Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Asymmetric β,γ'-Regioselective [4+3] and [4+2] Annulations of α-Vinylenals via Cascade Iminium Ion–Dienamine Catalysis

Yang Gao,^a Xue Song,^a Ru-Jie Yan,^a Wei Du,^a and Ying-Chun Chen*^{a,b}

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.

E-mail: ycchen@scu.edu.cn

Supplementary Information

Table of Contents

1. General methods
2. Typical procedure for the preparation of α-vinylenal 1a
3. More screening conditions for asymmetric [4+3] and [4+2] annulations of α -vinylenals
3.1 β,γ'-Regioselective [4+3] annulations of α-vinylenal 1a with N-(2,2,2-trifluoroethyl) ketimines 2 S4
3.2 β,γ'-Regioselective [4+2] annulation of α-vinylenal 1a with 2-(thiochroman-4-ylidene)malononitrile
4aS5
4. General procedure for asymmetric [4+3] and [4+2] annulations of α -vinylenals
4.1 β , γ' -Regioselective [4+3] annulations of α -vinylenals 1 with <i>N</i> -(2,2,2-trifluoroethyl) ketimines 2 S6
4.2 β , γ' -Regioselective [4+2] annulations of α -vinylenals 1 with α , α -dicyanoalkenes 4
5. Transformation of product 3a
6. More screening studies on other 1,3-dipoles, α -vinylenals and α , α -dicyanoalkenes
7. Asymmetric reaction on a 1.0 mmol scale
7.1 β , γ' -Regioselective [4+3] annulation of α -vinylenal 1a with <i>N</i> -(2,2,2-trifluoroethyl) ketimine 2a S24
7.2 β,γ'-Regioselective [4+2] annulation of α-vinylenal 1a with 2-(thiochroman-4-ylidene)malononitrile
4a
8. Crystal data and structural refinement
9. Proposed catalytic cycle via cascade iminium ion-dienamine catalysis
10. NMR, HRMS spectra and HPLC chromatograms

1. General methods

Unless otherwise noted, all reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = double doublet doublet, dt = double triplet; td = triple doublet; tt = triple triplet, m = multiplet, br = broad, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Xcalibur E and the data obtained were deposited at the Cambridge Crystallographic Data Centre. In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 \times 4.6 mm), Chiralpak IE (250 \times 4.6 mm) or Chiralpak IA Column (250 \times 4.6 mm). UV detection was monitored at 254 nm. The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl₃ solution at 25 °C. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60–90 $^{\circ}$ C) was redistilled. The secondary amine catalyst C4,¹ N-(2,2,2-trifluoroethyl) ketimines $2^{,2}$ (2E,3E)-2-benzylidene-4-phenylbut-3-enal $1i^{,3}$ and α,α dicyanoalkenes 4^4 were prepared according to the literature procedures.

2. Typical procedure for the preparation of α -vinylenal 1a

(*E*)-Ethyl 2-benzylidenebut-3-enoate **S3** was synthesized according to literature procedure.⁵ To a mixture of **S1** (1.14 g, 10.0 mmol, 1.0 equiv) and **S2** (1.06 g, 10.0 mmol, 1.0 equiv) in DCM

(80.0 mL) was added TEA (3.03 g, 30 mmol, 3.0 equiv). This mixture was kept in ice bath for 5 min before the slow dropwise addition of TiCl₄ (3.76 g, 20 mmol, 2.0 equiv). The mixture was stirred for further 8 h at room temperature. After compeletion monitored by TLC, the mixture was quenched with water (50 mL) and extracted with DCM (3×30 mL). The combined organic phases were washed with brine (50 mL) and water (50 mL), dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15) to afford **S3** as a yellow oil; 1.41 g, 70% yield.

To a solution of S3 (1.41 g, 7.00 mmol, 1.0 equiv) in dry THF (15 mL) under a nitrogen atmosphere was added DIBAL-H (14.0 mL, 1.0 M solution in hexane, 14.0 mmol, 2.0 equiv) dropwise over a period of 30 min at -78 °C. The mixture was then stirred overnight. After compeletion monitored by TLC, the reaction mixture is carefully quenched with 2 M HCl solution (10.0 mL), followed by extraction with EtOAc (3 × 30 mL). The organic layers were combined, dried over Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford S4 as a yellow oil; 0.672 g, 60% yield.

To a solution of **S4** (0.672 g, 4.20 mmol, 1.0 equiv) in DCM (10.0 mL) was added MnO_2 (1.82 g, 21.0 mmol, 5.0 equiv) in one portion and the mixture was stirred for 6 h at room temperature. After compeletion monitored by TLC, the mixture was filtered through a pad of celite and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15) to afford **1a** as a yellow oil; 531 mg, 80% yield.

(*E*)-2-Benzylidenebut-3-enal (1a): as a yellow oil; 531 mg, 80% yield for the last step (EtOAc/petroleum ether = 1/15); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.67 (s, 1H), 7.51 (d, *J* = 6.9 Hz, 2H), 7.44–7.34 (m, 4H), 7.18 (s, 1H), 6.57 (dd, *J* = 17.6, 11.6 Hz, 1H), 6.15 (dd, *J* = 17.9, 1.8 Hz, 1H), 5.56 (d, *J* = 12.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 193.8, 149.7, 136.5, 134.6, 130.3 (2C), 129.9, 128.6 (2C), 127.7, 122.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₁O 159.0804; Found 159.0807.

(*E*)-2-(4-Methylbenzylidene)but-3-enal (1d): as a yellow oil; 420 mg, 70% yield for the last step (EtOAc/petroleum ether = 1/15); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.66 (s, 1H), 7.44 (d, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 7.8 Hz, 2H),

7.17 (s, 1H), 6.58 (dd, J = 17.8, 11.8 Hz, 1H), 6.12 (d, J = 17.6 Hz, 1H), 5.57 (d, J = 11.7 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.9, 150.0, 140.5, 135.9, 131.9, 130.5 (2C), 129.4 (2C), 127.9, 122.2, 21.5; HRMS (ESI-TOF) m/z: [M + Ha]⁺ Calcd for C₁₂H₁₂ONa 195.0786; Found 195.0786.

(*E*)-2-(Thiophen-2-ylmethylene)but-3-enal (1h): as a yellow oil; 340 mg, 72% yield for the last step (EtOAc/petroleum ether = 1/15); ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.62 (s, 1H), 7.60 (d, *J* = 5.1 Hz, 1H), 7.41 (d, *J* = 3.7 Hz, 1H), 7.30 (s, 1H), 7.15 (t, *J* = 4.3 Hz, 1H), 6.74 (dd, *J* = 17.6, 11.6 Hz, 1H), 6.15 (d, *J* = 17.0 Hz, 1H), 5.66 (d, *J* = 11.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 193.2, 141.5, 138.4, 134.3, 133.8, 132.4, 128.2, 127.7, 123.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₉H₉OS 165.0374; Found 165.0370.

3. More screening conditions for asymmetric [4+3] and [4+2] annulations of α -vinylenals 3.1 β , γ' -Regioselective [4+3] annulations of α -vinylenal 1a with *N*-(2,2,2-trifluoroethyl) ketimines 2^a

^{*a*} Unless noted otherwise, reactions were performed with enal **1a** (0.12 mmol, 1.2 equiv), isatin imine **2** (0.1 mmol, 1.0 equiv), amine **C** (0.02 mmol, 20 mol%) and acid **A** (0.02 mmol, 20 mol%) in solvent (0.2 mL) at 60 °C for 24 h. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase; dr >19:1 by ¹H NMR analysis.

3.2 β , γ' -Regioselective [4+2] annulation of α -vinylenal 1a with α , α -dicyanoalkene 4a^a

		NC.	CN C (20 A (20 C (20	mol%) NC	N H Ph
			Solve	nt, rt	`S
	1a	2	la		5a
\ ⊢	Ph Ph OX	C1 X=TMS C2 X=TES C3 X=DPMS C7 X=TPS	N H	N H H	CF ₃ C8 CF ₃
	COOH R	A1 R = H A2 R = OH A3 R = F	O ₂ N	соон	ОН СООН А6
Entry	С	Α	Solvent	$\operatorname{Yield}(\%)^b$	ee (%) ^c
1	C1	A1	THF	69	97
2	C2	A1	THF	87	97
3	C3	A1	THF	70	98
4	C7	A1	THF	54	96
5	C8	A1	THF	90	67
6	C2	A2	THF	60	92
7	C2	A3	THF	65	96
8	C2	A4	THF	92	98
9	C2	A6	THF	86	95
10	C2	A4	Toluene	55	93
11	C2	A4	CHCl ₃	50	93
12	C2	A4	DCM	62	99
13	C2	A4	CH ₃ CN	87	92

^{*a*}Unless noted otherwise, reactions were performed with enal **1a** (0.12 mmol, 1.2 equiv), α , α -dicyanoalkene **4a** (0.1 mmol, 1.0 equiv), amine **C** (0.02 mmol, 20 mol%) and acid **A** (0.02 mmol, 20 mol%) in solvent (0.2 mL) at rt for 12 h. ^{*b*} Yield of the isolated product. ^{*c*} Determined by HPLC analysis on a chiral stationary phase; dr >19:1 by ¹H NMR analysis.

