Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Catalytic amide base system generated *in situ* for 1,3-diene formation from allylbenzenes and carbonyls

Masanori Shigeno*, Akihisa Kajima, Kunihito Nakaji, Kanako Nozawa-Kumada, and Yoshinori Kondo*

Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science,

Tohoku University, Aoba, Sendai, 980-8578, Japan

*E-mail: masanori.shigeno.e5@tohoku.ac.jp, yoshinori.kondo.a7@tohoku.ac.jp

Supporting Information

Table of Contents

General methods	S2
Reactions of 1a and 2a in the presence of KHMDS or NaHMDS (Scheme S1)	S3
Reactions of 4b and 2e in the presence of KHMDS or NaHMDS (Scheme S2)	S3
Experimental procedures and spectra data for obtained stilbenes and enamines	S4-S15
References	S15
¹ H and ¹³ C NMR Spectra	

General methods. All reactions were carried out under N₂ or Ar atmosphere. Flash column chromatography was performed with Kanto silica gel 60 N (spherical, neutral, 70-230 μ m). Preparative thin-layer chromatography was performed with silica gel (Wakogel[®] B-5F). Melting points (Mp) were determined with a Yazawa micro melting point apparatus without correction. Infrared (IR) data were recorded on SensIR ATR (Attenuated Total Reflectance) FT-IR, and absorbance frequencies are reported in reciprocal centimeters (cm⁻¹). NMR data were recorded on a JEOL AL400 spectrometer (395.75 MHz for ¹H, 99.50 MHz for ¹³C) or a JEOL ECA600 spectrometer (150.907 MHz for 13C). Chemical shifts are expressed in δ (parts per million, ppm) values, and coupling constants are expressed in herts (Hz). ¹H NMR spectra were referenced to tetramethylsilane as an internal standard or to a solvent signal (CDCl₃: 7.26 ppm). ¹³C NMR spectra were referenced to a solvent signal (CDCl₃: 7.0 ppm; CD₃OD: 49.0 ppm). Low and high resolution mass spectra (LRMS and HRMS) were obtained from Mass Spectrometry Resource, Graduate School of Pharmaceutical Sciences, Tohoku University, on a JEOL JMS-DX 303 and JMS-700/JMS-T 100 GC spectrometer, respectively.

Materials. Unless otherwise noted, materials were purchased from Tokyo Kasei Co., Aldrich Inc. and other commercial suppliers and were used as received. Tetramethylammonium fluoride (TMAF) and N(TMS)₃ were purchased from Aldrich Inc. and Acros Co., respectively, and were used as received. DMF was distilled over CaH₂ under a reduced pressure. DMI was distilled over 4Å molecular sieves under a reduced pressure. **1b**¹, **1c**¹, **1d**², **1f**¹, **1g**¹, **1h**³, **1j**⁴, **1I**⁵, **1m**⁶, **1n**,³ and **1o**⁷ were prepared according to the literature procedures. **1e** was prepared according to the following Schemes S3. Flash column chromatography was performed with Kanto silica gel 60 N (spherical, neutral, 70–230 mesh).

Scheme S1. Reactions of 1a and 2a in the presence of KHMDS or NaHMDS.^{*a, b*}

^aReactions were conducted on a 0.2 mmol scale. ^bYields were determined by ¹H-NMR analysis.

^aReactions were conducted on a 0.2 mmol scale. ^bYields were determined by ¹H-NMR analysis.

7

0%

16%

8

0%

0%

3be

20%

5%

KHMDS:

NaHMDS:

Scheme S3. Preparation of 1e

1-AllyI-3-chlorobenzene (**1e**). To a solution of 1-bromo-3-chlorobenzene (**S1**, 1.53 g, 8.00 mmol) in Et₂O (18 mL) were added dropwise *i*-PrMgCl·LiCl in THF (1.30 M, 2.2 mL, 2.9 mmol) and *n*-BuLi in hexane (1.56 M, 3.6 mL, 5.6 mmol) at -10 °C. After stirring for 2 h at -10 °C, allyl bromide (0.76 mL, 8.8 mmol) was added to the reaction mixture at the temperature. After stirring at room temperature for 15 h, the reaction mixture was quenched with saturated NH₄Cl aqueous solution and extracted with Et₂O. The combined organic layer was washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography on silica gel (hexane) to give **1b** (0.32 g, 2.08 mmol, 51%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃/TMS) δ 3.36 (d, 2H, *J* = 6.8 Hz), 5.04-5.14 (m, 2H), 5.86-6.00 (m, 1H), 7.06 (d, 1H, *J* = 6.8 Hz), 7.15-7.27 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 39.78, 116.5, 126.3, 126.8, 128.7, 129.6, 136.5, 142.1. LRMS (EI) *m/z*: 152 (M⁺). HRMS Calcd. for C₉H₉Cl: 152.0392, found: 152.0379. IR (neat): 3080, 2980, 2908, 1597, 1574, 1476, 1430, 1079, 992, 916, 777, 710 cm⁻¹.

