Electronic Supplementary Information

Synthesis and conformational analysis of vicinally branched trisaccharide β-D-Galf$(1 \rightarrow 2)-[\beta-D-G a l f-(1 \rightarrow 3)-]-\alpha-G a l p$ from Cryptococcus neoformans galactoxylomannan

Vera S. Dorokhova, ${ }^{\text {a }}$ Alexey G. Gerbst, ${ }^{\text {a }}$ Bozhena S. Komarova, ${ }^{\text {a }}$ José O Previato, ${ }^{\text {b }}$ Lúcia Mendonça Previato, ${ }^{\text {b }}$ Andrey S. Dmitrenok, ${ }^{\text {a }}$ Alexander S. Shashkov, ${ }^{\text {a }}$ Vadim B. Krylov ${ }^{\text {a }}$ and Nikolay E. Nifantiev*a ${ }^{*}$

Table of contents

1. Experimental procedures SI-1
1.1.General methods SI-1
1.2.Synthesis of perbenzylated precursor S5 for triol acceptor 12 SI-1
1.3.Synthesis of acceptor $\mathbf{1 2}$ from 4,6-di-O-benzylidene protected precursor S6 SI-3
1.4.Glycosylation reactions and deprotection of di- and trisaccharides SI-5
1.5.References SI-8
2. Copies of NMR spectra SI-9
[^0]
1. EXPERIMENTAL PROCEDURES

1.1. GENERAL METHODS

Molecular sieves AW-300 for glycosylation reactions were activated prior to application at $185{ }^{\circ} \mathrm{C}$ under high vacuum for 2 h . Dichloromethane was successively distilled from diethanolamine, $\mathrm{P}_{2} \mathrm{O}_{5}$, and CaH_{2} under Ar. Pyridine was dried by distillation from $\mathrm{P}_{2} \mathrm{O}_{5}$. Acetonitrile was successively distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, and CaH_{2} under Ar. Methanol was dried by distillation from Mg. Analytical TLC was performed on Silica Gel 60 Å F254 aluminium sheets (Merck), and visualization was accomplished using UV light or by charring at $150{ }^{\circ} \mathrm{C}$ with $10 \%(\mathrm{v} / \mathrm{v}) \mathrm{H}_{3} \mathrm{PO}_{4}$ in isopropyl alcohol. TLC for water-soluble oligosaccharides were run in the mixture of BPS (${ }^{n} \mathrm{BuOH}-{ }^{\mathrm{n}} \mathrm{PrOH}-\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$ 1:1:1:1) and AMW (MeCN-MeOH- $\mathrm{H}_{2} \mathrm{O} 1: 1: 1$). Column chromatography was performed on Silica Gel $60 \AA$, 40-63 $\mu \mathrm{m}$ (Merck). Gel-permeation chromatography of water soluble compounds was carried out on TSK HW-40(S) columns in 0.1 M AcOH using a K-2401 (Knauer) refractometer to monitor the eluate. Optical rotations were measured using JASCO P-2000 polarimeter in solvents specified. NMR spectra were recorded on a Bruker AV-400 and Bruker AV-600 instruments. The spectra of protected carbohydrate derivatives were measured for solutions in CDCl_{3} or pyridine-d5; ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced to the corresponding solvent residual signals ($\delta \mathrm{H} 7.27$ and 8.74 ppm respectively). ${ }^{13} \mathrm{C}$ chemical shifts were referenced to the central resonances of $\mathrm{CDCl}_{3}(\delta C 77.0)$ or ortho-carbons of pyridine-d5 ($\delta C 150.35$). NMR spectra of water soluble oligosaccharides were measured for solutions in $\mathrm{D}_{2} \mathrm{O}$ using acetonitrile ($\delta \mathrm{H} 2.06, \delta \mathrm{C}$ 1.47 ppm) as the internal standard. To assign NMR spectra for the obtained compounds we performed the following procedure for all monosaccharide rings: first determined $\mathrm{H}-1$ signal by characteristic correlation in ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ spectra, then assigned all other hydrogen atoms of carbohydrate ring by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-\mathrm{COSY}$. Ring carbon peaks in ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were assigned according to correlations in ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ spectra. In the descriptions of the NMR spectra of galactose residues are denoted by Gal, Gal' and Gal" for galactopyranose, $(1 \rightarrow 2)$-galactofuranose and ($1 \rightarrow 3$)-galactofuranose, respectively. The HRMS (ESI) were obtained on a MicrOTOF II (Bruker Daltonics) instrument.

1.2.SYNTHESIS OF PERBEZYLATED PRECURSOR S5 FOR TRIOL ACCEPTOR 12

The direct path to acceptor $\mathbf{1 2}$ seemed to be through p-Methoxy tetrabenzyl β-D-galactopyranoside $\mathbf{S 3}$ that was prepared from β-D-galactopyranose pentaacetate $\mathbf{S 1}$ in three steps. First, anomeric acetyl group was substituted for p-methoxyphenyl group ${ }^{1,2}$. Then all other hydroxyl groups were deacetylated by treating with MeONa solution in methanol ${ }^{1}$ and benzylated with BnBr. Interestingly, 3-trifluoroacetamidopropyl 2,3,4,6-tetra-O-benzyl-D-galactopyranoside $\mathbf{S 5}$ was obtained as an inseparable anomeric mixture whereas 4,6-di-Obenzylidene protected analog 11 was formed as pure α-galactoside. Nevertheless we believe that both strategies are interesting in comparison and we publish them both.

p-Methoxyphenyl 2,3,4,6-tetra-O-benzyl- β-D-galactopyranoside (S3).

Sodium hydride (60% suspension in mineral oil, $420 \mathrm{mg}, 10.5 \mathrm{mmol}$) was added to a solution of $\mathbf{S 2}$ (500 mg , 1.75 mmol) in dry DMF (16 mL) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was warmed to room temperature and stirred for 1 h . Then $\mathrm{BnBr}(1.0 \mathrm{~mL}, 8.39 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$, the mixture was stirred at room temperature for 1 h and the reaction was stopped by adding $\mathrm{MeOH}(0.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc and washed with water. The aqueous phase was washed with EtOAc (50 mL) three times, the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Column chromatography of the residue (petroleum ether:acetone $10: 1 \rightarrow 6: 1$) provided colorless oil S3 (1.1 g,