4. General procedure for asymmetric [4+3] and [4+2] annulations of α -vinylenals 4.1 β , γ' -Regioselective [4+3] annulations of α -vinylenals 1 with *N*-(2,2,2-trifluoroethyl) ketimines 2

A mixture of α -vinylenal **1** (0.120 mmol, 1.2 equiv), *N*-(2,2,2-trifluoroethyl) ketimine **2** (0.100 mmol, 1.0 equiv), **C4** (9.1 mg, 0.020 mmol, 0.2 equiv) and **A1** (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 12–24 h, and the reaction was monitored by TLC. After completion, the product **3** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether). The racemic **3** could not be obtained by using the achiral amine catalysts, so the mixture of chiral catalyst **C1** and its enantiomer *ent*-**C1** was used for the preparation of the racemate.

Synthesis of 3a: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7)

gave product **3a**: 30.0 mg (0.075 mmol), as a white solid, 75% yield; mp = 230– 231 °C; $[\alpha]_D^{25}$ = +332.5 (*c* = 1.5 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis [Chiralpak IE, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 16.22 min, t (minor) = 19.15 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.48 (s, 1H), 7.45–7.30 (m, 2H), 7.39–7.34 (m, 1H), 7.33–7.28 (m, 2H), 7.27–7.21 (m, 1H), 7.18–7.12 (m, 1H), 7.10–7.02 (m, 1H), 6.92 (dd, *J* = 8.9, 6.2 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 4.86–4.78 (m, 1H), 4.45 (d, *J* = 10.8 Hz, 1H), 3.78 (dd, *J* = 14.8, 6.4 Hz, 1H), 3.24 (s, 3H), 2.47 (dd, *J* = 14.7, 8.9 Hz, 1H), 2.07 (d, *J* = 10.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 177.1, 147.2, 144.6, 142.9, 139.6, 130.8, 130.0, 128.6 (2C), 128.4 (2C), 127.5, 125.9 (q, ¹*J*_{C-F} = 279.1 Hz), 123.0, 122.3, 108.9, 61.86, 55.7 (q, ²*J*_{C-F} = 27.5 Hz), 46.2, 32.8, 26.3; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₉F₃N₂O₂Na 423.1296; Found 423.1292.

Synthesis of 3b: A mixture of (*E*)-2-(3-bromobenzylidene)but-3-enal 1b (28.5 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 18 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3b: 31.0 mg (0.0650 mmol), as a white solid, 65% yield; mp 134–135 °C; $[\alpha]_{D}^{25} = +310.4$ (*c* = 1.5 in CHCl₃); >19:1 dr; 87% ee, determined

by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 6.70 min, t (minor) = 8.14 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H), 7.51 (s, 1H), 7.40–7.30 (m, 3H), 7.20–7.12 (m, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.97 (dd, *J* = 8.9, 6.2 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 4.85–4.70 (m, 1H), 4.40 (d, *J* = 10.8 Hz, 1H), 3.72 (dd, *J* = 14.7, 6.2 Hz, 1H), 3.24 (s, 3H), 2.48 (dd, *J* = 14.7, 8.9 Hz, 1H), 2.07 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.5, 177.1, 146.5, 145.2, 142.9, 141.7, 131.3, 130.7, 130.6, 130.1, 130.1, 127.4, 125.8 (q, ¹*J*_{C-F} = 279.8 Hz), 123.1, 122.5, 122.4, 109.0, 61.8, 55.7 (q, ²*J*_{C-F} = 27.5 Hz), 45.9, 32.9, 26.3; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –73.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₉⁷⁹BrF₃N₂O₂ 479.0582; Found 479.0583; Calcd for C₂₂H₁₉⁸¹BrF₃N₂O₂ 481.0562; Found 481.0568.

Synthesis of 3c: A mixture of (*E*)-2-(4-bromobenzylidene)but-3-enal 1c (28.5 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 17 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3c: 28.7 mg (0.0600 mmol), as a white solid, 60% yield; mp 233–134 °C; $[\alpha]_D^{25} = +378.7$ (*c* = 1.5 in CHCl₃); >19:1 dr; 88% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ =

254 nm, t (major) = 5.59 min, t (minor) = 6.34 min]; ¹H NMR (400 MHz, DMSO) δ (ppm) 8.76 (s, 1H), 6.85 (d, J = 8.4 Hz, 2H), 6.77–6.65 (m, 2H), 6.66 (d, J = 8.4 Hz, 2H), 6.46 (dd, J = 8.9, 6.2 Hz, 1H), 6.41 (t, J = 7.5 Hz, 2H), 3.93–3.78 (m, 1H), 3.65 (d, J = 11.1 Hz, 1H), 3.20 (d, J = 10.2 Hz, 1H), 2.91 (dd, J = 14.7, 6.2 Hz, 1H), 1.84 (s, 3H), 1.77 (dd, J = 14.7, 9.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 194.3, 177.3, 146.6, 146.4, 142.9, 140.5, 131.8 (2C), 131.0 (2C), 129.8, 126.8 (q, ¹ $J_{C-F} = 279.7$ Hz), 124.4, 122.6, 120.5, 109.2, 79.65, 62.4, 56.1 (q, ² $J_{C-F} = 27.7$ Hz), 45.4, 32.8, 26.4; ¹⁹F NMR (376 MHz, DMSO): δ (ppm) –66.8; HRMS (ESI-TOF) m/z: [M + Ha]⁺ Calcd for C₂₂H₁₈⁷⁹BrF₃N₂O₂Na 501.0401; Found 501.0399; Calcd for C₂₂H₁₈⁸¹BrF₃N₂O₂Na 503.0381; Found 503.0381.

Synthesis of 3d: A mixture of (*E*)-2-(4-methylbenzylidene)but-3-enal 1d (53.3 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 $^{\circ}$ C for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum

ether = 1/7) gave product **3d**: 33.1 mg (0.0800 mmol), as a white solid, 80% yield; mp 297–298 °C; $[\alpha]_{D}^{25}$ = +312.2 (*c* = 1.6 in CHCl₃); >19:1 dr; 91% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 5.22 min, t (minor) = 6.94 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.48 (s, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.33–7.28 (m, 2H), 7.15 (d, *J* = 7.3 Hz, 1H), 7.13–7.09 (m, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.90 (t, *J* = 9.0 Hz, 2H), 4.85–4.73 (m, 1H), 4.42 (d, *J* = 10.8 Hz, 1H), 3.77 (dd, *J* = 14.6, 6.3 Hz, 1H), 3.24 (s, 3H), 2.46 (dd, *J* = 14.6, 8.8 Hz, 1H), 2.31 (s, 3H), 2.07 (d, *J* = 10.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 192.8, 177.2, 147.3, 144.4, 142.9, 137.2, 136.6, 130.8, 130.0 (2C), 129.3 (2C), 128.3, 126.0 (q, ¹*J*_{C-F} = 279.8 Hz), 123.0, 122.3, 108.9, 61.8, 55.6 (q, ²*J*_{C-F} = 27.1 Hz), 45.7, 32.8, 26.3, 21.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁F₃N₂O₂Na 437.1453; Found 437.1443.

Synthesis of 3e: A mixture of (*E*)-2-(3-methoxybenzylidene)but-3-enal 1e (22.6 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 13 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3e: 34.4 mg (0.0800 mmol), as a white solid, 80% yield;

mp 297–298 °C; $[\alpha]_D^{25} = +299.6 \ (c = 1.7 \text{ in CHCl}_3); >19:1 \text{ dr}; 92\%$ ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254 \text{ nm}, \text{t} (\text{major}) = 5.83 \text{ min}, \text{t} (\text{minor})$ = 6.59 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.49 (s, 1H), 7.37 (t, $J = 7.6 \text{ Hz}, 1\text{H}), 7.24 \ (t, J = 8.0 \text{ Hz}, 1\text{H}), 7.16 \ (d, J = 7.6 \text{ Hz}, 1\text{H}), 7.10–7.02 \ (m, 2\text{H}), 6.98–6.87 \ (m, 3\text{H}), 6.79 \ (d, J = 7.9 \text{ Hz}, 1\text{H}), 4.85–4.70 \ (m, 1\text{H}), 4.44 \ (d, J = 10.8 \text{ Hz}, 1\text{H}), 3.81 \ (s, 3\text{H}), 3.77 \ (dd, J = 14.6, 6.3 \text{ Hz}, 1\text{H}), 3.25 \ (s, 3\text{H}), 2.47 \ (dd, J = 14.6, 8.9 \text{ Hz}, 1\text{H}), 2.07 \ (d, J = 10.2 \text{ Hz}, 1\text{H}); ^{13}C \text{ NMR} \ (100 \text{ MHz}, \text{CDCl}_3) \delta \ (ppm) 192.7, 177.1, 159.6, 147.0, 144.6, 142.9, 141.0, 130.8, 130.0, 129.6, 125.9 \ (q, {}^{1}J_{C-F} = 276.9$ Hz), 123.0, 122.3, 120.6, 114.7, 112.5, 108.9, 61.8, 55.6 (q, ${}^{2}J_{C-F} = 27.5$ Hz), 55.2, 46.0, 32.8, 26.3. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁F₃N₂O₃Na 453.1402; Found 453.1394.