General procedure of amide-base generated *in situ* catalyzed 1,3-diene formations (Table 1, Figures 2 and 3, and Scheme 1)

(*E*)-Buta-1,3-diene-1,1,4-triyltribenzene (3aa). In a glove box under an Ar atmosphere, to a mixture of 1a (25.1 mg, 0.212 mmol), 2a (73.3 mg, 0.402 mmol), and N(TMS)₃ (142.4 mg, 0.610 mmol) in DMF (1 mL) was added TMAF (3.7 mg, 0.040 mmol) in a vial equipped with a stirrer bar. The vial was sealed with a cap containing an inner Teflon film. After stirring at room temperature for 5 h, H₂O (1 mL) was added to the reaction mixture at room temperature. The mixture was stirred at room temperature for 1 h, and H₂O (10 mL) was added. The mixture was extracted with AcOEt (10 mL x 3), washed with H₂O (10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated. The crude material was purified by column chromatography on silica gel (hexane:toluene = 10:1) to afford **3aa** (53.7 mg, 0.190 mmol, 90%) as a white crystal: Mp 99-100 °C (CH₂Cl₂/hexane) (lit. 100-102°C^{8a}). ¹H NMR

(400 MHz, CDCl₃/TMS) δ 6.69-6.78 (m, 1H), 6.84-6.94 (m, 2H), 7.17 (t, 1H, *J* = 7.1 Hz), 7.22-7.33 (m, 11H), 7.34-7.45 (m, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 126.2, 126.4, 127.1, 127.7, 127.77, 127.81, 127.9, 128.5, 128.6, 128.9, 130.1, 134.1, 137.0, 139.2, 141.4, 142.5. LRMS (EI) *m/z*: 282 (M⁺). HRMS: Calcd. for C₂₃H₂₀: 282.1408. Found: 282.1416. IR (neat): 3056, 3027, 2306, 1487, 1442, 965, 752, 701 cm⁻¹. The spectra data matched those reported in the literature.^{8b}

(*E*)-(4-(4-Fluorophenyl)buta-1,3-diene-1,1-diyl)dibenzene (3ba). According to the general procedure analogous to that described for 3aa, 3ba (55.4 mg, 0.184 mmol, 89%) was obtained from 1b (28.2 mg, 0.207 mmol) as a colorless oil. ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.68 (d, 1H, *J* = 14.8 Hz), 6.75-6.89 (m, 2H), 6.95 (t, 2H, *J* = 8.8 Hz), 7.20-7.32 (m, 9H), 7.34-7.46 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 115.5 (d, *J* = 22.9 Hz), 126.8, 127.48, 127.51, 127.56, 127.9, 128.0 (d, *J* = 14.3 Hz), 128.22, 128.25, 130.6, 132.5, 133.7 (d, *J* = 4.3 Hz), 139.7, 142.2, 143.2, 162.2 (d, *J* = 247.8 Hz). LRMS (EI) *m/z*: 300 (M⁺). HRMS Calcd. for C₂₂H₁₇F: 300.1314, found: 300.1339. IR (neat): 3029,1599, 1505, 1232, 1156, 965, 815, 760 cm⁻¹.

(*E*)-(4-(4-Chlorophenyl)buta-1,3-diene-1,1-diyl)dibenzene (3ca). According to the general procedure analogous to that described for 3aa, 3ca (54.0 mg, 0.170 mmol, 87%) was obtained from 1c (30.0 mg, 0.197 mmol) as a white solid: Mp 124-126 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.58-6.68 (m, 1H), 6.79-6.88 (m, 2H), 7.14-7.20 (m, 4H), 7.22-7.31 (m, 7H), 7.34-7.43 (m, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 127.2, 127.7, 127.80, 127.84, 127.9, 128.5, 128.6, 128.9, 130.1, 132.0, 132.8, 135.9, 139.0, 141.4, 143.0. LRMS (EI) *m/z*: 316 (M⁺). HRMS Calcd. for C₂₂H₁₇Cl: 316.1018, found: 316.1015. IR (neat): 3021, 2367, 1487, 1089, 976, 768, 703 cm⁻¹.

(*E*)-(4-(4-Bromophenyl)buta-1,3-diene-1,1-diyl)dibenzene (3da). According to the general procedure analogous to that described for 3aa, 3da (67.4 mg, 0.187 mmol, 83%) was obtained from 1d (44.1 mg, 0.224 mmol) as a white solid: Mp 134-136 °C (CH₂Cl₂/hexane). ¹H NMR (600 MHz, CDCl₃/TMS) δ 6.62-6.69 (m, 1H), 6.82-6.91 (m, 2H), 7.15 (d, 2H, *J* = 8.3 Hz), 7.24-7.32 (m, 7H),

7.35-7.40 (m, 3H), 7.40-7.45 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 121.1, 127.6, 127.76, 127.81, 127.84, 127.9, 128.3, 130.56, 130.60, 131.6, 131.7, 132.4, 136.4, 139.6, 142.1, 143.8. LRMS (EI) *m/z*: 360 (M⁺). HRMS Calcd. for C₂₂H₁₇Br: 360.0513, found: 360.0499. IR (neat): 3028, 1594, 1483, 1443, 1069, 976, 810, 768, 702 cm⁻¹.