95\%). $R_{\mathrm{f}}=0.18$ (petroleum ether:acetone $10: 1$). $[\alpha]_{\mathrm{D}}{ }^{22}=+0.14\left(\mathrm{CHCl}_{3}, 10 \mathrm{mg} \mathrm{mL}^{-1}\right) \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{H} 7.39-7.24(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ph}), 7.03(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}(\mathrm{MP})), 6.79(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}(\mathrm{MP})), 5.02(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.B n^{1} \mathrm{~A}\right)$, $4.99\left(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{~A}\right), 4.88-4.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bn}^{1} \mathrm{~B}, \mathrm{H}-1\right), 4.79\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, B n^{3} \mathrm{~A}\right), 4.75(\mathrm{~d}, \mathrm{~J}=12.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Bn}^{3} \mathrm{~B}\right), 4.66\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{~B}\right), 4.46\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{4} \mathrm{~A}\right), 4.41\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{4} \mathrm{~B}\right), 4.10$ (dd, $J_{2,3}=9.7 \mathrm{~Hz}, \mathrm{~J}_{2,1}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.94\left(\mathrm{~d}, \mathrm{~J}_{4,3}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{MP})\right), 3.66-3.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5$, $\mathrm{H}-6 \mathrm{~A}, \mathrm{H}-6 \mathrm{~B}$), 3.61 (dd, $\mathrm{J}_{3,4}=2.9 \mathrm{~Hz}, \mathrm{~J}_{3,2}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 155.2,151.8$ (ipso Ph(MP)), 138.5, 138.4, 137.9 (ipso Ph), 128.4, 128.3, 128.2, 128.2, 127.8, 127.7, 127.6, 127.5 (Ph), 118.6 ($\mathrm{Ph}(\mathrm{MP})$), 114.5 ($\mathrm{Ph}(\mathrm{MP}))$, $103.1(\mathrm{C}-1), 82.1(\mathrm{C}-3), 79.3(\mathrm{C}-2), 75.3\left(\mathrm{Bn}^{1}\right), 74.5\left(\mathrm{Bn}^{2}\right), 73.7(\mathrm{C}-5), 73.6\left(\mathrm{Bn}^{3}\right), 73.3$ (C-4), $73.1\left(\mathrm{Bn}^{4}\right), 68.9(\mathrm{C}-6)$, $55.6\left(\mathrm{CH}_{3}(\mathrm{MP})\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{O}_{7} 669.2823$; found 669.2827.

2,3,4,6-tetra-O-benzyl- β-D-galactopyranose (S4).

Compound $\mathbf{S 3}(59.2 \mathrm{mg}, 0.092 \mathrm{mmol})$ was dissolved in acetonitrile (7 mL), then water (1.8 mL) and benzene $(0.5 \mathrm{~mL})$ were added. CAN ($250 \mathrm{mg}, 0.46 \mathrm{mmol}$) was added to the mixture at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 7 minutes, diluted with EtOAc and washed with saturated solution of NaHCO_{3}. The aqueous phase was washed with EtOAc (20 mL) three times; the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Column chromatography of the residue (petroleum ether:acetone $4: 1 \rightarrow 3: 1$) provided $\mathbf{S 4}(16.5 \mathrm{mg}, 33 \%)$ as a yellowish oil. $R_{\mathrm{f}}=0.21$ (petroleum ether:acetone $4: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.37-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.16-7.13(\mathrm{~m}, 1.6 \mathrm{H}, \mathrm{Ph}), 5.25\left(\mathrm{brt}, \mathrm{J}_{1,2}=J_{1,0 \mathrm{H}}=3.0 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-1 \alpha\right), 4.93-$ 4.87 ($\mathrm{m}, 1.4 \mathrm{H}, \mathrm{Bn} \alpha, \mathrm{Bn} \beta$), 4.82-4.76 (m, 1H, Bn $\alpha, \mathrm{Bn} \beta$), 4.76-4.69 (m, 2.2H, Bn $\alpha, \mathrm{Bn} \alpha$), 4.67-4.64 (m, 0.4H, $\mathrm{Bn} \beta)$, $4.63\left(\mathrm{t}, \mathrm{J}_{1,2}=J_{1,0 \mathrm{H}}=7.3 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{H}-1 \beta\right)$, 4.60-4.53 (m, 1H, Bn $\alpha, \mathrm{Bn} \beta$), 4.47-4.45 (m, 1H, Bn $\left.\alpha, \mathrm{Bn} \beta\right), 4.40-$ $4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Bn} \alpha, \mathrm{Bn} \beta), 4.14(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-5 \alpha), 4.01\left(\mathrm{dd}, J_{2,3}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2,1}=9.8 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-2 \alpha\right), 3.94(\mathrm{~m}$, $0.6 \mathrm{H}, \mathrm{H}-4 \alpha), 3.88\left(\mathrm{dd}, J_{3,4}=9.6 \mathrm{~Hz}, J_{3,2}=3.5 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{H}-3 \alpha\right), 3.86(\mathrm{~m}, 0.4 \mathrm{H}, \mathrm{H}-4 \beta), 3.74\left(\mathrm{dd}, J_{2,3}=9.8 \mathrm{~Hz}, J_{2,1}=7.6\right.$ $\mathrm{Hz}, 0.4 \mathrm{H}, \mathrm{H}-2 \beta$), 3.60-3.54 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5 \beta, \mathrm{H}-3$), 3.53-3.43 ($\mathrm{m}, 2 \mathrm{H}, \beta, \mathrm{H}-6 \mathrm{~A} \alpha, \mathrm{H}-6 \mathrm{~B} \alpha$), 3.22 ($\mathrm{d}, \mathrm{J}_{\mathrm{OH}, 1}=7.0 \mathrm{~Hz}$, $0.4 \mathrm{H}, \mathrm{OH} \beta$), $2.98\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{OH}, 1}=3.0 \mathrm{~Hz}, \mathrm{O} .6 \mathrm{H}, \mathrm{OH} \alpha\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 138.5,129.0,128.4,128.3$, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4 (Ph), 97.8 ($\mathrm{C}-1 \beta$), 91.9 ($\mathrm{C}-1 \alpha$), 82.2 (C-3 β), 80.7 (C-2 β), 78.7 (C-3 α), 76.6 (C-2 α), $75.0(B n), 74.7(C-4 \alpha), 74.6(3 \mathrm{Bn}), 73.6(C-5 \beta), 73.5(B n, C-4 \beta), 73.4(B n), 72.9$ (Bn), 72.9 (Bn), 69.5 ($\mathrm{C}-5 \alpha$), $69.0(\mathrm{C}-6 \alpha)$, 68.9 ($\mathrm{C}-6 \beta$). The spectral data matched those reported in the literature ${ }^{3}$.

3-Trifluoroacetamidopropyl 2,3,4,6-tetra-O-benzyl-D-galactopyranoside (S5).