Synthesis of 3f: A mixture of (*E*)-2-(4-methoxybenzylidene)but-3-enal 1f (22.6 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 15 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3f: 31.4 mg (0.0730 mmol), as a white solid, 73% yield; mp 235–236 °C; $[\alpha]_{p}^{25} = +315.5$ (*c* = 1.5 in CHCl₃); >19:1 dr; 86% ee, determined

by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 6.10 min, t (minor) = 9.28 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.48 (s, 1H), 7.36 (td, *J* = 7.8, 1.3 Hz, 1H), 7.34–7.31 (m, 2H), 7.14 (d, *J* = 7.2 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.92–6.87 (m, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 4.85–4.70 (m, 1H), 4.40 (d, *J* = 10.8 Hz, 1H), 3.78 (s, 3H), 3.74 (dd, *J* = 14.4, 6.4 Hz, 1H), 3.24 (s, 3H), 2.46 (dd, *J* = 14.6, 8.9 Hz, 1H), 2.04 (d, *J* = 10.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.8, 177.2, 158.8, 147.3, 144.1, 142.9, 131.7, 130.8, 130.0, 129.5 (2C), 126.0 (q, ¹*J*_{C-F} = 278.7 Hz), 123.0, 122.3, 114.0 (2C), 108.9, 61.8, 55.7 (q, ²*J*_{C-F} = 27.4 Hz), 55.2, 45.3, 32.8, 26.3. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –73.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁F₃N₂O₃Na 453.1402; Found 453.1392.

Synthesis of 3g: A mixture of (*E*)-2-(naphthalen-2-ylmethylene)but-3-enal 1g (25.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3g: 36.9 mg (0.0820 mmol), as a white solid, 82% yield; mp 229–230 °C; $[\alpha]_D^{25} = +356.7$ (*c* = 1.8 in CHCl₃); >19:1 dr; 96%

ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 5.92 min, t (minor) = 11.05 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H),

7.86 (s, 1H), 7.84–7.75 (m, 3H), 7.53 (d, J = 8.7 Hz, 1H), 7.49–7.41 (m, 2H), 7.37 (t, J = 7.7 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.98–6.92 (m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 4.85–4.70 (m, 1H), 4.62 (d, J = 10.8 Hz, 1H), 3.88 (dd, J = 14.6, 6.1 Hz, 1H), 3.25 (s, 3H), 2.51 (dd, J = 14.7, 8.9 Hz, 1H), 2.12 (d, J = 10.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 177.2, 147.1, 144.6, 142.9, 137.0, 133.3, 132.7, 130.8, 130.1, 128.4, 127.9, 127.6, 127.4, 126.5, 126.2, 126.0, 125.9 (q, ¹ $J_{C-F} = 278.3$ Hz), 123.1, 122.4, 109.0, 61.9, 55.8 (q, ² $J_{C-F} = 27.3$ Hz), 46.4, 32.9, 26.4. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₁F₃N₂O₂Na 473.1453; Found 473.1456.

Synthesis of 3h: A mixture of (E)-2-(thiophen-2-ylmethylene)but-3-enal 1h (19.7 mg, 0.120 mmol, 1.2 equiv), (Z)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 20 h. After completion, purification by flash chromatography on silica gel

(EtOAc/petroleum ether = 1/7) gave product **3h**: 32.4 mg (0.0800 mmol), as a white solid, 80% yield; mp 225–226 °C; $[\alpha]_D^{25} = +378.8$ (*c* = 1.6 in CHCl₃); >19:1 dr; 88% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 6.70 min, t (minor) = 8.14 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.57 (s, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.20–7.12 (m, 2H), 7.11–7.04 (m, 2H), 6.98–6.84 (m, 3H), 4.95–4.80 (m, 2H), 3.65 (dd, *J* = 14.3, 6.7 Hz, 1H), 3.25 (s, 3H), 2.44 (dd, *J* = 14.3, 8.7 Hz, 1H), 2.11 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.1, 177.0, 146.6, 145.1, 142.9, 142.2, 130.6, 130.0, 126.9, 126.1, 125.8 (q, ¹*J*_{C-F} = 279.8 Hz), 124.4, 123.0, 122.4, 109.0, 60.7, 56.2 (q, ²*J*_{C-F} = 27.7 Hz), 39.1, 33.2, 26.3. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₇F₃NaO₂SNa 429.0861; Found 429.0852.

Synthesis of 3i: A mixture of (2E,3E)-2-benzylidene-4-phenylbut-3-enal 1i (28.1 mg, 0.120 mmol, 1.2 equiv), (Z)-1-methyl-3-((2,2,2-trifluoroethyl)imino) indolin-2-one 2a (24.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 12 h. After completion, purification by flash

chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product **3i**: 42.8 mg (0.0900 mmol), as a white solid, 90% yield; mp 226–227 °C; $[\alpha]_D^{25} = +298.1$ (c = 2.0 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minr) = 4.53 min, t (major) = 4.99 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.53 (s, 1H), 7.48 (d, J = 7.0 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.28–7.22 (m, 3H), 7.14–7.04 (m, 5H), 6.98 (d, J = 6.9 Hz, 2H), 6.50 (d, J = 7.7 Hz, 1H), 5.18 (d, J = 6.8 Hz, 1H), 5.12–5.02 (m, 1H), 4.55 (d, J = 10.6 Hz, 1H), 2.84 (s, 3H), 2.29 (d, J = 10.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 176.3, 149.8, 145.4, 143.5, 139.3, 134.6, 130.2, 128.76 (2C), 128.75 (2C), 128.4 (2C), 127.9 (2C), 127.7, 127.68, 127.65, 125.9 (q, ¹ $_{JC-F} = 279.1$ Hz), 122.8, 122.5, 108.5, 67.4, 55.5 (q, ² $_{JC-F} = 27.2$ Hz), 49.5, 45.6, 25.7. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₃F₃N₂O₂Na 499.1609; Found 499.1601.

Synthesis of 3j: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-5-methoxy-1-methyl-3-((2,2,2-trifluoroethyl)imino) indolin-2-one 2b (27.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 14 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3j: 32.2 mg (0.0750 mmol), as a white solid, 75% yield; mp 220–221 °C; $[\alpha]_{D}^{25} = +335.4$ (*c* = 1.6 in

CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 9.15 min, t (minor) = 12.20 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.46 (d, *J* = 1.5 Hz, 1H), 7.41 (d, *J* = 7.0 Hz, 2H), 7.32–7.27 (m, 2H), 7.25–7.20 (m, 1H), 6.94–6.88 (m, 1H), 6.86 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 6.75 (d, *J* = 2.5 Hz, 1H), 4.85–4.70 (m, 1H), 4.44 (d, *J* = 10.8 Hz, 1H), 3.82–3.74 (m, 4H), 3.21 (s, 3H), 2.46 (dd, *J* = 14.7, 8.9 Hz, 1H), 2.04 (d, *J* = 9.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 176.8, 156.2, 147.2, 144.4, 139.6, 136.2, 132.1, 128.6 (2C), 128.4 (2C), 127.5, 125.9 (q, ¹*J*_{C-F} = 278.4 Hz), 113.1, 110.8, 109.2, 62.1, 55.9, 55.7 (q, ²*J*_{C-F} = 27.5 Hz), 46.1, 32.8, 26.4; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂F₃N₂O 431.1583; Found 431.1583.

Synthesis of 3k: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1,5-dimethyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2c (25.6 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 14 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3k: 31.0 mg (0.0750 mmol), as a white solid, 75% yield; mp 225–226 °C; $[\alpha]_{D}^{25} = +295.5$ (*c* = 1.5 in CHCl₃); >19:1

dr; 96% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 4.70 min, t (minor) = 5.43 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.50 (s, 1H), 7.45–7.40 (m, 2H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 6.98–6.89 (m, 2H), 6.78 (d, *J* = 8.0 Hz, 1H), 4.85–4.70 (m, 1H), 4.46 (d, *J* = 10.8 Hz, 1H), 3.77 (dd, *J* = 14.6, 6.2 Hz, 1H), 3.22 (s, 3H), 2.46 (dd, *J* = 14.6, 8.9 Hz, 1H), 2.33 (s, 3H), 2.04 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.8, 177.1, 147.1, 144.8, 140.4, 139.6, 132.7, 130.9, 130.2, 128.6 (2C), 128.4 (2C), 127.5, 125.9 (q, ¹*J*_{C-F} = 280.0 Hz), 123.1, 108.7, 61.9, 55.7 (q, ²*J*_{C-F} = 27.2 Hz), 46.1, 32.8, 26.4, 21.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂F₃N₂O₂ 415.1633; Found 415.1639.

Synthesis of 31: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-6-chloro-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2d (27.7 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 31: 29.5 mg (0.0680 mmol), as a white solid, 68% yield; mp 223–224 °C; $[\alpha]_{D}^{25} = +348.7$ (*c* = 1.4 in

CHCl₃); >19:1 dr; 94% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 8.28 min, t (minor) = 9.19 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.46 (s, 1H), 7.45–7.35 (m, 2H), 7.34–7.26 (m, 2H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 7.9 Hz, 1H), 7.03 (dd, *J* = 7.9, 1.8 Hz, 1H), 6.93–6.85 (m, 2H), 4.84–4.67 (m, 1H), 4.44 (d, *J* = 10.8 Hz, 1H), 3.76 (dd, *J* = 14.6, 6.1 Hz, 1H), 3.22 (s, 3H), 2.45 (dd, *J* = 14.7, 8.9 Hz, 1H), 2.04 (d, *J* = 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.6, 177.1, 147.4, 144.2, 143.9, 139.4, 136.0, 129.1, 128.7 (2C), 128.4 (2C), 127.6, 125.9 (q, ¹*J*_{C-F} = 279.8 Hz), 123.4, 122.8, 109.7, 61.6, 55.8 (q, ²*J*_{C-F} = 27.4 Hz), 46.2, 32.7, 26.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –73.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₉³⁵ClF₃N₂O₂ 435.1087; Found 435.1089; Calcd for C₂₂H₁₉³⁷ClF₃N₂O₂ 437.1058; Found 437.1079.