(*E*)-(4-(3-Chlorophenyl)buta-1,3-diene-1,1-diyl)dibenzene (3ea). According to the general procedure analogous to that described for 3aa, 3ea (54.7 mg, 0.173 mmol, 84%) was obtained from 1e (31.5 mg, 0.206 mmol) as a white solid: Mp 92 °C (CH₂Cl₂/hexane). ¹H NMR (600 MHz, CDCl₃/TMS) δ 6.60-6.69 (m, 1H), 6.82-6.91 (m, 2H), 7.11-7.19 (m, 3H), 7.23-7.32 (m, 8H), 7.36-7.40 (m, 1H), 7.40-7.45 (m, 2H). ¹³C NMR (150 MHz, C₆D₆) δ 124.3, 127.0, 127.5, 127.9, 128.0, 128.1, 128.3, 128.57, 128.59, 128.62, 130.0, 130.9, 132.8, 134.9, 139.8, 140.1, 142.7, 144.6. LRMS (EI) *m/z*: 316 (M⁺). HRMS Calcd. for C₂₂H₁₇Cl: 316.1018, found: 316.1037. IR (neat): 3026, 2366,1584, 1557, 1476, 1441, 1074, 975, 962, 767 cm⁻¹.

(*E*)-(4-(*o*-Tolyl)buta-1,3-diene-1,1-diyl)dibenzene (3fa). According to the general procedure analogous to that described for 3aa, 3fa (49.4 mg, 0.167 mmol, 81%) was obtained from 1f (27.1 mg, 0.205 mmol) as a colorless oil: Mp 92 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 2.37 (s, 3H), 6.81 (dd, 1H, *J* = 11.0 Hz, 15.4 Hz), 6.94 (dd, 2H, *J* = 12.9 Hz, 15.9 Hz), 7.05-7.15 (m, 3H), 7.21-7.35 (m, 8H), 7.35-7.44 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 125.2, 126.0, 127.38, 127.41, 127.44, 127.6, 128.17, 128.19, 128.22, 128.6, 130.4, 130.6, 131.4, 135.5, 136.3, 139.8, 142.3, 143.0. LRMS (EI) *m/z*: 296 (M⁺). HRMS Calcd. for C₂₂H₁₈: 296.1565, found: 296.1546. IR (neat): 3021, 2926, 1598, 1443, 965, 748, 700 cm⁻¹.

(*E*)-(4-(*p*-Tolyl)buta-1,3-diene-1,1-diyl)dibenzene (3ga). According to the general procedure analogous to that described for 3aa, except that the reaction was conducted with 2a (41.2 mg, 0.226 mmol), 3ga (37.5 mg, 0.127 mmol, 62%) was obtained from 1g (29.5 mg, 0.223 mmol) as a white

solid: Mp 117-119 °C (CH₂Cl₂/hexane) (lit. 116-117 °C (EtOH)⁹). ¹H NMR (400 MHz, CDCl₃/TMS) δ 2.30 (s, 3H), 6.65-6.75 (m, 1H), 6.80-6.89 (m, 2H), 7.05 (d, 2H, J = 7.8 Hz), 7.19 (d, 2H, J = 8.3 Hz), 7.22-7.32 (m, 7H), 7.32-7.44 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 126.2, 126.4, 127.3, 127.4, 127.6, 128.19, 128.21, 128.5, 129.3, 130.7, 133.9, 134.7, 137.4, 139.9, 142.4, 142.5. LRMS (EI) *m/z*: 296 (M⁺). HRMS Calcd. for C₂₃H₂₀: 196.1565, found: 296.1551. IR (neat): 3028, 2917, 1442, 979, 766, 700 cm⁻¹.

(*E*)-4-(4,4-Diphenylbuta-1,3-dien-1-yl)-1,1'-biphenyl (3ha). According to the general procedure analogous to that described for 3aa, 3ha (60.0 mg, 0.167 mmol, 85%) was obtained from 1h (38.3 mg, 0.197 mmol) as a white solid: Mp 143 °C (CH₂Cl₂/hexane). ¹H NMR (600MHz, CDCl₃/TMS) δ 6.71-6.81 (m, 1H), 6.87-6.98 (m, 2H), 7.23-7.27 (m, 1H), 7.27-7.34 (m, 7H), 7.34-7.46 (m, 7H), 7.50 (d, 2H, *J* = 7.6 Hz), 7.56 (d, 2H, *J* = 7.6 Hz). ¹³C NMR (150 MHz, C₆D₆) δ 127.2, 127.3, 127.4, 127.5, 127.6, 127.76, 127.80, 128.1, 128.57, 128.61, 128.9, 129.0, 131.1, 134.2, 137.0, 140.4, 140.6, 141.1, 142.9, 143.6. LRMS (EI) *m/z*: 358 (M⁺). HRMS Calcd. for C₂₈H₂₂: 358.1721, found: 358.1713. IR (neat): 3030, 1598, 1484, 1445, 976, 820 cm⁻¹.

(*E*)-(4-(4-Methoxyphenyl)buta-1,3-diene-1,1-diyl)dibenzene (3ia). According to the general procedure analogous to that described for 3aa, except that the crude material was purified by preparative thin-layer chromatography of silica gel (hexane:toluene = 6:1), 3ia (54.3 mg, 0.174 mmol, 87%) was obtained from 1i (29.7 mg, 0.200 mmol) as a white solid: Mp 96-97 °C (CH₂Cl₂/hexane) (lit. 87-89 °C¹⁰). ¹H NMR (400 MHz, CDCl₃/TMS) δ 3.78 (s, 3H), 6.65-6.92 (m, 5H), 7.21-7.32 (m, 9H), 7.34-7.44 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 55.1, 114.0, 125.0, 127.2, 127.3, 127.4, 127.6, 128.1, 128.2, 128.5, 130.3, 130.6, 133.5, 139.9, 141.8, 142.3, 159.2. LRMS (EI) *m/z*: 312 (M⁺). HRMS Calcd. for C₂₃H₂₀O: 312.1514, found: 312.1498. IR (neat): 3022, 1603, 1507,1248, 1174, 1032, 976, 821, 760, 702 cm⁻¹.

