Palladium(II)-catalyzed tandem cyclization of 2-ethynylaniline tethered cinnamyl acetate for the synthesis of indenoindoles

Junjie Chen, Xiuling Han* and Xiyan Lu^{*}
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Email: xlhan@mail.sioc.ac.cn; xylu@mail.sioc.ac.cn

Contents

\qquad
2. General procedure for the synthesis of substrates 1 S2-S12

4. Procedure for the synthesis of substrate 3a.. $21-$ S22
5. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra.............................S23-S65

1. General information

All solvents were dried and distilled using standard procedures. Unless otherwise noted, reagents were obtained from commercial sources and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$. Coupling constants are recorded in hertz, and chemical shifts are recorded as δ values in ppm. The following abbreviations are used to describe multiplicities: $\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. High-resolution mass spectra were carried out on a mass spectrometer with a TOF analyzer (ESI). Infrared spectra were recorded on a FT-IR spectrometer. Melting points were determined by using a local hot-stage melting point apparatus and are uncorrected. For column chromatography, silica gel of 200-300 mesh size was used.
2. General procedure for the synthesis of substrates $\mathbf{1}$

In a 50 mL single neck flask, the corresponding 2-iodoaniline ($5.0 \mathrm{mmol}, 1.0$ equiv.) and substituted o-alkynyl Methyl cinnamate ($5.0 \mathrm{mmol}, 1.0$ equiv) were dissolved in $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL})$. Then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{mmol}, 0.01$ equiv), CuI (0.05 $\mathrm{mmol}, 0.01$ equiv) were added to the mixture and the resulting solution was stirred at $55^{\circ} \mathrm{C}$. After completion of the reaction, the mixture was filtered by a short silica column, the solvent was evaporated under reduce pressure. The residue was dissolved in DCM (20 mL), then pyridine ($7.5 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{TsCl}(6.0 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The reaction was stirred at room temperature overnight. After completion of the reaction, the mixture was filtered by a short silica column, the solvent was evaporated under reduced pressure to obtain the crude product SI-1.

The crude product SI-1 was dissolved in anhydrous THF (20 mL), the mixture was cooled to $-20^{\circ} \mathrm{C}$, then DIBAL-H ($11.25 \mathrm{~mL}, 1 \mathrm{M}$ in hexane) was added to the reaction mixture, followed by stirring for additional half an hour at the same temperature. After completion of the reaction, the mixture was quenched by water (20 mL). The mixture was filtered by celite, washed by ethyl acetate to remove the aluminium salt. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then evaporated under reduced pressure. The residue was dissolved in DCM (10 mL), then pyridine (3.75 mmol, 1.5 equiv) and $\mathrm{Ac}_{2} \mathrm{O}$ ($3 \mathrm{mmol}, 1.2$ equiv) was added sequentially. The reaction was stirred at $0^{\circ} \mathrm{C}$. After completion of the reaction, the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether : ethyl acetate $=5: 1$) to obtain the compound 1.

1a
(E)-3-(2-((2-(4-Methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1a) Yellow oil; ($1.04 \mathrm{~g} ; 46 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.67-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.05$ (m, 2H), 6.39 (dt, $J=16.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=$ $\left.6.0 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $170.9,144.1,137.9,137.6,136.2,132.6,132.1,131.4,129.9,129.7,129.3,127.9$, 127.3, 126.3, 125.6, 124.7, 121.0, 120.4, 114.7, 94.4, 88.6, 65.0, 21.6, 21.0; IR (neat, $\mathbf{c m}^{-1}$): 3250, 2339, 1730, 1336, 1226, 1157, 1089, 753, 660; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 468.1240$; Found: 468.1242 .

1b

(E)-3-(2-((4-Methyl-2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl

 acetate (1b)Yellow oil; ($1.01 \mathrm{~g} ; 44 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44-7.41 (m, 2H), 7.37-7.26 (m, 3H), 7.18-7.13 (m, 3H), $7.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}$, $J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35,(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): δ 170.6, 143.7, 140.2, 137.4, 137.1, 135.9, 132.2, 131.5, 131.2, 129.3, $128.8,127.5,127.0,125.8,125.4,125.2,120.9,120.8,111.5,93.4,88.5,64.7,21.5$, 21.2, 20.7; IR (neat, $\mathbf{c m}^{-1}$): 3270, 2922, 1732, 1504, 1335, 1226, 1158, 1089, 961, 812, 660; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 482.1396; Found: 482.1381.