$\mathrm{CBr}_{4}(258 \mathrm{mg}, 0.777 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(204 \mathrm{mg}, 0.777 \mathrm{mmol})$ were added to a solution of $\mathbf{S 4}(140 \mathrm{mg}, 0.259$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$. The reaction mixture was stirred for 40 minutes, molecular sieves $4 \mathrm{~A}(180 \mathrm{mg})$ were added and the mixture was stirred for another 40 minutes. Then 3 -trifluoroacetamidopropanol ($92 \mu \mathrm{~L}$, $0.725 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NBr}(121 \mathrm{mg}, 0.376 \mathrm{mmol})$ were added. The mixture was stirred overnight, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a layer of Celite. The filtrate was washed with saturated solution of NaHCO_{3} and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The residue was purified by column chromatography (toluene:EtOAc $30: 1 \rightarrow 9: 1$) to give yellowish oil $\mathbf{S 5}(135 \mathrm{mg}, 75 \%)$ as an inseparable mixture of α - and β isomers ($\alpha: \beta \approx 10: 1$). $R_{\mathrm{f}}=0.40$ (toluene:EtOAc 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.83$ (m, 1H, NHTFA), 7.43$7.09(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 4.94\left(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, \mathrm{Bn}^{1} \mathrm{~A}\right), 4.89-4.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{~A}, \mathrm{Bn}^{3} \mathrm{~A}, \mathrm{Bn}^{1} \mathrm{~B}, \mathrm{H}-1\right), 4.66(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Bn}^{2} \mathrm{~B}\right), 4.56\left(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{3} \mathrm{~B}\right), 4.48\left(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{4} \mathrm{~A}\right), 4.39\left(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{4} \mathrm{~B}\right), 4.05(\mathrm{dd}$, $\left.J_{2,3}=10.1 \mathrm{~Hz}, J_{2,1}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.98-3.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 3.84(\mathrm{dd}$, $\left.J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{~J}_{3,2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}, \mathrm{H}-6 \mathrm{~B}), 3.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.08(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 138.5,138.4,137.8,129.0$, 128.4, 128.4, 128.0, 127.5 (Ph(Bn)), 99.0 (C-1), 79.5 (C-3), 76.2 (C-2), 74.8 (C-4), 74.7 (Bn), 74.5 (C-4), 74.1 (Bn),
$73.45(\mathrm{Bn}), 73.0(\mathrm{Bn}), 69.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $69.0(\mathrm{C}-6), 68.4(\mathrm{C}-6), 39.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $37.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $28.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. The proof of the structure of β-isomer was based on the following signals: $4.43(\mathrm{~d}, 0.1 \mathrm{H}$, $\mathrm{Bn} \beta), 4.34\left(\mathrm{~d}, J_{1,2}-7.6 \mathrm{~Hz}, 0.1 \mathrm{H}, \mathrm{H}-1 \beta\right), 3.80(\mathrm{~m}, 0.1 \mathrm{H}, \mathrm{H}-2 \beta), 3.54(\mathrm{~m}, 0.1 \mathrm{H}, \mathrm{H}-3 \beta)$ in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum; 104.1 (C-1 β), 82.2 ($\mathrm{C}-3 \beta$), $\mathrm{C}-2 \beta, 75.3$ ($\mathrm{Bn} \beta$), 74.5 (C-4 β), 73.5 ($\mathrm{Bn} \beta$), 73.3 (C-5 β), 72.4 ($\mathrm{Bn} \beta$), 68.4 (C-6 β), 37.9 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N} \beta\right)$ in ${ }^{13} \mathrm{C}$-NMR spectrum.

1.3.SYNTHESIS OF TRIOL ACCEPTOR 12 FROM 4,6-di-O-BENZYLIDENE PROTECTED PRECURSOR S6

p-Methoxyphenyl 2,3-di-O-benzyl-4,6-O-benzylidene- β-D-galactopyranoside $\mathbf{S 7}$ for acceptor $\mathbf{1 2}$ was prepared from p-methoxyphenyl β-D-galactopyranoside $\mathbf{S 2}$ in two steps: hydroxyl groups at C-4 and C-6 were protected with benzylidene group ${ }^{4}$ and then free hydroxyl groups at $\mathrm{O}-2$ and $\mathrm{O}-3$ were benzylated with BnBr .

p-Methoxyphenyl 2,3-di-O-benzyl-4,6-O-benzylidene- β-D-galactopyranoside (S7).

Sodium hydride (60% suspension in mineral oil, $193 \mathrm{mg}, 4.81 \mathrm{mmol}$) was added to a solution of S6 (1.2 g, 3.21 mmol) in dry DMF (20 mL) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was warmed up to room temperature and stirred for 1 h . Then $\mathrm{BnBr}(0.92 \mathrm{~mL}, 7.70 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$, the mixture was stirred at room temperature for 20 h and the reaction was stopped by adding $\mathrm{MeOH}(5.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc and washed with water. The aqueous phase was washed with EtOAc (60 mL) three times; the organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Column chromatography of the residue (toluene:EtOAc 30:1 $\rightarrow 15: 1$) provided $\mathbf{S 7}(1.1 \mathrm{~g}, 60 \%)$ as a white foam. $R_{\mathrm{f}}=0.20$ (toluene:EtOAc 15:1). $[\alpha]_{\mathrm{D}}{ }^{22}=-10.7\left(\mathrm{CHCl}_{3}, 10 \mathrm{mg} \mathrm{mL}^{-1}\right.$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.58-7.54(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}), 7.39-7.23(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ph}), 7.05(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}(\mathrm{MP})), 6.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}(\mathrm{MP}))$) $5.50(\mathrm{~s}, 1 \mathrm{H}$, CHPh), $4.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Bn}^{1} \mathrm{~A}\right), 4.87-4.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bn}{ }^{1} \mathrm{~B}, \mathrm{H}-1\right), 4.78\left(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{~A}\right), 4.75(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}^{2} \mathrm{~B}$), $4.30\left(\mathrm{dd}, J_{6 A, 6 B}=12.3 \mathrm{~Hz}, J_{6 A, 5}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}\right), 4.14(\mathrm{~d}, \mathrm{~J}=3.47 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.08\left(\mathrm{dd}, J_{2,3}=9.7 \mathrm{~Hz}, J_{2,1}=7.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.00\left(\mathrm{dd}, J_{6 B, 6 A}=12.3, J_{6 B, 5}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~B}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{MP})\right.$), $3.61\left(\mathrm{dd}, J_{3,4}=3.6 \mathrm{~Hz}, J_{3,2}=9.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.36 (br s, $1 \mathrm{H}, \mathrm{H}-5$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 155.4$ (ipso $\mathrm{Ph}(\mathrm{MP})$), 151.7 (ipso $\mathrm{Ph}(\mathrm{MP})$), 138.5, 138.8, 137.8 (ipso Ph), 128.9, 128.3, 128.2, 128.1, 128.0, 127.7, 127.7, 127.5, 126.5 ($\mathrm{Ph}(\mathrm{Bn})$), 119.0 ($\mathrm{Ph}(\mathrm{MP}))$, 114.4 ($\mathrm{Ph}(\mathrm{MP})$), 103.2 (C-1), 101.3 (CHPh), $79.3(\mathrm{C}-3), 78.1(\mathrm{C}-2), 75.5\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8(\mathrm{C}-4), 72.1$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.2(\mathrm{C}-6), 66.6(\mathrm{C}-5), 55.7\left(\mathrm{CH}_{3}(\mathrm{MP})\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{7} 577.2197$; found 577.2020.