(E)-4-(4,4-Diphenylbuta-1,3-dien-1-yl)-N,N-dimethylaniline (3ja). In a glove box under an Ar atmosphere, to a mixture of 1j (31.9 mg, 0.198 mmol), 2a (74.9 mg, 0.411 mmol), and N(TMS)₃ (139.9 mg, 0.599 mmol) in DMF (1 mL) was added TMAF (4.1 mg, 0.044 mmol) in a vial equipped with a stirrer bar. The vial was sealed with a cap containing an inner Teflon film. After stirring at room temperature for 5 h, H₂O (1 mL) was added to the reaction mixture at room temperature. The mixture was stirred at room temperature for 1 h, and H₂O (10 mL) was added. The mixture was extracted with AcOEt (10 mL x 3), washed with H₂O (10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated. A solution of the residue in conc. HCl (1 mL) and DMF (1 mL) was heated at 60 °C for 2 h, and saturated NaHCO₃ aqueous solution (5 mL) was added. The mixture was extracted with AcOEt (10 mL x 3), washed with H₂O (10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated. The crude material was filtered through a pad of silica gel (CH₂Cl₂) and concentrated, and that the residue was purified by GPC (CHCl₃) to afford **3ja** (55.3 mg, 0.170 mmol, 86%) as a yellow solid: Mp 175-178 °C (CH₂Cl₂/hexane) (lit. 179-180 °C¹¹). ¹H NMR (600 MHz, CDCl₃/TMS) δ 2.94 (s, 6H), 6.62 (d, 2H, J = 8.9 Hz), 6.65-6.75 (m, 2H), 6.86 (d, 1H, J = 9.7 Hz), 7.19-7.24 (m, 3H), 7.26-7.31 (m, 6H), 7.33-7.37 (m, 1H), 7.39-7.43 (m, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 39.9, 112.3, 121.9, 124.9, 126.9, 127.2, 127.4, 127.5, 128.4, 128.6, 128.7, 130.2, 134.8, 139.5, 139.6, 141.8, 150.1. LRMS (EI) m/z: 325 (M⁺). HRMS Calcd. for C₂₄H₂₃N: 325.1830, found: 325.1833. IR (neat): 3022, 1584, 1517, 1441, 1354, 1189, 976, 814, 767 cm⁻¹.

(*E*)-5-(4,4-Diphenylbuta-1,3-dien-1-yl)benzo[*d*][1,3]dioxole (3ka). According to the general procedure analogous to that described for 3aa, except that the crude material was purified by preparative thin-layer chromatography of silica gel (hexane:AcOEt = 10:1) and GPC (CHCl₃), 3ka (66.8 mg, 0.205 mmol, 96%) was obtained from 1k (34.5 mg, 0.213 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃/TMS) δ 5.92 (s, 2H), 6.61-6.87 (m, 6H), 7.21-7.33 (m, 8H), 7.34-7.46 (m, 3H). ¹³C NMR (150 MHz, C₆D₆) δ 101.0, 106.2, 108.6, 121.6, 125.8, 127.6, 127.7, 128.0, 128.5, 128.6, 129.0, 131.0, 132.5, 134.4, 140.4, 142.7, 143.0, 147.8, 148.6. LRMS (EI) *m/z*: 326 (M⁺). HRMS Calcd. for C₂₃H₁₈O₂: 326.1306, found: 326.1300. IR (neat): 3029, 2894, 1487, 1445, 1039, 964, 934, 754 cm⁻¹.

Ethyl (*E*)-4-(4,4-Diphenylbuta-1,3-dien-1-yl)benzoate (3la). According to the general procedure analogous to that described for 3aa, except that the crude material was filtered through a pad of silica gel (hexane:AcOEt = 10:1) and concentrated, and that the residue was purified by GPC (CHCl₃), **3la**

(59.1 mg, 0.176 mmol, 82%) was obtained from **11** (38.7 mg, 0.203 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃/TMS) δ 1.38 (t, 3H, J = 7.1 Hz), 4.35 (q, 2H, J = 7.2 Hz), 6.75 (d, 1H, J = 15.1 Hz), 6.89 (d, 1H, J = 11.2 Hz), 6.99 (dd, 1H, J = 15.1, 11.2 Hz), 7.20-7.53 (m, 12H), 7.93 (d, 2H, J = 8.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 60.8, 126.2, 127.71, 127.73, 127.76, 127.81, 128.27, 128.29, 129.0, 129.5, 129.9, 130.6, 132.6, 139.5, 141.9, 142.0, 144.8, 166.3. LRMS (EI) *m/z*: 354 (M⁺). HRMS Calcd. for C₂₅H₂₂O₂: 354.1619, found: 354.1604. IR (neat): 2981, 1710, 1602, 1269, 1176, 1106, 761 cm⁻¹.

