J. Wang, *Angew. Chem. Int. Ed.*, 2014, **53**, 2186-2189.
- 7 H. Lu, Z. Geng, J. Li, D. Zou, Y. Wu and Y. Wu, Org. Lett., 2016, 18, 2774-2776.
- 8 D. D. S. Sharley and J. M. J. Williams, Tetrahedron Lett., 2017, 58, 4090-4093.
- 9 N. K. Chaudhuri, S. V. Potdar and T. J. Ball, J. Labelled Compd. Rad., 1982, 19, 75-82.
- 10 C. Tao, B. Wang, L. Sun, J. Yi, D. Shi, J. Wang and W. Liu, *J. Chem. Res.*, 2016, **41**, 25-29.

S20

S21

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