2,3-Di-O-benzyl-4,6-O-benzylidene- β-D-galactopyranose (10).

Compound $\mathbf{S 7}(1.0 \mathrm{~g}, 1.80 \mathrm{mmol})$ was dissolved in acetonitrile (100 mL), then water (26 mL) and benzene (7.6 mL) were added. CAN ($4.9 \mathrm{~g}, 9.00 \mathrm{mmol}$) was added to the mixture at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 9 minutes until TLC showed disappearance of the starting material, then it was diluted with EtOAc and washed with saturated solution of NaHCO_{3}. The aqueous phase was washed with EtOAc (250 ml) three times, the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Column chromatography of the residue (toluene:MTBE 8:1 $\rightarrow 3: 1$) provided brownish oil 10 (350 mg , 43%) as a mixture of α and β isomers in ratio 4:1. $R_{f}=0.2$ (toluene:EtOAc $3: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ 7.56-7.50 (m, 2H, Ph), 7.42-7.23 (m, 13H, Ph), 5.48 (s, 0.15H, CHPh β), $5.47(\mathrm{~s}, 0.85 \mathrm{H}, \mathrm{CHPh} \alpha), 5.35\left(\mathrm{~d}, \mathrm{~J}_{1,2}=3.4\right.$ $\mathrm{Hz}, 0.85 \mathrm{H}, \mathrm{H}-1 \alpha$), 4.90-4.81 (m, 1.15H, Bn $\alpha, \mathrm{Bn} \beta, \mathrm{Bn} \beta$), 4.81-4.72 (m, 2H, Bn $\alpha, \mathrm{Bn} \alpha, \mathrm{Bn} \beta, \mathrm{Bn} \beta$), 4.69 (d,
$0.85 \mathrm{H}, \mathrm{Bn} \alpha$), $4.65(\mathrm{br} \mathrm{t}, 0.15 \mathrm{H}, \mathrm{H}-1 \beta), 4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~A} \beta), 4.21(\mathrm{~m}, 0.85 \mathrm{H}, \mathrm{H}-6 \mathrm{~A} \alpha), 4.18(\mathrm{~d}, \mathrm{~J}, 3=3.8 \mathrm{~Hz}$, $0.85 \mathrm{H}, \mathrm{H}-4 \alpha), 4.10(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \beta), 4.04\left(\mathrm{dd}, J_{2,3}=9.8 \mathrm{~Hz}, J_{2,1}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \alpha\right), 4.00-3.94(\mathrm{~m}, 1.7 \mathrm{H}, \mathrm{H}-$ $3 \alpha, H-6 B \alpha$), 3.81 (br s, $1 \mathrm{H}, \mathrm{H}-5 \alpha$), 3.76 (dd, $J_{2,3}=9.6 \mathrm{~Hz}, J_{2,1}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \beta$), $3.56\left(\mathrm{dd}, J_{3,4}=3.6 \mathrm{~Hz}\right.$, $J_{3,2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \beta$), $3.36\left(\mathrm{~b} \mathrm{~s}, 0.5 \mathrm{H}, \mathrm{OH} \beta\right.$), $3.32\left(\mathrm{~s}, 0.15 \mathrm{H}, \mathrm{H}-5 \beta\right.$), $3.04(\mathrm{br} \mathrm{s}, 0.67 \mathrm{H}, \mathrm{OH} \alpha) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 138.5,138.2,137.8$ (ipso Ph), 128.9, 128.8, 128.4, 128.3, 128.1, 127.9, 127.8, 127.6, 126.3, 126.3 (Ph), 101.1 (CHPh β), 101.0 ($\mathrm{CHPh} \alpha$), 97.5 (C-1 β), 92.3 ($\mathrm{C}-1 \alpha$), 79.8 (C-2 β), 79.3 (C-3 β), 75.7 (C-2, C-3 $\alpha), 75.1\left(\mathrm{CH}_{2} \mathrm{Ph} \beta\right)$, $74.2(\mathrm{C}-4 \alpha)$, $73.8\left(\mathrm{CH}_{2} \mathrm{Ph} \alpha\right)$, $73.7(\mathrm{C}-4 \beta)$, $71.8\left(\mathrm{CH}_{2} \mathrm{Ph} \beta\right)$, $71.7\left(\mathrm{CH}_{2} \mathrm{Ph} \alpha\right), 69.4(\mathrm{C}-6 \beta), 69.2$ ($\mathrm{C}-6 \alpha$), 66.7 ($\mathrm{C}-5 \beta$), 62.7 ($\mathrm{C}-5 \alpha$). The spectral data matched those reported in the literature. ${ }^{5}$

3-Trifluoroacetamidopropyl 2,3-di-O-benzyl-4,6-O-benzylidene- α-D-galactopyranoside (11).
$\mathrm{CBr}_{4}(774 \mathrm{mg}, 2.33 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(612 \mathrm{mg}, 2.33 \mathrm{mmol})$ were added to a solution of $10(350 \mathrm{mg}, 0.778 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.8 mL). The reaction mixture was stirred for 1.5 h , molecular sieves $4 \mathrm{~A}(580 \mathrm{mg}$) were added and the mixture was stirred for another 1.5 h . Then 3-trifluoroacetamidopropanol ($275 \mu \mathrm{~L}, 2.18 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NBr}(363 \mathrm{mg}, 1.13 \mathrm{mmol})$ were added. The mixture was stirred overnight, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a layer of Celite. The filtrate was washed with saturated solution of NaHCO_{3} and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The residue was purified by column chromatography (petroleum ether:EtOAc 10:1 $\rightarrow 1.5: 1$) to give $11(379 \mathrm{mg}, 81 \%)$ as a yellowish oil. $R_{\mathrm{f}}=0.24$ (petroleum ether:EtOAc 1:1). $[\alpha]_{\mathrm{D}}{ }^{22}=+101\left(\mathrm{CHCl}_{3}, 10 \mathrm{mg} \mathrm{mL}^{-1}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.77(\mathrm{br} \mathrm{s}, 0.77 \mathrm{H}, \mathrm{NHTFA}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ph}), 7.37-7.17(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ph}), 5.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHPh}), 4.82\left(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{1} \mathrm{~A}\right), 4.75\left(\mathrm{~d}, J_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.72$ (d, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{~A}\right), 4.63\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{~B}\right), 4.57\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{1} \mathrm{~B}\right), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-$ $6 \mathrm{~A}), 3.98$ (dd, $J_{2,3}=10.0 \mathrm{~Hz}, J_{2,1}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.92 (dd, $\left.J_{6 B, 6 A}=12.5, J_{6 B, 5}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~B}\right), 3.87(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.82 (dd, J $\mathrm{J}_{3,4}=3.5 \mathrm{~Hz}, J_{3,2}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}$), 3.52 (br s, 1H, H-5), $3.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH} \mathrm{N}\right)$, $1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{C}} 138.6,138.2,137.7$ (ipso Ph), 128.9, 128.4, 128.3, 128.1, 128.1, 128.0, 127.7, 127.6, $126.2(\mathrm{Ph}(\mathrm{Bn}))$, $101.1(\mathrm{CHPh}), 99.6(\mathrm{C}-1), 76.7(\mathrm{C}-3), 75.2(\mathrm{C}-2), 74.4\left(\mathrm{Bn}_{1}\right), 74.1(\mathrm{C}-4), 72.0\left(\mathrm{Bn}_{2}\right), 69.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.3(\mathrm{C}-$ $6), 62.8(\mathrm{C}-5)$, $39.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $28.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{7}$ 624.2180 ; found 624.2185 .