(*E*)-4-(4,4-Diphenylbuta-1,3-dien-1-yl)-*N*,*N*-diethylbenzamide (3ma). According to the general procedure analogous to that described for **3aa**, except that the crude material was purified by preparative thin-layer chromatography of silica gel (hexane:AcOEt = 10:1), **3ma** (68.4 mg, 0.179 mmol, 87%) was obtained from **1m** (45.0 mg, 0.207 mmol) as a yellow oil. ¹H NMR (600 MHz, CDCl₃/TMS) δ 1.15 (br, 6H), 3.38 (br, 4H), 6.71 (d, 1H, *J* = 15.1 Hz), 6.84-6.94 (m, 2H), 7.22-7.33 (m, 11H), 7.34-7.39 (m, 1H), 7.39-7.44 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 12.9, 14.1, 39.3, 43.2, 126.3, 126.7, 127.6, 127.9, 128.0, 128.18, 128.21, 130.5, 132.9, 135.9, 138.3, 139.6, 142.1, 143.9, 171.0. LRMS (EI) *m/z*: 381 (M⁺). HRMS Calcd. for C₂₇H₂₇NO: 381.2092, found: 381.2056. IR (neat): 2975, 2240, 1623, 1429, 1288, 1096, 909, 729 cm⁻¹.

(*E*)-2-(4,4-Diphenylbuta-1,3-dien-1-yl)benzo[*b*]thiophene (3na). According to the general procedure analogous to that described for 3aa, 3na (63.4 mg, 0.187 mmol, 94%) was obtained from 1n (34.8 mg, 0.200 mmol) as an orange solid: Mp 140-144 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.77 (dd, 1H, *J* = 14.9, 11.0 Hz), 6.85 (d, 1H, *J* = 11.2 Hz), 6.94 (d, 1H, *J* = 14.6 Hz), 7.14 (s, 1H), 7.20-7.34 (m, 9H), 7.37-7.48 (m, 3H), 7.66 (dd, 2H, *J* = 11.7, 7.8 Hz). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 122.4, 123.7, 123.8, 124.9, 125.1, 127.1, 127.2, 127.5, 127.9, 128.0, 128.55, 128.63, 128.8, 130.1, 138.1, 138.9, 140.0, 141.1, 142.4, 143.5. LRMS (EI) *m/z*: 338 (M⁺). HRMS Calcd. for C₂₄H₁₈S: 338.1129, found: 338.1105. IR (neat): 3058, 3013, 1489, 1445, 966, 752 cm⁻¹.

(*E*)-2-(4,4-Diphenylbuta-1,3-dien-1-yl)-1-methyl-1*H*-indole (3oa). According to the general procedure analogous to that described for **3aa**, except that the reaction was conducted with TMAF (5.4 mg, 0.058 mmol) in DMI (1 mL), **3oa** (62.3 mg, 0.186 mmol, 88%) was obtained from **1o** (36.1 mg, 0.211 mmol) as a yellow solid: Mp 169-172 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 3.74 (s, 3H), 6.57 (s, 1H), 6.72-6.86 (m, 1H), 6.87-7.01 (m, 2H), 7.01-7.10 (m, 1H), 7.12-7.20 (m, 1H), 7.20-7.36 (m, 8H), 7.36-7.46 (m, 3H), 7.48 (d, 1H, *J* = 8.0 Hz). ¹³C NMR (150 MHz, C₆D₆) δ 29.1, 100.5, 109.4, 120.3, 120.9, 122.2, 122.6, 127.8, 127.9, 128.1, 128.60, 128.64, 128.77, 128.83, 128.9, 131.0, 138.3, 138.8, 140.3, 142.8, 143.5. LRMS (EI) *m/z*: 335 (M⁺). HRMS Calcd. for C₂₅H₂₁N: 335.1674, found: 335.1680. IR (neat): 3044, 1456, 1446, 1321, 972, 789, 766, 728 cm⁻¹.

(*E*)-4,4'-(4-Phenylbuta-1,3-diene-1,1-diyl)bis(fluorobenzene) (3ab). According to the general procedure analogous to that described for 3aa, except that the crude material was purified by column chromatography on silica gel (hexane:toluene = 20:1), 3ab (49.8 mg, 0.156 mmol, 79%) was obtained from 1a (23.4 mg, 0.198 mmol) as a white solid: Mp 123-125 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.68-6.87 (m, 3H), 6.99 (t, 2H, *J* = 8.8 Hz), 7.12 (t, 2H, *J* = 8.5 Hz), 7.17-7.34 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 115.2 (d, *J* = 21.4 Hz), 115.4 (d, *J* = 21.4 Hz), 126.5, 126.6, 127.7, 128.4, 128.6, 129.1 (d, *J* = 7.4 Hz), 132.2 (d, *J* = 8.2 Hz), 134.3, 135.5 (d, *J* = 3.3 Hz), 137.3, 138.3 (d, *J* = 3.3 Hz), 140.9, 162.3 (d, *J* = 249.4 Hz), 162.4 (d, *J* = 248.6 Hz). LRMS (EI) *m/z*: 318 (M⁺). HRMS Calcd. for C₂₂H₁₆F₂: 318.1220, found: 318.1216. IR (neat): 3030, 2363, 1899, 1599, 1503, 1222, 1158, 970, 842, 831, 752 cm⁻¹.