Synthesis of 3m: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-7-fluoro-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2e (26.0 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3m: 25.0 mg (0.0600 mmol), as a white solid, 60% yield; mp 220–221 °C; $[\alpha]_{D}^{25} = +315.8$ (*c* = 1.2 in CHCl₃); >19:1 dr; 94%

ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 6.91 min, t (minor) = 9.37 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H), 7.43–7.38 (m, 2H), 7.33–7.28 (m, 2H), 7.26–7.21 (m, 1H), 7.13–7.06 (m, 1H), 7.03–6.97 (m, 1H), 6.94 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.89 (dd, *J* = 8.9, 6.2 Hz, 1H), 4.85–4.70 (m, 1H), 4.45 (d, *J* = 10.8 Hz, 1H), 3.77 (dd, *J* = 14.7, 6.1 Hz, 1H), 3.46 (d, *J* = 2.8 Hz, 3H), 2.48 (dd, *J* = 14.7, 8.9 Hz, 1H), 2.05 (d, *J* = 10.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.6, 176.7, 148.0 (d, ¹*J*_{C-F} = 243.6 Hz), 147.3, 144.0, 139.4, 133.6 (d, ⁴*J*_{C-F} = 3.1 Hz), 129.6 (d, ³*J*_{C-F} = 8.5 Hz), 128.7 (2C), 128.4 (2C), 127.6, 125.8 (q, ¹*J*_{C-F} = 279.6 Hz), 123.8 (d, ³*J*_{C-F} = 6.3 Hz), 118.2, 118.1 (d, ²*J*_{C-F} = 23.6 Hz), 61.9, 55.6 (q, ²*J*_{C-F} = 27.5 Hz), 46.1, 32.8, 28.8; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0, –135.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₉F₄N₂O₂ 419.1383; Found 419.1384.

Synthesis of 3n: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-7-chloro-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2f (27.7 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 17 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3n: 26.0 mg (0.0600 mmol), as a white solid, 60% yield; mp 233–234 °C; $[\alpha]_{\rm P}^{25} = +348.2$ (*c* = 1.2 in CHCl₃); >19:1 dr; 94% ee, determined

by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 7.17 min, t (minor) = 10.67 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H), 7.42–7.38 (m, 2H), 7.33–7.22 (m, 4H), 7.05 (d, *J* = 7.0 Hz, 1H), 6.96 (t, *J* = 7.8 Hz, 1H), 6.91–6.85 (m, 1H), 4.90–4.75 (m, 1H), 4.44 (d, *J* = 10.8 Hz, 1H), 3.76 (dd, *J* = 14.5, 6.1 Hz, 1H), 3.61 (s, 3H), 2.45 (dd, *J* = 14.6, 8.9 Hz, 1H), 2.02 (d, *J* = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.6, 177.4, 147.3, 144.0, 139.4, 138.9, 133.5, 132.3, 128.7 (2C), 128.4 (2C), 127.6, 125.9 (q, ¹*J*_{C-F} = 279.8 Hz), 123.8, 120.9, 116.5, 61.4, 55.7 (q, ²*J*_{C-F} = 27.4 Hz), 46.1, 32.9, 29.8; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₁₈³⁵ClF₃N₂O₂Na 457.0907; Found 457.0892; Calcd for C₂₂H₁₈³⁷ClF₃N₂O₂Na 459.0877; Found 459.0868.

Synthesis of 30: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1,7-dimethyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2g (25.6 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 30: 31.1 mg (0.0750 mmol), as a white solid, 75% yield; mp 219–220 °C; $[\alpha]_{\rm D}^{25} = +307.6$ (*c* = 1.5 in CHCl₃); >19:1 dr; 80% ee, determined

by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 7.03 min, t (minor) = 8.89 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.47 (s, 1H), 7.44–7.39 (m, 2H), 7.33–7.27 (m, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 6.3 Hz, 1H), 6.95–6.89 (m, 2H), 4.89–4.74 (m, 1H), 4.44 (d, *J* = 10.8 Hz, 1H), 3.76 (dd, *J* = 14.6, 6.2 Hz, 1H), 3.52 (s, 3H), 2.59 (s, 3H), 2.45 (dd, *J* = 14.6, 8.9 Hz, 1H), 2.02 (d, *J* = 10.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 177.8, 147.0, 144.8, 140.5, 139.6, 133.7, 131.6, 128.6 (2C), 128.4 (2C), 127.4, 125.9 (q, ¹*J*_{C-F} = 279.9 Hz), 123.0, 120.7, 120.2, 61.1, 55.7 (q, ²*J*_{C-F} = 27.47 Hz), 46.1, 33.0, 29.7, 19.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂F₃N₂O₂ 415.1633; Found 415.1635.

Synthesis of 3p: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-7-methoxy-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2h (27.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 $^{\circ}$ C for 14 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum

ether = 1/7) gave product **3p**: 33.5 mg (0.0780 mmol), as a white solid, 78% yield; mp 227–228 °C; $[\alpha]_{D}^{25}$ = +346.3 (*c* = 1.6 in CHCl₃); >19:1 dr; 94% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 7.69 min, t (minor) = 9.50 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.46 (s, 1H), 7.46–7.38 (m, 2H), 7.34–7.26 (m, 2H), 7.26–7.20 (m, 1H), 7.00 (t, *J* = 7.9 Hz, 1H), 6.95–6.85 (m, 2H), 6.76 (d, *J* = 7.3 Hz, 1H), 4.85–4.70 (m, 1H), 4.44 (d, *J* = 10.8 Hz, 1H), 3.86 (s, 3H), 3.75 (dd, *J* = 14.7, 6.2 Hz, 1H), 3.50 (s, 3H), 2.46 (dd, *J* = 14.7, 8.8 Hz, 1H), 2.04 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 177.3, 147.0, 145.9, 144.9, 139.6, 132.3, 130.7, 128.6 (2C), 128.4 (2C), 127.4, 125.9 (q, ¹*J*C-F = 279.4 Hz), 123.8, 114.8, 113.8, 61.7, 56.1, 55.6 (q, ²*J*C-F = 27.2 Hz), 46.0, 33.0, 29.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁F₃N₂O₃Na 453.1402; Found 453.1403.

Synthesis of 3q: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-benzyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2i (31.8 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 °C for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave product 3q: 37.1 mg (0.0780 mmol), as a white solid, 78% yield; mp 223–

224 °C; $[\alpha]_{D}^{25}$ = +298.4 (*c* = 1.8 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 9.24 min, t (minor) = 11.90 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.48 (s, 1H), 7.46–7.40 (m, 2H), 7.35–7.27 (m, 6H), 7.26–7.20 (m, 3H), 7.15 (d, *J* = 7.3 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.97–6.91 (m, 1H), 6.77 (d, *J* = 7.7 Hz, 1H), 5.00–4.88 (m, 3H), 4.47 (d, *J* = 10.7 Hz, 1H), 3.86 (dd, *J* = 14.7, 6.2 Hz, 1H), 2.54 (dd, *J* = 14.6, 8.9 Hz, 1H), 2.09 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 177.2, 147.2, 144.5, 142.0, 139.6, 135.3, 130.9, 129.9, 128.9 (2C), 128.7 (2C), 128.4 (2C), 127.8, 127.5, 127.2 (2C), 126.7 (q, ¹*J*_{C-F} = 279.3 Hz), 123.1, 122.4, 109.9, 61.8, 55.7 (q, ²*J*_{C-F} = 27.8 Hz), 46.1, 43.7, 32.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₃F₃N₂O₂Na 499.1609; Found 499.1612.

Synthesis of 3r: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), (*Z*)-1-(methoxymethyl)-3-((2,2,2-trifluoroethyl)imino)indolin-2-one 2j (27.2 mg, 0.100 mmol, 1.0 equiv), C4 (9.1 mg, 0.020 mmol, 0.2 equiv) and A1 (2.4 mg, 0.020 mmol, 0.2 equiv) in DCE (0.2 mL) was stirred at 50 $^{\circ}$ C for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum

MOM ether = 1/7) gave product **3r**: 34.4 mg (0.0800 mmol), as a white semisolid, 80% yield; $[\alpha]_D^{25} = +326.7 (c = 1.7 \text{ in CHCl}_3); >19:1 dr; 94\%$ ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (major) = 6.98 min, t (minor) = 8.75 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.49 (s, 1H), 7.45–7.40 (m, 2H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.34–7.28 (m, 2H), 7.27–7.23 (m, 1H), 7.22–7.17 (m, 1H), 7.13–7.08 (m, 2H), 6.96 (dd, *J* = 8.9, 6.1 Hz, 1H), 5.17 (s, 2H), 4.85–4.70 (m, 1H), 4.46 (d, *J* = 10.8 Hz, 1H), 3.83 (dd, *J* = 14.6, 6.2 Hz, 1H), 3.37 (s, 3H), 2.55 (dd, *J* = 14.6, 8.9 Hz, 1H), 2.12 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 192.7, 177.7, 147.2, 144.3, 141.1, 139.5, 130.4, 130.2, 128.7 (2C), 128.4 (2C), 127.5, 125.9 (q, ¹*J*_{C-F} = 279.0 Hz), 123.6, 122.5, 110.4, 71.3, 62.1, 56.3, 55.7 (q, ²*J*_{C-F} = 27.1 Hz), 46.2, 32.6; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂F₃N₂O₃ 431.1580; Found 431.1588.