1 c
(E)-3-(2-((5-Methyl-2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1c)

Yellow oil; ($896 \mathrm{mg} ; 39 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}$, $J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 4 \mathrm{H})$, $6.38(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28$, (s, 3H), 2.26 ($\mathrm{s}, 3 \mathrm{H}$), $2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 170.8,143.8,137.7$, $136.2,134.9,134.7,132.5,132.4,131.3,130.6,129.5,129.2,127.8,127.2,126.0$, 125.5, 121.3, 121.0, 115.1, 93.7, 88.9, 64.9, 21.4, 20.9, 20.6; IR (neat, cm $^{-1}$): 3168, 1709, 1493, 1337, 1256, 1158, 1091, 811, 753, 665; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 482.1396$; Found: 482.1390.

1d
(E)-3-(2-((5-Fluoro-2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1d)

Yellow solid; m.p.: $69-70^{\circ} \mathrm{C}$; (973 mg ; 42% yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.61-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, 2H), 7.30-7.26 (m, 1H), 7.14-7.00 (m, 6H), 6.37 (dt, $J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.81 (dd, $J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30, ($\mathrm{s}, 3 \mathrm{H}$), 2.09 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~}$ $\mathbf{C D C l}_{3}$): $\delta 170.9,159.6(\mathrm{~d}, J=244.4 \mathrm{~Hz}), 144.1,138.0,135.9,133.6(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, 132.7, 131.3, 129.7, 129.6, 127.9, 127.3, 126.4, 125.6, 123.9, (d, $J=8.4 \mathrm{~Hz}$), 120.5, 118.4 (d, $J=23.7 \mathrm{~Hz}$), 117.5 (d, $J=9.2 \mathrm{~Hz}$), $117.0(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 94.8,87.7(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz})$, $64.9,21.5,21.0 ;{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-116.5$; IR (neat, $\mathbf{c m}^{-1}$): 3213, 1724, 1493, 1337, 1159, 903, 744, 664; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{FSNa}$ $(\mathrm{M}+\mathrm{Na})^{+}: 486.1145$; Found: 486.1142.

1 e
(E)-3-(2-((5-Chloro-2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate

Yellow solid; m.p.: $72-73^{\circ} \mathrm{C}$; (959 mg ; 40% yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54$ (m, 2H), 7.44-7.36 (m, 3H), 7.31-7.24 (m, 2H), $7.21(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=6.4 \mathrm{~Hz}$, $J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$, ($\mathrm{s}, 3 \mathrm{H}$), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.9$, 144.3, 138.1, 136.2, 135.9, 132.7, 131.6, 131.2, 130.1, 129.9, 129.8, 129.7, 127.9, 127.3, 126.6, 125.7, 122.0, 120.5, 116.5, 95.4, 87.3, 64.9, 21.6, 21.0; IR (neat, $\mathbf{c m}^{-1}$):

3208, 2924, 1723, 1487, 1338, 1238, 1164, 1089, 744, 664; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{ClSNa}(\mathrm{M}+\mathrm{Na})^{+}: 502.0850$; Found: 502.0844 .

$1 f$
(E)-3-(2-((4-Bromo-2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1f)

Yellow solid; m.p.: $81-82^{\circ} \mathrm{C}$; $(1.02 \mathrm{~g} ; 39 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.79(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.17$ (m, 6H), $7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, 1 H), 6.39 (dt, $J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.33 ($\mathrm{s}, 3 \mathrm{H}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 170.4,144.0,138.1,137.5$, $135.4,132.6,132.2,130.9,129.4,129.1,127.5,127.3,127.0,126.0,125.2,123.2$, 122.6, 120.2, 112.9, 95.0, 87.2, 64.5, 21.1, 20.6; IR (neat, cm $^{-1}$): 3193, 2925, 1728, 1488, 1329, 1234, 1163, 1090, 928, 759, 759, 665; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{BrSNa}(\mathrm{M}+\mathrm{Na})^{+}: 546.0345$; Found: 546.0350.