(*E*)-4,4'-(4-Phenylbuta-1,3-diene-1,1-diyl)bis(chlorobenzene) (3ac). According to the general procedure analogous to that described for 3aa, 3ac (50.1 mg, 0.143 mmol, 71%) was obtained from 1a (23.9 mg, 0.202 mmol) as a white solid: Mp 132-134 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.70-6.87 (m, 3H), 7.14-7.23 (m, 5H), 7.23-7.34 (m, 6H), 7.40 (d, 2H, *J* = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 126.3, 126.5, 127.9, 128.5, 128.6, 128.67, 128.73, 129.1, 131.9, 133.5, 133.7, 135.0, 137.1, 137.8, 140.36, 140.45. LRMS (EI) *m/z*: 350 (M⁺). HRMS Calcd. for C₂₂H₁₆Cl₂: 350.0629, found: 350.0622. IR (neat): 3049, 1487, 1085, 1013, 824, 750 cm⁻¹.

(*E*)-4,4'-(4-Phenylbuta-1,3-diene-1,1-diyl)bis(methoxybenzene) (3ad). According to the general procedure analogous to that described for 3aa, except that the crude material was purified by column chromatography on silica gel (hexane:AcOEt = 10:1), 3ad (65.3 mg, 0.191 mmol, 92%) was obtained from 1a (24.6 mg, 0.208 mmol) as a white solid: Mp 126 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 3.80 (s, 3H), 3.86 (s, 3H), 6.68 (d, 1H, *J* = 15.6 Hz), 6.74 (d, 1H *J* = 10.8 Hz), 6.83 (d, 2H, *J* = 8.8 Hz), 6.86-6.97 (m, 3H), 7.12-7.33 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 55.2, 55.3, 113.56, 113.58, 126.3, 126.4, 127.2, 127.5, 128.5, 128.9, 131.8, 132.3, 132.5, 135.3, 137.7, 142.5, 159.0, 159.2. LRMS (EI) *m/z*: 342 (M⁺). HRMS Calcd. for C₂₄H₂₂O₂: 342.1619, found: 342.1632. IR (neat): 3028, 3006, 2943, 2832, 1601, 1507, 1246, 1174, 1033, 969, 753 cm⁻¹. The spectra data matched those reported in the literature.¹²

(*E*)-9-(3-Phenylallylidene)-9*H*-xanthene (3ae). According to the general procedure analogous to that described for 3ae, except that the crude material was purified by preparative thin-layer chromatography of silica gel (hexane:toluene = 10:1), 3ae (46.3 mg, 0.156 mmol, 81%) was obtained from 1a (22.8 mg, 0.193 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.65 (d, 1H, *J* = 11.2 Hz), 6.76 (d, 1H, *J* = 15.6 Hz), 7.05-7.25 (m, 6H), 7.25-7.33 (m, 3H), 7.40 (d, 2H, *J* = 7.8 Hz), 7.49 (t, 1H, *J* = 13.4 Hz), 7.60 (d, 1H, *J* = 7.8 Hz), 7.68 (d, 1H, *J* = 7.8 Hz). ¹³C NMR (150 MHz, C₆D₆) δ 117.0, 117.2, 123.3, 123.4, 123.5, 124.1, 124.5, 125.9, 126.3, 126.8, 127.6, 127.8, 128.6, 128.7, 129.0, 129.2, 135.2, 138.1, 152.1, 153.4. LRMS (EI) *m/z*: 296 (M⁺). HRMS Calcd. for C₂₂H₁₆O: 296.1201, found: 296.1234. IR (neat): 3034,1594,1450, 1261, 746 cm⁻¹.

(*E*)-9-(3-Phenylallylidene)-9*H*-thioxanthene (3af). According to the general procedure analogous to that described for 3aa, except that the crude material was purified by preparative thin-layer chromatography of silica gel (hexane:toluene = 10:1) and GPC (CHCl₃), 3af (60.8 mg, 0.195 mmol, 97%) was obtained from 1a (23.8 mg, 0.201 mmol) as a yellow solid: Mp 163-166 °C (CH₂Cl₂/hexane) (lit. 165-166 °C¹³). ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.70 (d, 1H, *J* = 11.7 Hz), 6.82 (d, 1H, *J* = 15.6 Hz), 7.18-7.42 (m, 11H), 7.48 (d, 1H, *J* = 7.8 Hz), 7.58 (t, 2H, *J* = 8.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 125.2, 125.88, 125.90, 126.1, 126.6, 126.8, 126.9, 127.0, 127.3, 127.7, 128.6, 129.5, 130.0, 131.9, 133.6, 133.7, 135.5, 136.1, 137.3, 137.8. LRMS (EI) *m/z*: 312 (M⁺). HRMS Calcd. for C₂₂H₁₆S: 312.0972, found: 312.0963. IR (neat): 3060, 1460, 1436, 969, 765 cm⁻¹.

(E)-9-(3-Phenylallylidene)-9H-fluorene (3ag). According to the procedure analogous to that

described for **3ja**, except that the reaction was conducted with TMAF (5.4 mg, 0.058 mmol) in DMI (1 mL) at 40 °C and that the crude material was purified by preparative thin-layer chromatography of silica gel (hexane:toluene = 10:1), **3ag** (34.9 mg, 0.124 mmol, 60%) was obtained from **1a** (24.5 mg, 0.207 mmol) as a yellow solid: Mp 163-164 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 7.01 (d, 1H, J = 15.2 Hz), 7.25-7.44 (m, 8H), 7.59 (d, 2H, J = 7.6 Hz), 7.65-7.78 (m, 3H), 7.97 (dd, 1H, J = 15.2, 12.4 Hz), 8.02-8.09 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 119.6, 120.0, 120.1, 124.8, 125.0, 126.88, 126.95, 127.06, 127.14, 127.78, 127.89, 128.5, 128.8, 135.1, 137.0, 137.2, 138.7, 138.9, 139.6, 140.9. LRMS (EI) *m/z*: 280 (M⁺). HRMS Calcd. for C₂₂H₁₆: 280.1252, found: 280.1247. IR (neat): 3050, 2997, 1618, 1446, 1439, 957, 779, 722 cm⁻¹.