4.2 β,γ' -Regioselective [4+2] annulations of α -vinylenals 1 with 2-(thiochroman-4-ylidene)malononitriles 4

A mixture of α -vinylenal **1** (0.120 mmol, 1.2 equiv), α , α -dicyanoalkene **4** (21.2 mg, 0.100 mmol, 1.0 equiv), **C2** (4.72 mg, 0.020 mmol, 0.2 equiv) and **A4** (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at rt for 12 h, and the reaction was monitored by TLC. After completion, the product **5** was obtained by flash chromatography on silica gel (EtOAc/petroleum ether). The racemic **5** was obtained under the catalysis of racemic amine **C1**.

Synthesis of 5a: A mixture of (*E*)-2-benzylidenebut-3-enal 1a (19.0 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room temperature

for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5a**: 34.0 mg (0.0920 mmol), as a yellow solid, 92% yield; mp = 121–122 °C; $[\alpha]_{D}^{25}$ = +112.3 (c = 1.7 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 14.28 min, t (major) = 21.55 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.18 (s, 1H), 7.34–7.22 (m, 6H), 7.20–7.15 (m, 2H), 7.14–7.09 (m, 1H), 6.96 (d, J = 4.2 Hz, 1H), 4.36 (s, 1H), 3.65 (dd, J = 18.7, 6.5 Hz, 1H), 3.35 (d, J = 9.9 Hz, 1H), 3.12 (d, J = 18.7 Hz, 1H), 3.00–2.90 (m, 2H), 2.72–2.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.2, 143.5, 143.3, 139.9, 132.4, 129.5, 128.9 (2C), 128.3 (2C), 127.69, 127.63, 127.5, 127.2, 125.3, 110.7, 110.5, 43.3, 42.2, 41.8, 31.5, 31.1, 22.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₈N₂OSNa 393.1038; Found 393.1033.

Synthesis of 5b: A mixture of (*E*)-2-(3-chlorobenzylidene)but-3-enal 1j (23.1 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography

on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5b**: 30.3 mg (0.0750 mmol), as a yellow solid, 75% yield; mp = 128–129 °C; $[\alpha]_{D}^{25}$ = +100.4 (*c* = 1.5 in CHCl₃); >19:1 dr; 94% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor)

= 8.64 min, t (major) = 12.10 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ 9.20 (s, 1H), 7.30–7.20 (m, 5H), 7.17–7.11 (m, 2H), 7.10–7.07 (m, 1H), 7.00 (d, *J* = 5.8 Hz, 1H), 4.35 (s, 1H), 3.67 (dd, *J* = 18.8, 6.5 Hz, 1H), 3.33 (d, *J* = 10.8 Hz, 1H), 3.13 (d, *J* = 19.1 Hz, 1H), 3.00 (dd, *J* = 13.7, 5.3 Hz, 1H), 2.90 (d, *J* = 13.7 Hz, 1H), 2.64 (dd, *J* = 9.9, 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.0, 144.2, 143.0, 142.1, 134.8, 132.2, 130.1, 129.6, 128.1, 127.8, 127.7, 127.5, 127.0, 126.7, 125.4, 110.6, 110.4, 43.3, 41.9, 41.6, 31.5, 31.1, 22.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₁₈³⁵ClN₂OS 403.0672; Found 403.0677; Calcd for C₂₃H₁₈³⁷ClN₂OS 405.0642; Found 405.0652.

Synthesis of 5c: A mixture of (E)-2-(4-chlorobenzylidene)but-3-enal 1k (23.1 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene) malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2

mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5c**: 37.1 mg (0.0920 mmol), as a yellow solid, 92% yield; mp = 123–124 °C; $[\alpha]_{D}^{25}$ = +102.3 (*c* = 1.8 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 9.09 min, t (major) = 13.12 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.19 (s, 1H), 7.32–7.22 (m, 5H), 7.15–7.10 (m, 3H), 6.98 (d, *J* = 6.5 Hz, 1H), 4.35 (s, 1H), 3.66 (dd, *J* = 18.8, 6.5 Hz, 1H), 3.34 (d, *J* = 10.2 Hz, 1H), 3.11 (d, *J* = 18.7 Hz, 1H), 2.98 (dd, *J* = 13.7, 5.4 Hz, 1H), 2.88 (d, *J* = 12.7 Hz, 1H), 2.63 (dd, *J* = 9.9, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.1, 144.1, 143.2, 138.5, 133.3, 132.2, 129.6, 129.5 (2C), 129.14, 129.12 127.7, 127.5, 127.0, 125.4, 110.6, 110.4, 43.3, 41.7, 41.6, 31.5, 31.1, 22.8. HRMS (ESI-TOF) m/z: [M – H]⁺ Calcd for C₂₃H₁₆³⁵ClN₂OS 403.0672; Found 403.0674; Calcd for C₂₃H₁₆³⁷ClN₂OS 405.0642; Found 405.0640.

Synthesis of 5d: A mixture of (E)-2-(4-bromobenzylidene)but-3-enal 1c (28.3 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene) malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2

mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5d**: 38.5 mg (0.0860 mmol), as a yellow solid, 86% yield; mp = 127–128 °C; $[\alpha]_D^{25} = +107.2$ (c = 1.9 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 9.59 min, t (major) = 14.44 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.19 (s, 1H), 7.44 (d, J =8.0 Hz, 2H), 7.30–7.22 (m, 3H), 7.16–7.10 (m, 1H), 7.07 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 6.6 Hz, 1H), 4.34 (s, 1H), 3.66 (dd, J = 18.8, 6.5 Hz, 1H), 3.33 (d, J = 10.3 Hz, 1H), 3.11 (d, J = 18.7 Hz, 1H), 2.98 (dd, J = 13.7, 5.3 Hz, 1H), 2.88 (d, J = 13.6 Hz, 1H), 2.62 (dd, J = 10.3, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.1, 144.1, 143.1, 139.0, 132.2, 132.0 (2C), 129.9 (2C), 129.6, 127.7, 127.5, 127.0, 125.4, 121.4, 110.6, 110.4, 43.2, 41.7, 41.6, 31.5, 31.1, 22.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₇⁷⁹BrN₂OSNa 471.0143; Found 471.0141; Calcd for C₂₃H₁₇⁸¹BrN₂OSNa 473.0122; Found 473.0118.

Synthesis of 5e: A mixture of (*E*)-2-(4-nitrobenzylidene)but-3-enal **11** (24.4 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene) malononitrile **4a** (21.2 mg, 0.100 mmol, 1.0 equiv), **C2** (4.72 mg, 0.020 mmol, 0.2 equiv) and **A4** (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2

mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5e**: 26.9 mg (0.0650 mmol), as a yellow solid, 65% yield; mp = 136–137 °C; $[\alpha]_D^{25}$ = +104.5 (*c* = 1.5 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 16.51 min, t (major) = 21.01 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.22 (s, 1H), 8.20 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.34–7.25 (m, 3H), 7.19–7.13 (m, 1H), 7.09 (d, *J* = 6.5 Hz, 1H), 4.35 (s, 1H), 3.73 (dd, *J* = 19.0, 6.5 Hz, 1H), 3.50 (d, *J* = 10.4 Hz, 1H), 3.17 (d, *J* = 18.7 Hz, 1H), 3.02 (dd, *J* = 13.9, 5.3 Hz, 1H), 2.79 (d, *J* = 13.8 Hz, 1H), 2.67 (dd, *J* = 10.3, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.0, 147.9, 147.3, 145.5, 142.6, 132.0, 129.8, 129.1 (2C), 127.7, 127.6, 126.8, 125.6, 124.1 (2C), 110.5, 110.3, 43.2, 42.0, 41.3, 31.6, 31.2, 22.7. HRMS (ESI-TOF) m/z: [M – H]⁺ Calcd for C₂₃H₁₆N₃O₃S 414.0912; Found 414.0916.

Synthesis of 5f: A mixture of (E)-2-(4-methylbenzylidene)but-3-enal 1d (20.6 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at

room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5f**: 34.1 mg (0.0890 mmol), as a yellow solid, 89% yield; mp = 130–131 °C; $[\alpha]_{D}^{25} = +89.2$ (c = 1.7 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 8.83 min, t (major) = 10.13 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.17 (s, 1H), 7.30–7.22 (m, 3H), 7.15–7.09 (m, 3H), 7.08–7.04 (m, 2H), 6.94 (d, J = 6.5 Hz, 1H), 4.36 (s, 1H), 3.65 (dd, J = 18.5, 6.3 Hz, 1H), 3.32 (d, J = 10.0 Hz, 1H), 3.12 (d, J = 19.3 Hz, 1H), 2.96 (d, J = 3.7 Hz, 2H), 2.66 (dt, J = 10.6, 3.7 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.4, 143.6, 143.1, 137.2, 136.8, 132.4, 129.6 (2C), 129.4, 128.1 (2C), 127.68, 127.62, 127.3, 125.2, 110.8, 110.6, 43.3, 41.9

(2C), 31.5, 31.0, 22.9, 21.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀N₂OSNa 407.1194; Found 407.1190.