19
(E)-3-(2-((2-(4-Methylphenylsulfonamido)-5(trifluoromethyl)phenyl)ethynyl)phenyl)allyl acetate (1g)

White solid; m.p.: $101-102{ }^{\circ} \mathrm{C} ;(1.03 \mathrm{~g} ; 40 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.74-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$, 2H), $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.9,144.7,140.5$, 138.2, 135.9, 132.9, 131.1, 130.0, 129.9, 129.3 (q, $J=3.8 \mathrm{~Hz}$), 128.0, 127.4, 126.8, $126.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.4(\mathrm{q}, J=33.0 \mathrm{~Hz}), 125.7,123.6(\mathrm{q}, J=270.4 \mathrm{~Hz}), 120.3$,
118.8, 114.1, 96.0, 87.0, 64.9, 21.6, 21.0; ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-62.4; IR (neat, $\mathbf{c m}^{-1}$): 3301, 2922, 1727, 1503, 1335, 1247, 1109, 892, 667; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 536.1114$; Found: 536.1117.

1h
(E)-3-(2-((4-Methoxy-2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1h)

Yellow oil; ($1.07 \mathrm{~g} ; 45 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (dd, $J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.81 (dd, $J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 171.0,160.9,144.2,139.1,137.7,136.2,133.1$, $132.5,131.6,129.8,129.0,128.0,127.4,126.1,125.6,121.4,111.2,106.5,105.4$, 93.3, 88.8, 65.1, 55.7, 21.6, 21.1; IR (neat, $\mathbf{c m}^{-1}$): 3206, 2926, 1729, 1506, 1334, 1287, 1196, 1158, 960, 891, 757, 664; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na})^{+}: 498.1345$; Found: 498.1335.

$1 i$
(E)-3-(2-((5-(((tert-Butyldimethylsilyl)oxy)methyl)-2-(4methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1i)

Yellow oil; ($1.26 \mathrm{~g} ; 43 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.05-$
$6.96(\mathrm{~m}, 3 \mathrm{H}), 6.30(\mathrm{td}, J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}$, $2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 170.9,144.0,138.2,137.9,136.3,136.2,132.7,131.6,129.7,129.6,129.3$, 127.9, 127.7, 127.4, 126.2, 125.6, 121.1, 120.7, 114.8, 94.0, 88.8, 65.0, 64.1, 26.0, 21.6, 21.0, 18.5, -5.1; IR (neat, $\mathbf{c m}^{-1}$): 3323, 2938, 2856, 2255, 1733, 1233, 1159, 1085, 838, 727, 663; HRMS calculated for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{SSiNa}(\mathrm{M}+\mathrm{Na})^{+}: 612.2210$; Found: 612.2215.

(E)-3-(4-Methyl-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1j)

Yellow solid; m.p.: $85-86^{\circ} \mathrm{C}$; $(965 \mathrm{mg}$; 42% yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ 7.25 (m, 3H), 7.17-7.01 (m, 5H), 6.35 (dt, $J=15.6 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (dd, $J=$ $6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 170.9,144.0,137.9,137.5,136.2,135.1,132.9,132.1,131.4,130.4,129.8$, 129.7, 127.3, 125.5, 125.1, 124.6, 120.8, 120.3, 114.7, 94.6, 88.1, 65.1, 21.5, 21.0; IR (neat, $\mathbf{c m}^{-1}$): 3213, 1724, 1493, 1336, 1272, 1163, 813, 750, 665; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 482.1396; Found: 482.1393 .

1k
(E)-3-(5-Fluoro-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1 k)

Yellow solid; m.p.: $90-91^{\circ} \mathrm{C}$; $(950 \mathrm{mg}$; 41% yield was obtained based on the amount of o-iodoaniline); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J$
$=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 6.38(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, 3H), 2.08 (s, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta 170.6,162.8(\mathrm{~d}, J=249.7 \mathrm{~Hz}$), $143.9,140.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 137.3,136.0,134.3(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 131.9,130.1(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}), 129.7,129.4,127.3,127.1,124.4,120.1,116.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=$ 23.0 Hz), 114.2, $112.1(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 93.1,88.0,64.4,21.3,20.7 ;{ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$): δ-109.2; IR (neat, $\mathbf{c m}^{-1}$): 3327, 2922, 1734, 1494, 1337, 1224, 1158, 1089, 908, 755, 661; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{FSNa}(\mathrm{M}+\mathrm{Na})^{+}$: 486.1145; Found: 486.1139.