3-Trifluoroacetamidopropyl 6-O-tert-butyldiphenylsilyl- α-D-galactopyranoside (12).

$\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} \%, 50 \mathrm{mg})$ was added to a solution of $11(258 \mathrm{mg}, 0.430 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and EtOAc $(0.3 \mathrm{~mL})$. The reaction mixture was intensively stirred overnight under hydrogen atmosphere. Then the mixture was diluted with MeOH , the catalyst was filtered off and the filtrate was concentrated in vacuum to give tetraol 12a as a white foam. TBDPSCI ($175 \mathrm{mg}, 0.636 \mathrm{mmol}$) and DMAP (10 mg) were added to a solution of 12a ($141 \mathrm{mg}, 0.424 \mathrm{mmol}$) in dry pyridine (1.3 mL) under argon atmosphere and the mixture was stirred for 24 h . Then the mixture was diluted with EtOAc and washed with saturated solution of NaHCO_{3}. The aqueous layer was washed with EtOAc (15 mL) three times; the organic extracts were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. Column chromatography of the residue $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}\right.$ $12: 1 \rightarrow 10: 1)$ gave $12(237 \mathrm{mg}, 98 \%)$ as a white foam. $R_{\mathrm{f}}=0.52\left(\mathrm{CHCl}_{3}: \mathrm{MeOH} 6: 1\right) .[\alpha]_{\mathrm{D}}{ }^{23}=+59.9\left(\mathrm{CHCl}_{3}, 10 \mathrm{mg}\right.$ mL^{-1}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{Py}^{-\mathrm{d}_{5}}\right.$): $\delta_{\mathrm{H}} 7.93-7.90(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.48-7.42(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 6.74(\mathrm{br} \mathrm{s}, \mathrm{OH}), 6.04(\mathrm{br} \mathrm{s}$, OH), 5.29 ($\mathrm{d}, \mathrm{J}_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.63 (dd, $\mathrm{J}_{2,3}=9.8 \mathrm{~Hz}, J_{2,1}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4), 4.51-4.42(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-6 \mathrm{~A}), 4.39-4.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{~B}), 4.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 3.69-$ 3.59 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCHH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}$), 2.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.14 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{Py}-\mathrm{d}_{5}$): $\delta_{\mathrm{C}} 136.5,130.6,128.7(\mathrm{Ph}), 101.2(\mathrm{C}-1), 73.0(\mathrm{C}-5), 71.9$ (C-3), $70.8(\mathrm{C}-4), 70.6(\mathrm{C}-2), 66.7$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 64.9(\mathrm{C}-6), 38.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 29.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 27.4\left(\mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{Si} 594.2105$; found 594.2100.

1.4.GLYCOSYLATION REACTIONS AND DEPROTECTION OF DI- AND TRISACCHARIDES

3-Trifluoroacetamidopropyl

2,3-di-O-(2,3,5,6-tetra-O-benzoyl- β-d-glalactofuranosyl)-6-O-tert-butyldiphenylsilyl- α-D-glalactopyranoside (13), 3-trifluoroacetamidopropyl 2,3,5,6-tetra-O-benzoyl- β-D-galactofuranosyl-(1 $\rightarrow 2$)-6-O-tert-butyldiphenylsilyl- α-D-galactopyranoside (14) and 3trifluoroacetamidopropyl 2,3,5,6-tetra-O-benzoyl- β-D-galactofuranosyl-(1 $\rightarrow 3$)-6-O-tert-butyldiphenylsilyl-α-D-galactopyranoside (15).
Molecular sieves AW-300 (85 mg) were added to a solution of donor $\mathbf{8}(26.0 \mathrm{mg}, 0.034 \mathrm{mmol})$ and acceptor 12 $(48.6 \mathrm{mg}, 0.085 \mathrm{mmol})$ in dry toluene $(1.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under argon atmosphere at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 10 minutes and TBDMSOTf ($8 \mu \mathrm{~L}, 0.034 \mathrm{mmol}$) was added. In 9 minutes a solution of donor $8(13 \mathrm{mg}, 0.017 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ was added to the reaction mixture and the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(10 \mu \mathrm{~L})$ in another 10 minutes. The mixture was warmed slowly to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through the layer of Celite. The filtrate was washed with saturated solution of NaHCO_{3} and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The residue was purified by column chromatography (toluene:EtOAc 30:1 $\rightarrow 1: 1$) to give trisaccharide 13 ($20.9 \mathrm{mg}, 47 \%$), 1-2-linked disaccharide 14 ($9.5 \mathrm{mg}, 16 \%$) and 1-3-linked disaccharide 15 ($9.5 \mathrm{mg}, 16 \%$).