(*E*)-5-(3-Phenylallylidene)-5*H*-dibenzo[*a*,*d*][7]annulene (3ah). According to the procedure analogous to that described for 3ja, except that the crude material was purified by column chromatography on silica gel (hexane:toluene = 10:1), 3ah (49.2 mg, 0.161 mmol, 77%) was obtained from 1a (24.8 mg, 0.210 mmol) as a white solid: Mp 148 °C (CH₂Cl₂/hexane). ¹H NMR (400 MHz, CDCl₃/TMS) δ 6.37 (d, 1H, *J* = 11.2 Hz), 6.65 (d, 1H, *J* = 15.6 Hz), 6.81-6.93 (m, 3H), 7.12-7.42 (m, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 125.9, 126.4, 127.1, 127.3, 127.4, 127.5, 128.0, 128.50, 128.52, 128.85, 128.87, 129.9, 131.3, 131.4, 133.0, 134.20, 134.22, 135.0, 137.3, 137.4, 142.3, 142.8. LRMS (EI) *m/z*: 306 (M⁺). HRMS Calcd. for C₂₄H₁₈: 306.1408, found: 306.1387. IR (neat): 3052, 3022, 1488, 1430, 968, 777 cm⁻¹.

((1*E*,3*Z*)-5,5-Dimethylhexa-1,3-diene-1,4-diyl)dibenzene (3ai). According to the general procedure analogous to that described for 3aa, except that the crude material was purified by column chromatography on silica gel (hexane:toluene = 10:1) and GPC (CHCl₃), 3ai (36.6 mg, 0.139 mmol, 67%) was obtained from 1a (24.6 mg, 0.208 mmol) as a colorless oil. ¹H NMR (600 MHz, CDCl₃/TMS) δ 1.14 (s, 1H), 6.26 (dd, 1H, *J* = 15.3, 10.5 Hz), 6.38 (d, 1H, *J* = 10.2 Hz), 6.51 (d, 1H, *J* = 15.0 Hz), 7.06-7.22 (m, 7H), 7.28-7.38 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 29.7, 36.3, 124.6, 126.2, 126.5, 127.0, 127.56, 127.62, 128.4, 130.0, 131.0, 137.7, 140.1, 153.9. LRMS (EI) *m/z*: 262 (M⁺). HRMS Calcd. for C₂₀H₂₂: 262.1721, found: 262.1695. IR (neat): 2965, 2952, 1490, 1479, 1358, 1233, 965, 746, 713 cm⁻¹.

((1*E*,3*E*)-5,5-Dimethylhexa-1,3-dien-1-yl)benzene (3aj). According to the procedure analogous to that described for 3aa, except that the reaction was conducted with TMAF (5.2 mg, 0.056 mmol) in DMI (1 mL) at 60 °C and that the crude material was purified by column chromatography on silica gel (hexane:toluene = 10:1), 3aj (27.3 mg, 0.147 mmol, 67%) was obtained from 1a (25.7 mg, 0.218 mmol) as a colorless oil. ¹H NMR (600 MHz, CD₃CN) δ 1.07 (s, 9H), 5.91 (d, 1H, *J* = 15.8 Hz), 6.20 (dd, 1H, *J* = 15.8, 10.3 Hz), 6.51 (d, 1H, *J* = 15.8 Hz), 6.83 (dd, 1H, *J* = 15.8, 10.3 Hz), 7.21 (t, 1H, *J* = 7.5 Hz), 7.31 (t, 2H, *J* = 7.9 Hz), 7.42 (d, 2H, *J* = 7.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 29.6, 33.4, 125.4, 126.1, 127.0, 128.5, 129.9, 130.2, 137.7, 146.8. LRMS (EI) *m/z*: 186 (M⁺). HRMS Calcd. for C₁₄H₁₈: 186.1408, found: 186.1403. IR (neat): 2959, 1595, 1248, 989, 747, 702 cm⁻¹. The spectra data matched those reported in the literature.¹⁴

((1*E*,3*Z*)-5-methylhexa-1,3-diene-1,4-diyl)dibenzene (3ak). According to the general procedure analogous to that described for 3aa, except that the reaction was conducted in DMI (1 mL) at 60 °C and that the crude material was purified by column chromatography on silica gel (hexane:toluene = 10:1), 3ak (35.7 mg, 0.144 mmol, 73%) was obtained from 1a (23.2 mg, 0.196 mmol) as a colorless oil. ¹H NMR (600 MHz, CDCl₃/TMS) δ 1.09 (d, 6H, *J* = 6.8 Hz), 2.66-2.78 (m, 1H), 6.26 (d, 1H, *J* = 11.0 Hz), 6.54 (d, 1H, *J* = 15.8 Hz), 6.64 (dd, 1H, *J* = 15.8, 11.0 Hz), 7.11-7.15 (m, 1H), 7.18 (d, 2H, *J* = 6.9 Hz), 7.20-7.23 (m, 3H), 7.28-7.34 (m, 2H), 7.37 (t, 2H, *J* = 7.5 Hz). ¹³C NMR (150 MHz, CDCl₃) δ 22.0, 36.1, 124.6, 126.3, 126.9, 127.12, 127.15, 128.1, 128.6, 129.2, 131.4, 137.9, 141.1, 151.1. LRMS (EI) *m/z*: 248 (M⁺). HRMS Calcd. for C₁₉H₂₀: 248.1565, found: 248.1559.