Synthesis of 5g: A mixture of (*E*)-2-(2-methoxybenzylidene)but-3-enal 1m (22.5 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography

on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5**g: 28.0 mg (0.0700 mmol), as a yellow solid, 70% yield; mp = 127–128 °C; $[\alpha]_{D}^{25}$ = +78.0 (*c* = 1.4 in CHCl₃); >19:1 dr; 98% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 17.20 min, t (major) = 24.69 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.17 (s, 1H), 7.34–7.18 (m, 5H), 7.18–7.05 (m, 1H), 6.99–6.77 (m, 3H), 4.45 (br, 1H), 4.10–3.75 (m, 4H), 3.63 (dd, *J* = 18.4, 6.6 Hz, 1H), 3.30 (br, 1H), 3.14–3.04 (m, 1H), 3.01–2.86 (m, 2H), 3.30 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.4, 142.7, 132.7, 129.3, 128.7, 127.7, 127.6, 127.4, 125.1, 121.0, 111.3, 110.9, 110.7, 55.5, 43.5, 31.4, 23.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀N₂O₂SNa 423.1143; Found 423.1137.

Synthesis of 5h: A mixture of (*E*)-2-(3-methoxybenzylidene)but-3-enal 1e (22.6 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography

on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5h**: 36.0 mg (0.0900 mmol), as a yellow solid, 90% yield; mp = 124–125 °C; $[\alpha]_D^{25}$ = +108.7 (*c* = 1.8 in CHCl₃); >19:1 dr; 97% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 11.14 min, t (major) = 16.20 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.19 (s, 1H), 7.30–7.20 (m, 4H), 7.15–7.05 (m, 1H), 6.96 (d, *J* = 6.6 Hz, 1H), 6.81–6.75 (m, 2H), 6.71 (s, 1H), 4.35 (s, 1H), 3.79 (s, 3H), 3.64 (dd, *J* = 18.8, 6.5 Hz, 1H), 3.31 (d, *J* = 11.5 Hz, 1H), 3.10 (d, *J* = 18.6 Hz, 1H), 2.71–2.62 (m, 2H), 2.68 (dt, *J* = 10.7, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.2, 159.9, 143.4, 143.1, 141.5, 132.4, 129.9, 129.5, 127.7, 127.6, 127.2, 125.3, 120.7, 114.5, 112.2, 110.7, 110.5, 55.2, 43.3, 42.2, 41.7, 31.5, 31.1, 22.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀N₂O₂SNa 423.1143; Found 423.1136.

Synthesis of 5i: A mixture of (*E*)-2-(4-methoxybenzylidene)but-3-enal **1f** (22.6 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene) malononitrile **4a** (21.2 mg, 0.100 mmol, 1.0 equiv), **C2** (4.72 mg, 0.020 mmol, 0.2 equiv) and **A4** (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2

mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5i**: 36.0 mg (0.0900 mmol), as a yellow solid, 90% yield; mp = 118–119 °C; $[\alpha]_{D}^{25}$ = +121.4 (*c* = 1.8 in CHCl₃); >19:1 dr; 96% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 13.16 min, t (major) = 16.70 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.17 (s, 1H), 7.29–7.22 (m, 3H), 7.14–7.06 (m, 3H), 6.93 (d, *J* = 6.7 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 2H), 4.36 (s, 1H), 3.78 (s, 3H), 3.64 (dd, *J* = 18.7, 6.5 Hz, 1H), 3.30 (d, *J* = 10.3 Hz, 1H), 3.10 (d, *J* = 18.0 Hz, 1H), 2.96 (d, *J* = 3.8 Hz, 2H), 2.65 (dt, *J* = 10.6, 3.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.4, 158.8, 143.6, 142.9, 132.4, 131.7, 129.4, 129.3 (2C), 127.6, 127.6, 127.3, 125.3, 114.3 (2C), 110.8, 110.6, 55.2, 43.3, 42.0, 41.5, 31.5, 31.1, 22.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀N₂O₂SNa 423.1143; Found 423.1142.

Synthesis of 5j: A mixture of (*E*)-2-(naphthalen-2-ylmethylene)but-3enal 1g (25.0 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF

(0.2 mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5***j*: 31.9 mg (0.0760 mmol), as a yellow solid, 76% yield; mp = 129–130 °C; $[\alpha]_D^{25} = +112.9 (c = 1.6 \text{ in CHCl}_3); >19:1 \text{ dr};$ 98% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 9.43 min, t (major) = 14.68 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.19 (s, 1H), 7.83–7.77 (m, 3H), 7.67 (s, 1H), 7.51–7.42 (m, 2H), 7.32–7.25 (m, 4H), 7.16–7.10 (m, 1H), 7.00 (d, *J* = 6.3 Hz, 1H), 4.37 (s, 1H), 3.68 (dd, *J* = 18.8, 6.5 Hz, 1H), 3.52 (d, *J* = 9.0 Hz, 1H), 3.17 (d, *J* = 18.5 Hz, 1H), 3.00–2.90 (m, 2H), 2.81–2.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 911.2, 143.4, 137.2, 133.4, 132.7, 132.4, 129.5, 128.8, 127.78 (2C), 127.74 (2C), 127.6, 127.4, 127.3, 126.4, 126.0, 125.8, 125.3, 110.7, 110.6, 43.4, 42.4, 41.7, 31.6, 31.1, 22.9. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₀N₂OSNa 443.1194; Found 443.1185.

Synthesis of 5k: A mixture of (*E*)-2-(thiophen-2-ylmethylene)but-3-enal 1h (19.7 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room

temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5k**: 35.7 mg (0.0950 mmol), as a yellow solid, 95% yield; mp = 122–123 °C; $[\alpha]_{D}^{25}$ = +93.4 (*c* = 1.7 in CHCl₃); >19:1 dr; 99% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 9.50 min, t (major) = 11.51 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.22 (s, 1H), 7.28–7.22 (m, 3H), 7.20 (d, *J* = 4.9 Hz, 1H), 7.15–7.08 (m, 1H), 7.00–6.97 (m, 1H), 6.96–6.93 (m, 1H), 6.91 (d, *J* = 6.4 Hz, 1H), 4.38 (s, 1H), 3.71 (d, *J* = 8.9 Hz, 1H), 3.63 (dd, *J* = 18.8, 6.5 Hz, 1H), 3.15–3.00 (m, 3H), 2.28–2.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 190.9, 142.8, 142.4, 142.3, 132.3, 129.6, 127.7, 127.6, 127.15, 127.10, 126.9, 125.3, 124.8, 110.6, 110.4, 43.4, 42.6, 37.6, 31.4, 31.1, 23.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₆N₂OS₂Na 399.0602; Found 399.0600.

Synthesis of 51: A mixture of (2E,3E)-2-benzylidene-4-phenylbut-3-enal 1i (28.1 mg, 0.120 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile 4a (21.2 mg, 0.100 mmol, 1.0 equiv), C2 (4.72 mg, 0.020 mmol, 0.2 equiv) and A4 (3.34 mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product 51: 31.2 mg

(0.0700 mmol), as a yellow solid, 70% yield; mp = 128–129 °C; $[\alpha]_{D}^{25}$ = +98.2 (*c* = 1.5 in CHCl₃); >19:1 dr; 55% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 9.47 min, t (major) = 21.67 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.27 (s, 1H), 7.82 (br, 2H), 7.64–7.54 (m, 4H), 7.44–7.32 (m, 5H), 7.30–7.28 (m, 2H), 7.23–7.17 (m, 1H), 6.97 (d, *J* = 3.7 Hz, 1H), 5.09 (d, *J* = 5.9 Hz, 1H), 4.41 (s, 1H), 3.37 (d, *J* = 10.9 Hz, 1H), 3.07 (dd, *J* = 11.0, 4.0 Hz, 1H), 2.98 (d, *J* = 13.7 Hz, 1H), 2.84 (dd, *J* = 13.7, 5.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.5, 146.2, 142.4, 139.5, 134.2, 132.6, 131.8 (2C), 130.2, 129.7 (2C), 129.2, 129.1 (2C), 128.3 (2C), 127.9, 127.7, 127.1, 125.4, 111.4, 108.6, 46.8, 45.3, 42.4, 35.3, 28.6, 22.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₂N₂OSNa 469.1351; Found 469.1331.