Data for trisaccharide 13. Colorless oil. $R_{\mathrm{f}}=0.23$ (toluene:EtOAc 15:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07-7.89$ (m, 8H, Ph), 7.96-7.91 (d, 4H, Ph), 7.79-7.65 (m, 9H, Ph), 7.59-7.27 (m, 22, Ph), 7.26-7.11 (m, 8H, Ph, NHTFA), $6.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right) .6 .04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right.$ or $\left.\mathrm{H}-1^{\prime \prime}\right), 5.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{3,2}=4.1 \mathrm{~Hz}, \mathrm{H}-3\right), 5.67-5.60(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-1^{\prime \prime}$ or $\mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime \prime}$ or $\mathrm{H}-2^{\prime}$), $5.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ or $\mathrm{H}-2^{\prime \prime}$), 5.01 (d, $\mathrm{J}_{1,2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.84-4.70 (m, 4H, H-6A', H-6B', H-6A", H-6B"), 4.69-4.64 (m, 2H, H-4', H-4"), 4.24 (dd, J $\mathrm{J}_{2,3}=9.3 \mathrm{~Hz}, \mathrm{~J}_{2,1}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.15-4.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$), 3.91-3.79 (m, 4H, H-6A, H-5, H-6B, OCHH'CH2 $\mathrm{CH}_{2} \mathrm{~N}$), $3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right.$), 3.37 (m, $1 \mathrm{H}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.06 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}$), 2.66 (br s, 1H, OH), $1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 1.04 (s, $9 \mathrm{H}, \mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 166.6,166.2,166.1,165.9$ ($\mathrm{C}=\mathrm{O}(\mathrm{Ac})$), 135.6, 135.5 (ipso Ph), 132.2, 136.1, 134.2, 134.1, 133.9, 133.7, 133.7, 133.0 (ipso Bz), 130.4, 130.4, 130.3, 130.2, 129.1, 129.1,129.0,128.9, 128.8, 128.7, 128.5, 128.4, 128.3 (Ph), 107.8, 107.4 (C-1' and C-1"), 98.7 (C-1), 82.9 (C-4' or C-4"), 82.8 (C-2"), 82.7 (C-2'), 81.4 (C-4" or C-4'), 77.9 (C-3"), 77.6 (C-3'), 75.5 (C-3), 74.8 (C-2), 70.4 (C-5', C$5^{\prime \prime}$), 70.1 ($\mathrm{C}-4, \mathrm{C}-5$), $67.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.6(\mathrm{C}-6), 63.4,63.2$ ($\mathrm{C}-6$ ' and $\mathrm{C}-6$ "), $38.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $26.9\left(\mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{95} \mathrm{H}_{88} \mathrm{~F}_{3} \mathrm{NO}_{25} \mathrm{Si} 1750.5259$; found 1750.5264.

Data for 1-2-linked disaccharide 14. Colorless oil. $R_{f}=0.20$ (toluene:EtOAc 4:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ 8.06-7.89 (m, 9H, Ph), 7.73-7.65 (m, 4H, Ph), 7.59-7.49 (m, 5H, Ph, NHTFA), 7.48-7.29 (m, 17H, Ph), 5.95 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.78 (dd, $\mathrm{J}_{3,4}=3.0 \mathrm{~Hz}, J_{3,2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 5.47 (br s, 1H, H-1'), 5.43 (m, 1H, H-2'), 4.99 (s, 1H, H-1), 4.80 (dd, $\left.J_{6 A, 6 B}=12.7 \mathrm{~Hz}, J_{6 A, 5}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}^{\prime}\right), 4.72-4.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-6 \mathrm{~B}^{\prime}\right), 4.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 3.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-$

2, H-3), 3.95-3.74 (m, 4H, H-6A, H-6B, OCHH'CH2CH2N, H-5), $3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right.$), $3.38(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 2.67(\mathrm{~m}, 0.9 \mathrm{H}, \mathrm{OH}), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.06(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 166.9,166.2$ (ipso Ph), 136.2, 136.1, 134.0, 133.9 (Ph), 130.6, 130.4, 130.3, 129.1, 129.0, 128.3 (Ph), 109.0 ($\mathrm{C}-1^{\prime}$), 98.6 (C-1), 83.6 ($\mathrm{C}-2^{\prime}$), 80.5 (C-4'), 78.4 (C-3), 76.4 (C-3'), $70.5(\mathrm{C}-$ $\left.5^{\prime}\right), 70.4$ (C-5), 69.2 ($\mathrm{C}-2, \mathrm{C}-4$), $68.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.3(\mathrm{C}-6), 63.1\left(\mathrm{C}-6^{\prime}\right), 39.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $26.8\left(\mathrm{CH}_{3}\left({ }^{\mathrm{H}} \mathrm{Bu}\right)\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{61} \mathrm{H}_{62} \mathrm{~F}_{3} \mathrm{NO}_{16} \mathrm{Si}$ 1172.3682; found 1172.3686.

Data for 1-3-linked disaccharide 15. Colorless oil. $R_{f}=0.20$ (toluene:EtOAc $8: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ 8.06 (d, 2H, Ph), 8.02 (d, 2H, Ph), 7.97 (d, 2H, Ph), 7.94-7.87 (m, 3H, Ph, NHTFA), 7.72-7.66 (m, 5H, Ph), 7.597.28 (m, 17H, Ph), 5.94 (m, 1H, H-5"), 5.77 (dd, $\left.J_{3,4}=6.3 \mathrm{~Hz}, J_{3,2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 5.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 5.53$ (d, $\left.J_{2,3}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 4.99\left(\mathrm{~d}, J_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.83$ (dd, $\mathrm{J}_{4,5}=3.5 \mathrm{~Hz}, J_{4,3}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ " $), 4.79-4.68(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}^{\prime \prime}, \mathrm{H}-6 \mathrm{~B}^{\prime \prime}$), 4.23 (dd, $\mathrm{J}_{2,3}=10.0 \mathrm{~Hz}, \mathrm{~J}_{2,1}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.00-3.73(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-$ $6 \mathrm{~A}, \mathrm{H}-6 \mathrm{~B}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}$), $3.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 2.89$ (br s, 1H, OH), $1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} 166.5,165.9$, 165.5, 165.4 (ipso Ph), (Ph), 135.5, 135.4 (ipso (Ph)), 133.6, 133.5, 133.3, 133.0, 132.8 (ipso (Bz)), 129.8, 129.8, 127.7, 129.6, 129.3, 129.1, 128.6, 128.4, 128.3, 128.3, 128.2, 127.6, 127.6, 127.5 (Ph), 108.2 (C-1"), 98.8 (C-1), 83.5 (C-2"), 80.5 (C-4"), 79.5 (C-3), 76.6 (C-3"), 70.2 (C-5), $69.9\left(\mathrm{C}-4, \mathrm{C}-5^{\prime \prime}\right), 68.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 67.8(\mathrm{C}-2)$, 63.7 (C-6), $62.9\left(\mathrm{C}-6\right.$ ") , $39.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 26.6\left(\mathrm{CH}_{3}\left({ }^{(} \mathrm{Bu}\right)\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{61} \mathrm{H}_{62} \mathrm{~F}_{3} \mathrm{NO}_{16} \mathrm{Si} 1172.3682$; found 1172.3688.

3-Trifluoroacetamidopropyl 2,3-di-O-(2,3,5,6-tetra-O-benzoyl- β-D-glalactofuranosyl)-4-0-acetyl-6-O-tert-butyldiphenylsilyl- α-D-glalactopyranoside (16).