(*E*)-9-(3-(4-Methoxyphenyl)allylidene)-9*H*-xanthene (3be). According to the general procedure analogous to that described for 3aa, except that the reaction was conducted with TMAF (5.9 mg, 0.063 mmol) in DMI (1 mL) at room temperature, 3be (72.6 mg, 0.222 mmol, 98%) was obtained from 4b (33.6 mg, 0.227 mmol) as a yellow oil. ¹H NMR (400 MHz, CDCl₃/TMS) δ 3.81 (s, 3H), 6.68 (d, 1H,

J = 11.2 Hz), 6.76 (d, 1H, J = 15.1 Hz), 6.87 (d, 2H, J = 8.8 Hz), 7.07-7.46 (m, 10H), 7.63 (d, 1H, J = 7.8 Hz), 7.72 (d, 1H, J = 6.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 114.2, 116.6, 116.8, 122.97, 123.04, 123.1, 123.8, 123.9, 124.3, 125.6, 126.1, 127.7, 128.1, 128.3, 128.8, 130.5, 134.5, 151.5, 152.9, 159.3. LRMS (EI) m/z: 326 (M⁺). HRMS Calcd. C₂₃H₁₈O₂: 326.1306, found: 326.1280. IR (neat): 3036, 2930, 2835, 1597, 1508, 1450, 1248, 1172, 1031, 750 cm⁻¹.

References

- 1. Z. Zhang, H. Du, J. Xu, P. Li, Chem. Commun. 2016, 52, 11547.
- 2. T. Shimada, EP2727923, 2014.
- 3. X. Qi, P. Chen, G. Liu, Angew. Chem. Int. Ed. 2017, 56, 9517.
- 4. M. Mayer, W. M. Czaplik, A. Jacobi von Wangelin, Adv. Synth. Catal. 2010, 352, 2147.
- 5. O. Querolle, J.Dubois, S. Thoret, F. Roussi, F. Gueritte, D. Guenard, J. Med. Chem. 2004, 47, 5937.
- 6. A. Inoue, K. Kitagawa, H. Shinokubo, K. Oshima, J. Org. Chem. 2001, 66, 12, 4333.
- 7. M. Ishikura, R. Uemura, K. Yamada, R. Yanada, Heterocycles, 2006, 68, 2349.
- 8. (a) H. M. Walborsky, J. F. Pendleton, J. Am. Chem. Soc. 1960, 82, 1405. (b) A. I. Arkhypchuk, N.
- D'Imperio, S. Ott, Chem. Commun. 2019, 55, 6030.
- 9. G. Drefahl, G. Plötner, W. Hartrodt, R. Kühmstedt, Chem. Ber. 1960, 93, 1799.
- 10. M. Regitz, H. Eckes, Chem. Ber. 1980, 113, 3303.
- 11. T. Hagiwara, H. Sugiyama, Y. Matsushima, T. Kobayashi, US5573878, 1996.
- 12. Y. Zhu, P. Sun, H. Yang, L. Lu, H. Yan, M. Creus, J. Mao, Eur. J. Org. Chem. 2012, 4831.
- 13. K. Ishikawa, K. Akiba, N. Inamoto, Synthesis, 1978, 608.
- 14. A. L. Hansen, J.-P. Ebran, M. Ahlquist, P.-O. Norrby, T. Skrydstrup, Angew. Chem. Int. Ed. 2006, 45, 3349.

¹H NMR spectra of **3aa**

¹H NMR spectra of **3ba**

S18

¹H NMR spectra of **3ca**

¹H NMR spectra of **3da**

¹H NMR spectra of **3ea**

DEPT 45 spectra of 3ea

DEPT 135 spectra of 3ea

¹³C NMR spectra of **3ga**

¹³C NMR spectra of **3ha**

DEPT 90 NMR spectra of 3ha

¹H NMR spectra of **3ia**

¹H NMR spectra of **3ja**

S30

DEPT 135 spectra of 3ja

¹³C NMR spectra of **3ka**

¹H NMR spectra of **3la**

¹H NMR spectra of **3ma**

S35

¹H NMR spectra of **3na**

¹H NMR spectra of **30a**

¹³C NMR spectra of **3ab**

¹³C NMR spectra of **3ac**

¹³C NMR spectra of **3ae**

DEPT 90 spectra of 3ae

¹H NMR spectra of **3af**

¹H NMR spectra of **3ag**

¹H NMR spectra of **3ah**

¹H NMR spectra of 3ai

Expansion of H-H NOESY spectra of 3ai (CDCl₃, 600 MHz)

¹H NMR spectra of 3aj

¹H NMR spectra of **3ak**

Expansion of H-H NOESY spectra of 3ak (CDCl₃, 600 MHz)

 $^{13}\mathrm{C}$ NMR spectra of 3ak

¹H NMR spectra of **3be**