Synthesis of 5m: A mixture of (*E*)-2-benzylidenebut-3-enal **1a** (19.0 mg, 0.120 mmol, 1.2 equiv), 2-(chroman-4-ylidene)malononitrile **4b** (21.2 mg, 0.100 mmol, 1.0 equiv), **C2** (4.72 mg, 0.020 mmol, 0.2 equiv) and **A4** (3.34

mg, 0.020 mmol, 0.2 equiv) in THF (0.2 mL) was stirred at room temperature for 12 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5m**: 17.0 mg (0.0480 mmol), as a yellow solid, 48% yield; mp = 119–120 °C; $[\alpha]_D^{25}$ = +100.3 (*c* = 0.8 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 9.16 min, t (major) = 9.91 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.21 (s, 1H), 7.37–7.33 (m, 2H), 7.32–7.29 (m, 2H), 7.28–7.25 (m, 2H), 7.22 (d, *J* = 7.2 Hz, 2H), 6.99–6.93 (m, 2H), 6.91 (d, *J* = 5.4 Hz, 1H), 4.31 (d, *J* = 12.6 Hz, 1H), 4.24–4.13 (m, 2H), 3.65–3.55 (m, 2H), 3.14 (d, *J* = 18.7 Hz, 1H), 2.49 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 191.3, 153.2, 143.0, 142.7, 140.6, 131.0, 128.9 (2C), 128.4 (2C), 127.3, 126.2, 121.4, 118.1, 117.7, 110.6, 110.4, 61.9, 41.4, 40.6, 40.4, 35.2, 30.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₈N₂O₂Na 377.1266; Found 377.1268.

5. Transformation of product 3a

Synthesis of 7: To a solution of **3a** (40.0 mg, 0.100 mmol, 1.0 equiv) in EtOAc (1.0 mL) was added cyclohexane-1,3-dione **6** (16.8 mg, 0.150mmol, 1.5 equiv), piperidine (9.36 mg, 0.110 mmol, 1.1 equiv), AcOH (6.60 mg, 0.110 mmol, 1.1 equiv) and Na2SO4 (4.26 mg, 0.030 mmol, 0.3 equiv). The mixture was stirred at 80 °C for 16 h. After completion, it was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give the product **7**: 42.9 mg (0.0870 mmol), as a white semisolid, 87% yield; $[\alpha]_D^{25} = +288.2$ (c = 2.0 in CHCl₃); >19:1 dr; 90% ee, determined by HPLC analysis [Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 6.15 min, t (major) = 8.07 min]; ¹H NMR (400 MHz, CHCl₃) δ (ppm) 7.55–7.49 (m, 2H), 7.40–7.30 (m, 3H), 7.29–7.21 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.60 (s, 1H), 5.90 (dd, J = 10.8, 3.2 Hz, 1H), 5.35–5.20 (m, 1H), 3.96 (d, J = 10.3 Hz, 1H), 3.26 (s, 3H), 2.51 (dd, J = 13.3, 10.8 Hz, 1H), 2.38 (t, J = 6.4 Hz, 2H), 2.28 (t, J = 5.7 Hz, 2H), 2.05 (dd, J = 13.3, 3.2 Hz, 1H), 1.98–1.80 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 194.9, 176.3, 170.1, 142.2, 140.7, 132.0, 131.1, 129.4, 129.1 (2C), 127.1, 126.8 (2C), 125.9 (q, ¹ $_{JC-F} = 280.0$ Hz), 123.3, 122.6, 115.7, 111.9, 108.7, 71.8, 59.4, 53.8 (q, ² $_{JC-F} = 26.9$ Hz), 51.9, 43.0, 36.3, 27.9, 26.1, 20.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –74.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₆F₃N₂O₃ 495.1896; Found 495.1892.

6. More screening studies on other 1,3-dipoles, α -vinylenals and α , α -dicyanoalkenes

To further expand the utility of this strategy, more 1,3-dipoles were explored in the reactions with α -vinylenals **1** under similar catalytic conditions. Unfortunately, the 1,3-dipoles outlined in the above scheme did not react with α -vinylenal **1a** and failed to give the desired [4+3] cycloadducts. Isatinderived nitrone **S5** could react with α -vinylenal **1a** to give Michael addition product **S6** in a low yield under similar catalytic conditions.

On the other hand, the desired annulation products were not formed by using α -vinylenals **1** having a γ' -alkyl or β -alkyl group.

In addition, the α,α -dicyanoalkenes from other ketones, as outlined in the above scheme, also showed low reactivity with enal **1a**.

7. Asymmetric reaction on a 1.0 mmol scale

7.1 β , γ '-Regioselective [4+3] annulation of α -vinylenal 1a with *N*-(2,2,2-trifluoroethyl) ketimine 2a

A mixture of (*E*)-2-benzylidenebut-3-enal **1a** (189.6 mg, 1.20 mmol, 1.2 equiv), (*Z*)-1-methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one **2a** (242 mg, 1.00 mmol, 1.0 equiv), **C4** (91 mg, 0.200 mmol, 0.2 equiv) and **A1** (24 mg, 0.200 mmol, 0.2 equiv) in DCE (2 mL) was stirred at 50 °C for 12 h, and the reaction was monitored by TLC. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **3a**: 280.0 mg (0.700 mmol), as a white solid, 70% yield; >19:1 dr; 90% ee.

7.2 β,γ' -Regioselective [4+2] annulation of α -vinylenal 1a with 2-(thiochroman-4-ylidene)malononitrile 4a

A mixture of (*E*)-2-benzylidenebut-3-enal **1a** (189.6 mg, 1.20 mmol, 1.2 equiv), 2-(thiochroman-4-ylidene)malononitrile **4a** (212 mg, 1.00 mmol, 1.0 equiv), **C2** (47.2 mg, 0.200 mmol, 0.2 equiv) and **A4** (33.4 mg, 0.200 mmol, 0.2 equiv) in THF (2 mL) was stirred at room temperature for 12 h, and the reaction was monitored by TLC. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) gave the product **5a**: 321.9 mg (0.870 mmol), as a yellow solid, 87% yield; >19:1 dr; 97% ee.

8. Crystal data and structural refinement

8.1 Crystal data and structural refinement for enantiopure 3b

Preparation of the single crystals of enantiopure **3b**: 30.0 mg of compound **3b** (87% ee) was dissolved in CHCl₃ (1.0 mL) in a 10 mL tube, and *n*-hexane (3.0 mL) was added. The tube was sealed by a piece of weighing paper with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 4 days, several small particles could be observed at the bottom of the tube.

The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of 3b. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 293.9(3) K. CCDC 2036410 (**3b**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

3b (CCDC 2036410)

(ellipsoid contour probability 50%)	
Identification code	3b
Empirical formula	$C_{22}H_{18}BrF_3N_2O_2$
Formula weight	479.29
Temperature/K	293.9(3)
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	6.2936(3)
b/Å	14.1248(7)
c/Å	23.2960(9)
α /°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2070.91(17)
Z	4
$\rho_{calc}g/cm^3$	1.537
μ/mm^{-1}	3.136
F(000)	968.0
Crystal size/mm ³	$0.5 \times 0.3 \times 0.3$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.32 to 142.742
Index ranges	$-7 \le h \le 3, -15 \le k \le 17, -22 \le l \le 28$
Reflections collected	9369
Independent reflections	$3888 [R_{int} = 0.0434, R_{sigma} = 0.0437]$
Data/restraints/parameters	3888/0/272
Goodness-of-fit on F ²	1.056

Final R indexes [I>= 2σ (I)] $R_1 = 0.0634$, $wR_2 = 0.1675$ Final R indexes [all data] $R_1 = 0.0674$, $wR_2 = 0.1749$ Largest diff. peak/hole / e Å⁻³0.58/-0.52Flack parameter0.001(18)

8.2 Crystal data and structural refinement for enantiopure 5g

Preparation of the single crystals of enantiopure **5g**: 30.0 mg of compound **5g** (93% ee) was dissolved in THF (1.0 mL) in a 10 mL tube and *n*-hexane (3.0 mL) was added. The tube was sealed by a piece of weighing paper with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 24 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **5g**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 295.1(4) K. CCDC 2036411 (**5g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

5g (CCDC 2036411)

(ellipsoid contour probability 50%)Identification code5gEmpirical formulaC24H20N2O2S

Empirical formula	$C_{2411201} C_{25}$
Formula weight	400.48
Temperature/K	295.1(4)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	8.1897(3)
b/Å	12.2546(5)
c/Å	10.5538(4)
α/°	90
β/°	90.193(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1059.19(7)
Z	2
$\rho_{calc}g/cm^3$	1.256

μ/mm^{-1}	1.528
F(000)	420.0
Crystal size/mm ³	$0.4 \times 0.2 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.378 to 142.924
Index ranges	$-10 \le h \le 10, -11 \le k \le 15, -12 \le l \le 12$
Reflections collected	11399
Independent reflections	3390 [$R_{int} = 0.0484$, $R_{sigma} = 0.0376$]
Data/restraints/parameters	3390/1/263
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0492, wR_2 = 0.1245$
Final R indexes [all data]	$R_1 = 0.0531, wR_2 = 0.1319$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.47
Flack parameter	-0.010(14)

9. Proposed catalytic cycle via cascade iminium ion-dienamine catalysis

References

- (1) L. Caruana, F. Kniep, T. K. Johansen, P. H. Poulsen and K. A. Jørgensen, *J. Am. Chem. Soc.*, 2014, **136**, 15929.
 (2) M.-X. Ma, Y.-Y. Zhu, Q.-T. Sun, X.-Y. Li, J.-H. Su, L. Zhao, Y.-Y. Zhao, S. Qiu, W.-J. Yan, K.-R. Wang and R. Wang, *Chem. Commun.*, 2015, **51**, 8789.
- (3) S. Kobayashi, K. Kudo, A. Ito, T. Honjo, M. Yata, T. Otani, N. Kutsumura, T. Saito, F. Berr é, E. Romain, F. Tripoteau and B. Carboni, *Eur. J. Org. Chem.*, 2015, 4367.
- (4) (a) X.-Y. Li, X.-Y. Xu, W.-W. Wei, A.-J. Lin and H.-Q. Yao, Org. Lett., 2016, 18, 428; (b) D. Xue, Y.-C. Chen,
- X. Cui, Q.-W. Wang, J. Zhu and J.-G. Deng, J. Org. Chem., 2005, 70, 3584.
- (5) R.-W. Sun, W. Song, C.-M. Ma, H.-W. Zhang and X.-H. Yu, Adv. Synth. Catal., 2016, 358, 3977.