11
(E)-3-(4-Fluoro-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (11)

Yellow solid; m.p.: $86-87^{\circ} \mathrm{C}$; $(1.02 \mathrm{~g} ; 44 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.32(\mathrm{dt}, J=16.4 \mathrm{~Hz}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 170.9,161.8(\mathrm{~d}, J=247.4 \mathrm{~Hz}$), 144.2, 137.7, 136.3, 134.3 (d, $J=3.9$ $\mathrm{Hz}), 132.3,130.5,130.2,129.7,127.4(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.3,126.1(\mathrm{~d}, J=1.5 \mathrm{~Hz})$, 124.8, $122.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 120.9,118.8(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 116.9(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, 114.4, 92.9 (d, $J=3.0 \mathrm{~Hz}$), 89.5, 64.9, 21.6, 21.0; ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta-$ 113.5; IR (neat, cm $^{-1}$): 3238, 1721, 1493, 1336, 1222, 1159, 1090, 908, 813, 751, 664; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{FSNa}(\mathrm{M}+\mathrm{Na})^{+}: 486.1145$; Found: 486.1136.

1m
(E)-3-(5-Chloro-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1m)

Yellow solid; m.p.: $91-92^{\circ} \mathrm{C}$; (887 mg ; 37% yield was obtained based on the amount of o-iodoaniline); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54$ (m, 2H), 7.40-7.23 (m, 5H), 7.15 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (td, $J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dt}, J=16.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.8,144.1$, $139.5,137.6,136.2,135.4,133.7,132.2,130.1,129.7,128.0,127.7,127.3,125.7$, 124.7, 120.5, 119.4, 114.5, 93.2, 89.5, 64.6, 21.6, 21.0; IR (neat, $\mathbf{c m}^{-1}$): 3227, 1724, 1492, 1336, 1239, 1160, 1085, 906, 813, 730, 663; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{ClSNa}(\mathrm{M}+\mathrm{Na})^{+}: 502.0850$; Found: 502.0846.

(E)-3-(4-Chloro-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1n)

Yellow solid; m.p.: $87-88^{\circ} \mathrm{C}$; $(839 \mathrm{mg}$; 35% yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}$, $3 \mathrm{H}), 7.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=$ $6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $170.8,144.1,137.6,136.4,136.3,133.4,132.3,132.1,130.3,130.2,129.7,129.5$, 127.3, 126.8, 124.9, 122.4, 121.1, 114.5, 92.6, 89.7, 64.8, 21.5, 21.0; IR (neat, $\mathbf{c m}^{-1}$): 3214, 1724, 1491, 1338, 1239, 1161, 919, 751, 664; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{ClSNa}(\mathrm{M}+\mathrm{Na})^{+}: 502.0850$; Found: 502.0846.

10
(E)-3-(5-Bromo-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (10)

Yellow solid; m.p.: $93-94{ }^{\circ} \mathrm{C} ;(944 \mathrm{mg} ; 36 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ $(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,144.2,139.7,137.6,136.2$, $133.8,132.2,130.9,130.1,130.0,129.7,128.7,127.8,127.3,124.8,123.7,120.6$, $119.9,114.4,93.3,89.7,64.7,21.6,21.0$; IR (neat, $\mathbf{c m}^{-1}$): 3254, 2924, 1733, 1225, 1159, 1089, 910, 812, 661; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{BrSNa}(\mathrm{M}+\mathrm{Na})^{+}$: 546.0345; Found: 546.0349.

1p
(E)-3-(5-Methoxy-2-((2-(4-methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (1p)

Yellow oil; ($974 \mathrm{mg} ; 41 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.36 (m, 2H), 7.28-7.24 (m, 2H), $7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 3 \mathrm{H})$, $6.84(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}$, $J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 170.8,160.3,144.0,139.4,137.3,136.1,134.0,131.9,131.3,129.6$, $129.4,127.3,126.3,124.6,120.2,115.0,114.3,113.4,110.4,94.5,87.2,64.8,55.5$,
21.5, 20.9; IR (neat, $\mathbf{c m}^{-1}$): 3318, 2940, 2205, 1732, 1598, 1496, 1226, 1159, 1088, $908,811,755,661$; HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 498.1345; Found: 498.1341.