Trisaccharide 13 ($10.0 \mathrm{mg}, 0.006 \mathrm{mmol}$) was dissolved in the mixture of acetic anhydride (1.2 ml) and pyridine $(1.2 \mathrm{ml})$ and left overnight. Then the reaction mixture was diluted with toluene and the solvents were removed in vacuum. After the residue was dried in vacuum acetylated disaccharide 16 ($10.2 \mathrm{mg}, 100 \%$) was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.11-7.90(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.69-7.27(\mathrm{~m}, 31 \mathrm{H}, \mathrm{Ph}), 7.24-$ 7.13 (m, 9H, Ph), 7.12-7.03 (m, 1H, NHTFA), 6.18 (m, 1H, H-5'), 6.11 (m, 1H, H-5"), 5.69 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{1}^{\prime \prime}$ or $\mathrm{H}-\mathrm{1}^{\prime}$), 5.66-5.60 (m, 2H, H-1' or H-1", H-3"), $5.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ or $\left.\mathrm{H}-2^{\prime \prime}\right), 5.53\left(\mathrm{~d}, \mathrm{~J}_{4,3}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.44\left(\mathrm{~d}, \mathrm{~J}_{3,4}=5.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $5.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right.$ or $\left.\mathrm{H}-2^{\prime}\right), 5.03-4.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-4^{\prime}\right), 4.88$ (dd, $J_{6 A, 5}=7.0 \mathrm{~Hz}, \mathrm{~J}_{6 A, 6 B}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $6 A^{\prime}$), 4.83 (dd, $\left.J_{6 A, 5}=5.5 \mathrm{~Hz}, J_{6 A, 6 B}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}^{\prime \prime}\right), 4.75$ (dd, $\left.J_{6 B, 5}=5.5 \mathrm{~Hz}, J_{6 B, 6 A}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~B}^{\prime \prime}\right), 4.69$ (dd, $\left.J_{6 B, 5}=7.0 \mathrm{~Hz}, J_{6 B, 6 A}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~B}^{\prime}\right), 4.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 4.20\left(\mathrm{dd}, J_{3,4}=3.3 \mathrm{~Hz}, J_{3,2}=10,1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.11$ (dd, $\left.J_{2,3}=10.1 \mathrm{~Hz}, J_{2,1}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.97(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.69-3.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $6 \mathrm{~A}, \mathrm{H}-6 \mathrm{~B}), 3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right.$), $3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 1.75(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 169.5(\mathrm{C}=\mathrm{O}$ (Ac)), 166.3, 166.1, 166.0, 165.7, 165.6, 165.4, 165.1 ($\mathrm{C}=\mathrm{O}(\mathrm{Bz})$), 135.4, 135.4 (ipso Ph), 133.4, 133.1, 133.1, $133.0,132.9,132.8,132.7,129.9,129.8,129.7,126.6,129.5,129.4,129.3,129.2,129.0,128.9,128.7,128.6$, $128.3,128.3,128.2,128.1,128.1,127.9,127.6,127.5(\mathrm{Ph}), 107.7,107.6\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right), 98.6(\mathrm{C}-1), 82.1$ (C-2" or C2^{\prime}), 82.0 (C-4'), 81.8 ($\mathrm{C}-4^{\prime \prime}$ and $\mathrm{C}-2^{\prime}$ or $\mathrm{C}-2^{\prime \prime}$), 75.5 (C-3'), 77.9 (C-3"), 75.2 (C-2), 73.2 (C-3), 70.31 (C-5' and C-5"), 70.25 (C-4), $69.9(\mathrm{C}-5), 67.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.9\left(\mathrm{C}-6^{\prime}\right), 63.2(\mathrm{C}-6$) $), 62.2(\mathrm{C}-6), 38.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 26.6\left(\mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right)$, $20.4\left(\mathrm{CH}_{3}(\mathrm{Ac})\right)$.

3-trifluoroacetamidopropyl 2,3,5,6-tetra-O-benzoyl- β-D-galactofuranosyl-(1 $\rightarrow 2$)-3,4-di-O-acetyl-6-O-tert-butyldiphenylsilyl- α-D-galactopyranoside (17).

Disaccharide 14 ($5.0 \mathrm{mg}, 0.004 \mathrm{mmol}$) was dissolved in the mixture of acetic anhydride (1 mL) and pyridine (1 mL) and left overnight. Then the reaction mixture was diluted with toluene and the solvents were removed in vacuum. After the residue was dried in vacuum acetylated disaccharide 17 ($4.0 \mathrm{mg}, 100 \%$) was obtained. ${ }^{1} \mathrm{H}-$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.06$ (d, 2H, Ph), $7.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.93$ (d, $2 \mathrm{H}, \mathrm{Ph}$), 7.86 (d, $2 \mathrm{H}, \mathrm{Ph}$), 7.66-7.28 (m, $22 \mathrm{H}, \mathrm{Ph}), 6.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 5.56\left(\mathrm{~d}, \mathrm{~J}_{4,3}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 5.44-5.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right), 5.30$ (dd, $\left.J_{3,4}=3.4 \mathrm{~Hz}, J_{3,2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.99\left(\mathrm{~d}, J_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.83-4.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}^{\prime}, \mathrm{H}-6 \mathrm{~B}^{\prime}\right), 4.65(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.06\left(\mathrm{dd}, \mathrm{J}_{2,3}=11.0 \mathrm{~Hz}, J_{2,1}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.99(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.70-3.58 (m, 2H, H-6), $3.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}\right), 3.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH} H^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.04(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHH}^{\prime} \mathrm{N}$), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 169.9,169.8(\mathrm{C}=\mathrm{O}(\mathrm{Ac})), 166.1,165.6,165.6,165.0(\mathrm{C}=\mathrm{O}(\mathrm{Bz})), 135.4$ (ipso Ph), 133.6, 133.3, 133.1, 132.9, 132.7 (ipso Bz), 129.8, 129.7, 129.6, 129.5, 129.3, 129.1, 128.9, 128.6, 128.5, 128.4, 128.3, 128.3, 128.1, 127.6, 127.6 (Ph), $107.4\left(\mathrm{C}-1^{\prime}\right), 98.5(\mathrm{C}-1), 81.8\left(\mathrm{C}-2^{\prime}\right), 81.4\left(\mathrm{C}-4^{\prime}\right), 77.4\left(\mathrm{C}-3^{\prime}\right), 73.0(\mathrm{C}-2)$, 70.3 (C-5'), $69.1(\mathrm{C}-3), 69.0(\mathrm{C}-5), 68.2(\mathrm{C}-4), 67.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.2\left(\mathrm{C}-6^{\prime}\right), 61.5(\mathrm{C}-6), 38.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $28.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $26.5\left(\mathrm{CH}_{3}\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right)$, $20.5\left(\mathrm{CH}_{3}(\mathrm{Ac})\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{65} \mathrm{H}_{66} \mathrm{~F}_{3} \mathrm{NO}_{18} \mathrm{Si}$ 1256.3893; found 1256.3930