10. NMR, HRMS spectra and HPLC chromatograms

S33

-74.026

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.220	2.850	4383154	199090561	96.1076
2	19.157	1.577	224393	8063292	3.8924

9, 470 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,	3.746 3.746 3.094 3.094 2.455 2.455 2.455 2.455 2.455 2.455 2.455 2.455 2.455 2.455 2.455 2.059	 000
---	--	---------

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.703	1.373	19103979	234131608	93.7380
2	8.140	0.673	1079181	15640819	6.2620

---66.848

¹⁹F-NMR (376MHz, DMSO)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.590	0.723	13149877	112710668	94.1583
2	6.340	0.697	642660	6992692	5.8417

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.227	0.817	8818510	93455631	95.6570
2	6.947	0.833	309458	4243078	4.3430

S47

-74.077

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.833	0.880	4740436	75314050	95.8647
2	6.597	1.150	170545	3248789	4.1353

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.103	1.333	3343993	71825240	93.0758
2	9.280	2.553	170982	5343271	6.9242

Spectrum Plot Report

Agilent Trusted Answers

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	5.927	1.500	4665881	110335939	98.5397
2	11.053	1.577	46737	1635156	1.4603

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.737	1.133	11848156	147141819	57.4872
2	8.133	1.127	7659915	108814018	42.5128

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.703	1.373	19103979	234131608	93.7380
2	8.140	0.673	1079181	15640819	6.2620

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	4.530	0.390	342402	3382765	4.2997
2	4.997	0.533	5428105	75292217	95.7003

Spectrum Plot Report

Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.157	0.960	5274313	94870112	98.2319
2	12.200	1.023	69022	1707616	1.7681

---0.000

---9.501

-74.048

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	4.747	0.373	4891148	33331364	48.5124
2	5.513	0.630	3697894	35375590	51.4876

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	4.703	0.633	4938617	34028702	98.4496
2	5.430	0.373	60399	535901	1.5504

9, 468 ---0.000

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	8.287	0.800	5361022	90034511	96.8980
2	9.197	0.740	155581	2882304	3.1020

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.913	0.667	4363296	52819314	97.0171
2	9.377	0.717	88622	1623985	2.9829

-90 -100 -110 f1 (ppm) 20 10 ò -10 -20 -30 -40 -50 -60 -70 -80 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

Spectrum Plot Report

Agilent Trusted Answ

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	7.173	0.723	6607631	100701015	96.8848
2	10.670	1.070	147864	3237940	3.1152

Spectrum Plot Report

-100 f1 (ppm) -120 -130

-140 -150 -160 -170 -180 -190

-110

-90

20

10 0

-10

-20 -30

-50 -60

-40

-70 -80

-74.022

Agilent Trusted Answers

-200

-210 -22

Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	7.030	1.173	5710888	119099835	89.6330
2	8.890	0.807	978082	13775193	10.3670

-74.069

ne Vol. (ul) a File 	CYC-20200105-48 10 CYC-20200105-48.d	Rack Pos. Plate Pos. Method (Acq) CYC-20200105-48.d	TOF.m	Instrument IRM Status Comment	Instrument 1 Success	Operator Acq. Time (Local)	1/10/2020 9:00:52 P (UTC+08:00)
voi: (ui) a File 06 +ESI Scan (rt: 0 .3- .2- .1- 2- .9- .8- .7- .6- .5- .4- .3- .2-	CYC-20200105-48.d	Method (Acq) CYC-20200105-48.d	TOF.m 45	3.1403	500.055	Acq. Time (Local)	1/10/2020 9:00:52 P (UTC+08:00)
06 +ESI Scan (rt: 0 	0.581 min) Frag=175.0V (CYC-20200105-48.d	45	3.1403		F ₃ C	
.3- .2- .11- 2- .9- .8- .7- .6- .5- .4- .3- .2-			45	3.1403		F ₃ C	}
1.2- 1.1- 2- .9- .8- .7- .6- .5- .4- .3- .2-			45	3.1403		F ₃ C	
.1- 2- .9- .8- .7- .6- .5- .4- .3- .2-						F ₃ C	
2- .9- .8- .7- .6- .5- .4- .3- .2-						F ₃ C	
.9 .8- .7- .5- .4- .3- .2-						F ₃ C	
 						F ₃ C	
						F ₃ C)
5- 4- 3-							
4- 3- 2-						1 11	
3- 2-							
.2-							
)
.1-							•
1-						Ϋ́ι Ϋ́ι	
0.9-						_0 `	
0.8-						3р	
1.7-					HRMS ((ESI-TOF) m/z:	[M + Na] ⁺
0.6-					Calcd for		va 453 1402
0.5-					Galoa Ior	02311211 3112031	
).4-							
0.1-							

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	7.693	1.120	7252583	60924393	97.0955
2	9.503	0.853	112154	1822483	2.9045

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

-74.088

Spectrum Plot Report

Agilent Trusted Answer

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.247	0.933	2389861	45812612	96.6662
2	11.903	1.120	65822	1579989	3.3338

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												fl (ppm)											

Spectrum Plot Report

Agilent Trusted Answer

CYC-20191124-16 10 CYC-20191124-16.d Rack Pos. Plate Pos. Method (Acq) Name Inj. Vol. (ul) Data File Instrument IRM Status Comment Instrument 1 Success Operator TOF.m Acq. Time (Local) 12/5/2019 5:18:27 PM (UTC+08:00) x106 +ESI Scan (rt: 0.617 min) Frag=175.0V CYC-20191124-16.d 1.35 1.3 1.25-1.2-431.1588 1.15-1.1-1.05-1 0.95-0.9- F_3C 0.85-0.8 0.75-ΗŃ 0.7 0.65-0= 0.6-N MOM 0.55-0.5-3r 0.45-0.4-HRMS (ESI-TOF) m/z: [M + H]⁺ 0.35-Calcd for $C_{23}H_{22}F_3N_2O_3$ 431.1580 0.3-0.25 0.2-0.15-0.1 0.05-0-431.05 431.1 431.15 431.2 431.25 431.3 431.35 431.4 431.45 431.5 431.55 431.6 431.65 431.7 430.75 430.8 430.85 430.9 430.95 431

Counts vs. Mass-to-Charge (m/z)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	6.983	0.900	5706553	79816728	97.0092
2	8.757	0.813	146107	2460725	2.9908

-			14.2		
0					J
·	5	10	15	20	25
			Minutes		
		AREA PI	ERCENT RE	EPORT	

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.287	0.720	139183	2529988	0.9993
2	21.553	1.973	7537649	250646561	99.0007

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	8.647	0.773	179830	3709411	2.8119
2	12.107	1.813	5388844	128209110	97.1881

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.093	0.640	108901	1592998	1.0108
2	13.120	1.887	4900547	156009519	98.9892

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.590	0.743	151395	2243914	1.6256
2	14.440	1.760	3728994	135795686	98.3744

---0.006

¹H-NMR (400MHz, CDCl₃)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.517	2.033	325781	12414739	4.1728
2	21.010	3.380	6579863	285098273	95.8272

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	8.837	0.550	193193	2738285	0.5017
2	10.137	1.140	28996731	543057023	99.4983

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.333	2.010	745531	26338573	48.3732
2	25.130	2.687	561890	28110145	51.6268

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.257	1.773	50013	1763779	0.7402
2	24.690	2.693	4528479	236509529	99.2598

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.147	1.067	90838	1691916	1.2888
2	16.203	2.660	3977075	129587048	98.7112

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.327	0.777	77795	1628720	1.8429
2	15.580	3.653	2372209	86749209	98.1571

 ---0.000

AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.430	0.610	191829	2625011	0.7032
2	14.680	2.133	15072484	370676964	99.2968

9 219 9

---0,000

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.507	0.767	180212	3686255	0.3822
2	11.513	1.527	39232253	960719689	99.6178

¹H-NMR (400MHz, CDCl₃)

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.470	1.513	3538913	70390617	21.6262
2	21.670	2.920	5012651	255096578	78.3738

S126

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	9.167	0.497	97672	1389840	3.3247
2	9.913	1.187	2377380	40413871	96.6753

Peak 1	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	୫
1	6.152	BV	0.1754	6227	.13428	551.	47760	48.3744
2	8.035	BBA	0.2467	6645	.65039	421.	08829	51.6256
Total	s :			1.28	728e4	972.	56589	

Totals: 1.62173e4 1038.28153