$1 q$
(E)-3-(4-((2-(4-Methylphenylsulfonamido)phenyl)ethynyl)-[1,1'-biphenyl]-3-

yl)allyl acetate (1q)

Yellow solid; m.p.: $100-101{ }^{\circ} \mathrm{C}$; ($991 \mathrm{mg} ; 38 \%$ yield was obtained based on the amount of o-iodoaniline); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}$, $5 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,144.0,142.1,140.0,138.2,137.5,136.1,133.0$, $132.1,131.4,129.8,129.6,129.0,128.0,127.3,127.1,126.6,126.5,124.6,124.2$, $120.3,119.8,114.7,97.3,89.1,64.9,21.5,21.0 ;$ IR (neat, $\mathbf{c m}^{-1}$): 3327, 2254, 1731, 1337, 1226, 1159, 1089, 907, 758, 728, 661; HRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na})^{+}: 544.1553$; Found: 544.1541.
3. General procedure for the cyclization of substrates $\mathbf{1}$ to prepare compounds $\mathbf{2}$

To a dried Schlenk tube were added $\mathrm{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, bpy $(0.9$ $\mathrm{mg}, 0.006 \mathrm{mmol})$, and $\mathrm{TCE}(1.0 \mathrm{~mL})$. The mixture was stirred at room temperature for 1 min , then substrate 1 ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{HOAc}(0.1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were added sequentially. The mixture was stirred at $80^{\circ} \mathrm{C}$ until consumption of the substrate (monitored by TLC). The solvent was removed under reduced pressure and
the residue was purified by flash column chromatography (petroleum ether : ethyl acetate $=8: 1$) to give product $\mathbf{2}$.

5-Tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2a)

White solid; m.p.: $154-155^{\circ} \mathrm{C}$; ($27.7 \mathrm{mg} ; 72 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $8.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42$ $(\mathrm{m}, 3 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.69-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (dd, $J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (s, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.3,144.9,142.3,141.1,136.0,135.3,134.1$, $132.4,129.9,128.0,126.9,126.8,126.2,125.0,124.6,124.2,121.9,119.3,117.9$, 115.8, 46.9, 21.6; IR (neat, cm $^{-1}$): 3050, 1596, 1369, 1172, 1089, 1022, 985, 922, 753, 741, 661; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 386.1209$; Found: 386.1207.

2b
7-Methyl-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2b)
White solid; m.p.: $166-167^{\circ} \mathrm{C}$; ($32.7 \mathrm{mg} ; 82 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 8.42 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 3 \mathrm{H}), 5.68-5.59(\mathrm{~m}, 1 \mathrm{H})$, $5.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.0,144.8,141.7$, $141.5,136.1,135.4,134.9,134.2,132.5,129.9,127.9,126.7$, 125.9, 125.6, 125.0, 124.6, 121.6, 118.8, 117.8, 115.9, 46.8, 22.3, 21.6; IR (neat, cm-1): 3043, 2920, 1595, 1367, 1171, 1135, 982, 810, 757, 663; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 400.1366; Found: 400.1359.

2c

8-Methyl-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2c)

White solid; m.p.: $172-173{ }^{\circ} \mathrm{C}$; ($33.1 \mathrm{mg} ; 83 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $8.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 3 \mathrm{H}), 5.67-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=16.8$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 150.2,144.7,142.4,139.3$, 136.1, 135.2, 134.2, 133.9, 132.3, 129.8, 128.0, 127.1, 126.8, 126.1, 126.0, 125.0, 121.7, 119.2, 117.9, 115.5, 46.8, 21.6, 21.4; IR (neat, $\mathbf{c m}^{-1}$): 2953, 2917, 1597, 1367, 1190, 1170, 1091, 979, 805, 737, 661; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 400.1366; Found: 400.1359.

8-Fluoro-5-tosyl-10-vinyl-5,10-dihydroindeno [1,2-b]indole (2d)
Yellow solid; m.p.: $147-148{ }^{\circ} \mathrm{C}$; (31.8 mg ; 79% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=9.2 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{td}, J=8.8 \mathrm{~Hz}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.65-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=16.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dd, J $=10.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 160.2(\mathrm{~d}, J=239.8 \mathrm{~Hz}), 150.3,145.1,144.1,137.3,135.6,134.9$, 133.7, 131.9 (d, $J=4.5 \mathrm{~Hz}), 129.9,128.1,127.9(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 126.7,126.6,125.1$, 122.1, 118.2, 116.9 ($\mathrm{d}, J=9.2 \mathrm{~Hz}$), $112.2(\mathrm{~d}, J=25.2 \mathrm{~Hz}), 104.9(\mathrm{~d}, J=23.7 \mathrm{~Hz})$, 46.8, 21.6; ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-118.5$; IR (neat, $\mathbf{c m}^{-1}$): 2915, 1609, 1369, 1169, 1021, 964, 862, 804, 662; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{FS}(\mathrm{M}+\mathrm{H})^{+}$: 404.1115; Found: 404.1110.

8-Chloro-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2e)
Yellow solid; m.p.: $183-184^{\circ} \mathrm{C}$; (33.1 mg ; 79% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.45(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 7.46-7.42 (m, 3H), 7.34-7.30 (m, 1H), 7.26-7.24 (m, 1H), 7.11 (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.65-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=16.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $150.3,145.2,143.7,139.3,135.5,135.0,133.6,131.3,130.1,130.0,128.1,128.0$, 126.7, 125.1, 124.6, 122.1, 118.8, 118.3, 116.8, 46.8, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 3062, 2914, 1597, 1369, 1171, 977, 805, 749, 661; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{ClS}$ $(\mathrm{M}+\mathrm{H})^{+}: 420.0820$; Found: 420.0813.

7-Bromo-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2f)

Yellow solid; m.p.: $151-152{ }^{\circ} \mathrm{C}$; ($32.0 \mathrm{mg} ; 69 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.44-8.42(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=16.8 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 150.2,145.2,142.8,141.5,135.7,135.0,133.6,131.7$, 130.1, 128.1, 127.5, 126.8, 126.5, 125.6, 125.1, 121.9, 120.2, 118.7, 118.1, 46.8, 21.7; IR (neat, $\mathbf{c m}^{-1}$): 2920, 2851, 1595, 1370, 1170, 980, 921, 807, 746, 688; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{BrS}(\mathrm{M}+\mathrm{H})^{+}$: 464.0314; Found: 464.0313.

2g
5-Tosyl-8-(trifluoromethyl)-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2g)
White solid; m.p.: $136-137^{\circ} \mathrm{C}$; ($30.8 \mathrm{mg} ; 68 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 8.48 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{dd}, J=8.8$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.68-5.59 (m, 1H), 5.52 (dd, $J=16.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $150.4,145.4,144.0,142.3,135.4,135.0,133.4,131.6,130.1,128.2,126.9,126.8$, $126.5(\mathrm{q}, J=32.2 \mathrm{~Hz}), 126.5,125.3,124.6(\mathrm{q}, J=270.4 \mathrm{~Hz}), 122.2,121.2(\mathrm{q}, J=3.8$ $\mathrm{Hz}), 118.5,116.5(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 115.9,46.8,21.7 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta-$ 61.3; IR (neat, $\mathbf{c m}^{-1}$): 2917, 1596, 1314, 1267, 1174, 1125, 1092, 978, 860, 664; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 454.1083$; Found: 454.1083.

7-Methoxy-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2h)
Yellow solid; m.p.: $131-132{ }^{\circ} \mathrm{C}$; (33.2 mg ; 80% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=17.2 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=$ $10.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): δ 158.0, 149.7, 144.9, 142.2, 141.1, 136.1, 135.2, 134.4, 132.6, 129.9, 127.9, 126.7, 125.6, 124.9, 121.2, 120.9, 119.7, 117.8, 112.9, 100.6, 56.1, 46.8, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 2917, 1619, 1490, 1371, 1274, 1170, 1130, 985, 743, 662; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 416.1315$; Found: 416.1313.

2i

8-(((tert-Butyldimethylsilyl)oxy)methyl)-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2b]indole (2i)

White solid; m.p.: 72-73 ${ }^{\circ} \mathrm{C}$; ($38.1 \mathrm{mg} ; 72 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta$ $8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.67-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=$ $16.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 150.2,144.8,142.5,140.2,137.6,136.0,135.2,134.1,132.6,129.8$, $128.0,126.9,126.8,126.1,125.0,122.9,121.8,117.9,116.6,115.5,64.9,46.9,26.1$, 21.6, 18.5, -5.0, -5.1; IR (neat, $\mathbf{c m}^{-1}$): 2933, 2889, 2854, 1598, 1454, 1369, 1254, 1173 1083, 838 763, 664; HRMS calculated for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{SSi}(\mathrm{M}+\mathrm{H})^{+}: 530.2180$; Found: 530.2179.

3-Methyl-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2j)

White solid; m.p.: $126-127{ }^{\circ} \mathrm{C}$; ($31.9 \mathrm{mg} ; 80 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): δ $8.28(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 5.66-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=17.2 \mathrm{~Hz}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ ($\mathrm{s}, 3 \mathrm{H}$), $2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 147.4,144.8,142.3,141.0$, $137.7,136.2,135.2,134.2,132.8,129.8,127.0,126.8,124.7,124.5,124.1,122.6$, $119.2,117.6,115.8,46.5,22.0,21.6$; IR (neat, $\mathbf{c m}^{-1}$): 2918, 1633, 1370, 1176, 985, 809, 761, 662; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 422.1185; Found: 422.1185.

2k

2-Fluoro-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2k)
White solid; m.p.: $128-129^{\circ} \mathrm{C}$; ($28.6 \mathrm{mg} ; 71 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $8.40(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.67-5.59(\mathrm{~m}$, $1 \mathrm{H}), 5.48(\mathrm{dt}, J=16.8 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 162.0(\mathrm{~d}, J=245.2$ $\mathrm{Hz}), 152.7$ (d, $J=7.6 \mathrm{~Hz}), 145.0,141.5,140.8,135.4,135.1,132.1(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $130.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.9,126.8,126.7,124.6,124.3,122.7(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 119.1$, $118.4,115.8,114.6(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 113.0(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 47.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 21.6$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-115.8$; IR (neat, $\mathbf{c m}^{-1}$): 2918, 1592, 1374, 1218, 1189, 1122, 982, 923, 819, 757, 671; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NFO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 404.1115; Found: 404.1109.

3-Fluoro-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (21)

White solid; m.p.: $172-173^{\circ} \mathrm{C}$; (29.0 mg ; 72% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ $8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=10.4 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.24$ (m, 3H), 7.12 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.98 (dt, J $=11.2 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=16.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 163.1$ (d, $J=241.4 \mathrm{~Hz}$), 145.5 (d, $J=3.1 \mathrm{~Hz}$), 145.1, 141.2, 141.0, 135.7 (d, $J=10.8 \mathrm{~Hz}$), 135.7, 135.1, 134.2, 129.9, 126.8, 126.6, 125.7 (d, $J=9.2 \mathrm{~Hz}$), 125.1, 124.3, 119.4, 118.1, 115.8, 112.6 (d, $J=23.0 \mathrm{~Hz}$), 109.5 (d, $J=$ $26.8 \mathrm{~Hz}), 46.4,21.6 ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta-114.1$; IR (neat, $\mathbf{c m}^{-1}$): 2915,

1594, 1457, 1366, 1188, 1170, 987, 911, 805, 758, 740, 672; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NFO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 404.1115$; Found: 404.1110.

2-Chloro-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2m)

White solid; m.p.: $143-144^{\circ} \mathrm{C}$; ($30.2 \mathrm{mg} ; 72 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): δ $8.36(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.66-5.57 (m, 1H), 5.49 (dd, $J=16.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $151.9,145.0,141.4,141.0,135.1,135.0,132.6,132.2,129.9,128.1,126.7,125.5$, 125.0, 124.3, 122.6, 119.3, 118.6, 115.8, 46.8, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 3083, 2921, 1596, 1367, 1171, 1140, 982, 746, 666; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NClO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 420.0820; Found: 420.0814 .

2n
3-Chloro-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2n)
White solid; m.p.: $144-145^{\circ} \mathrm{C}$; ($29.4 \mathrm{mg} ; 70 \%$ yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 8.45 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.64-$ $5.56(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=16.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.4$, $145.1,141.1,141.0,135.6,135.3,135.0,134.1,133.8,130.0,126.8,126.6,126.0$, 125.8, 125.2, 124.3, 122.0, 119.5, 118.3, 115.8, 46.5, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 2948, 1597, 1442, 1366, 1187, 1169, 985, 877, 761, 666; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NClO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 420.0820$; Found: 420.0818 .

20

2-Bromo-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (20)

Yellow solid; m.p.: $153-154{ }^{\circ} \mathrm{C}$; (30.1 mg ; 65% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.65-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=16.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{dt}, J=9.6 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 152.2,145.1,141.4,141.1,135.1,135.0,133.0,132.6$, $131.0,130.0,128.4,126.7,126.6,125.0,124.3,123.0,120.3,119.3,118.6,115.8$, 46.9, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 2920, 1596, 1441, 1368, 1171, 1144, 982, 762, 664; HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NBrO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 464.0314$; Found: 464.0314.

2-Methoxy-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2p)

Yellow solid; m.p.: $149-150{ }^{\circ} \mathrm{C}$; (30.7 mg ; 74% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95 (dd, $J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dt}, J=16.8 \mathrm{~Hz}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27$ (dd, $J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 2.26 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.8,152.5,144.8,142.3,140.6$, $136.2,135.3,130.5,129.8,127.1,127.0,126.8,124.1,124.0,122.5,118.8,117.9$, 115.7, 112.8, 111.9, 55.7, 47.0, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 2958, 1597, 1364, 1291, 1238, 1174, 1133, 1023, 919, 821, 742, 719, 666; HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 416.1315$; Found: 416.1308.

2q

2-Phenyl-5-tosyl-10-vinyl-5,10-dihydroindeno[1,2-b]indole (2q)

Brown solid; m.p.: $156-157^{\circ} \mathrm{C}$; (28.1 mg ; 61\% yield); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.51-5.45(\mathrm{~m}$, $3 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=$ $16.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H), 2.28 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 151.0,144.9,142.1,141.1,141.0$, $139.2,136.0,135.3,133.2,132.6,130.0,129.0,127.4,127.2,127.0,126.8,124.7$, 124.2, 123.8, 122.0, 119.3, 118.1, 115.7, 47.0, 21.6; IR (neat, $\mathbf{c m}^{-1}$): 2919, 1596, 1370, 1174, 1095, 973, 810, 755, 697, 671; HRMS calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 462.1522$; Found: 462.1515.
4. Procedure for the synthesis of substrate 3a

In a 50 mL single neck flask, o-iodoaniline ($4.16 \mathrm{mmol}, 1.0$ equiv.) and alkyne ($4.16 \mathrm{mmol}, 1.0$ equiv) were dissolved in $\mathrm{Et}_{3} \mathrm{~N}(25 \mathrm{~mL})$. Then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.04$ mmol, 0.01 equiv), $\mathrm{CuI}(0.04 \mathrm{mmol}, 0.01$ equiv) were added to the mixture and the resulting solution was stirred at $55^{\circ} \mathrm{C}$. After completion of the reaction, the mixture was filtered by a short silica column, the solvent was evaporated under reduced pressure. The residue was dissolved in DCM $(20 \mathrm{~mL})$, then pyridine ($6.24 \mathrm{mmol}, 1.5$ equiv) and TsCl ($5.0 \mathrm{mmol}, 1.2$ equiv) were added sequentially. The reaction was stirred at room temperature overnight. After completion of the reaction, the mixture
was filtered by a short silica column, the solvent was evaporated under reduced pressure to obtain the crude product SI-2 ($3.24 \mathrm{mmol}, 1.68 \mathrm{~g}$).

The crude product SI-2 was dissolved in anhydrous THF (20 mL), the mixture was heated to $60^{\circ} \mathrm{C}$, then TBAF ($3.88 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added to the reaction mixture, followed by stirring for additional half an hour at the same temperature. After completion of the reaction, the solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{DCM}(10 \mathrm{~mL})$, then pyridine $(4.08 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(3.26$ mmol) were added sequentially. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$. After completion of the reaction, the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (petroleum ether : ethyl acetate $=4: 1$) to obtain the compound $\mathbf{3 a}$.

1-(2-((2-(4-Methylphenylsulfonamido)phenyl)ethynyl)phenyl)allyl acetate (3a)
Yellow oil; ($833 \mathrm{mg} ; 45 \%$ yield was obtained based on the amount of o-iodoaniline);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.72-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ $7.25(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.28(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.3,143.9,140.2,138.0,136.6,135.2,132.5,132.4$, $129.8,129.6,129.3,128.2,127.5,127.3,124.4,121.6,120.1,117.6,114.3,93.4,88.9$, 74.2, 21.5, 21.2; IR (neat, cm $^{-1}$): 3251, 2922, 1730, 1338, 1229, 1158, 1089, 909, 755, 660; HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 468.1240; Found: 468.1238 .
5. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra

 Lu

1b

LuLuルN

1c

1d

$711 \pi 1111$

8
0
1
1

$V^{\text {ang }}$

1g

$\left.\right|^{\circ}$

Nehedudil de

$\underbrace{\text { O. }} 1$

$1 g$

1h

1j

LuLun W Will

 いいいいいいいいいU｜／1）

1k
$\xrightarrow[\square]{\hdashline,}$

1m

1n

 TIIT 1 IIIII

LLLᄂLᄂᄂUい

$\prod_{0}^{\circ 0.0}$

 Luch Nill Nill

2b

Lill Nill

2g

2h

2i

		\%

2k

V

$\xrightarrow[\text { Liun }]{\text { Livillivily }}$

2q