3-Aminopropyl β-D-glalactofuranosyl-(1 $\boldsymbol{2} \mathbf{2) - \alpha - D - g l a l a c t o p y r a n o s i d e ~ (2) . ~ D i s a c c h a r i d e ~} 14$ (16.0 mg, 0.014 mmol) was placed into a plastic flask, dissolved in acetonitrile (0.7 mL) and cooled to $-20^{\circ} \mathrm{C}$. Then 40% aqueous $\mathrm{HF}(160 \mu \mathrm{~L})$ was added dropwise until the solution became cloudy. The mixture was slowly warmed to room temperature and intensively stirred overnight. The reaction was diluted with EtOAc and washed with water. The organic phase was washed with saturated solution of NaHCO_{3}. The aqueous layer was extracted with EtOAc, the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum. The dry residue was dissolved in dry $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ and 1 M methanolic $\mathrm{MeONa}(2 \mu \mathrm{l}, 0.0018 \mathrm{mmol})$ was added to the solution under argon atmosphere. The mixture was stirred overnight. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated and water ($200 \mu \mathrm{~L}$) and 5 M water solution of $\mathrm{NaOH}(200 \mu \mathrm{~L}$) were added to the reaction mixture and stirring was continued for 2 h . The solvents were removed in vacuum and the residue was subjected to gel-permeation chromatography on the TSK HW-40(S) column; fractions containing the pure product were combined and freeze-dried to give disaccharide $\mathbf{2}(3.3 \mathrm{mg}, 59 \%)$ as a fluffy solid. $R_{\mathrm{f}}=0.2$ (BPS:AMW=1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 303 \mathrm{~K}\right): \delta_{\mathrm{H}} 5.12$ (d, $\left.\mathrm{J}_{1,2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.05$ (d, $J_{1,2}=3.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.93-3.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$, $\mathrm{H}-5, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.82-3.78 (m, 2H, H-2, H-5'), 3.76-3.62 (m, 4H, H-6A, H-6B, H-6A', H-6B'), $3.59(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH} H^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{C}} 109.7$ ($\mathrm{C}-1^{\prime}$), $98.6(\mathrm{C}-1), 83.3\left(\mathrm{C}-4^{\prime}\right), 81.6\left(\mathrm{C}-2^{\prime}\right), 76.8\left(\mathrm{C}-3^{\prime}\right), 76.6(\mathrm{C}-2), 71.7(\mathrm{C}-5), 71.5\left(\mathrm{C}-5^{\prime}\right), 70.1(\mathrm{C}-4), 68.9(\mathrm{C}-3)$, $66.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 62.8\left(\mathrm{C}-6^{\prime}\right), 61.5(\mathrm{C}-6), 38.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 26.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) . \mathrm{HRMS}(\mathrm{ESI}):$ calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{11}$ 422.1633; found 422.1638.

3-Aminopropyl β-D-glalactofuranosyl-(1 $\rightarrow 3$)- α-D-glalactopyranoside (3). Protecting groups of disaccharide 15 ($28.6 \mathrm{mg}, 0.025 \mathrm{mmol}$) were removed according to the procedure described for compound 2. Disaccharide 3 was purified by gel-permeation chromatography on the TSK HW-40(S) column and isolated as a fluffy solid ($3.4 \mathrm{mg}, 61 \%$). $R_{\mathrm{f}}=0.2$ (BPS:AMW 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{H}} 5.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 4.98\left(\mathrm{~d}, \mathrm{~J}_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1)$, 4.18 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 4.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), 4.08-4.01 (m, 2H, H-3", H-4"), 3.98-3.87 (m, 4H, H-2, H-3, H-5 $\mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.83 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), $3.77-3.59$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}, \mathrm{H}-6 \mathrm{~B}, \mathrm{H}-6 \mathrm{~A}^{\prime \prime}, \mathrm{H}-6 \mathrm{~B}^{\prime \prime}, \mathrm{OCHH}^{\prime} \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{~N}$), 3.16 (m , $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{C}} 109.5$ (C-1"), $98.8(\mathrm{C}-1), 83.2$ (C$\left.4^{\prime \prime}\right), 81.8\left(\mathrm{C}-2^{\prime \prime}\right), 77.8(\mathrm{C}-3), 77.2\left(\mathrm{C}-3^{\prime \prime}\right), 71.3(\mathrm{C}-5), 71.1\left(\mathrm{C}-5^{\prime \prime}\right), 69.7(\mathrm{C}-4), 67.6(\mathrm{C}-2), 66.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{~N}\right), 63.1$ ($\mathrm{C}-6$ "), 61.6 (C-6), $38.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $27.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{11} 422.1633$; found 422.1635 .

3-Aminopropyl 2,3-di-O- β-D-galactofuranosyl- $\alpha-D-g a l a c t o p y r a n o s i d e ~(1) . ~$

Protecting groups of trisaccharide $13(80.0 \mathrm{mg}, 0.046 \mathrm{mmol})$ were removed according to the procedure described for compound 2. Trisaccharide 1 was purified by gel-permeation chromatography on the TSK HW40(S) column and isolated as a fluffy solid (11 mg, 43\%). $R_{\mathrm{f}}=0.2$ (BPS:AMW 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$: δ_{H} $5.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 5.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.05\left(\mathrm{~d}, \mathrm{~J}_{1,2}=3.6 \mathrm{~Hz}, \mathrm{H}-1\right), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 4.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.09(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4$), 4.08-4.00 (m, 3H, H-3', H-3", H-4"), 4.00-3.87 (m, 5H, H-3, H-2, H-4', H-5, OCHH'CH2CH2N), 3.84-3.80 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-5$ ") , 3.76-3.56 (m, 7H, OCHH ${ }^{\prime} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{H}-6 \mathrm{~A}, \mathrm{H}-6 \mathrm{~B}, \mathrm{H}-6 \mathrm{~A}^{\prime}, \mathrm{H}-6 \mathrm{~B}^{\prime}, \mathrm{H}-6 \mathrm{~A}^{\prime \prime}, \mathrm{H}-6$ ") , 3.21-3.07 (m, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta_{\mathrm{C}} 109.8\left(\mathrm{C}-1^{\prime}\right), 109.4\left(\mathrm{C}-1^{\prime \prime}\right), 98.6$ (C-1), 83.7 (C-4'), 83.5 (C-4"), 82.0 (C-2"), 81.9 (C-2'), 77.6 (C-3"), 77.3 (C-3'), 76.2 (C-3), 75.5 (C-2), 77.3 (C-5' or $\mathrm{C}-5^{\prime \prime}$), 71.3 (C-5), 71.2 ($\mathrm{C}-5^{\prime}$ or $\mathrm{C}-5^{\prime \prime}$), $70.0(\mathrm{C}-4), 66.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.2$ ($\mathrm{C}-6^{\prime}$ or $\mathrm{C}-6^{\prime \prime}$), $63.0\left(\mathrm{C}-6^{\prime}\right.$ or $\left.\mathrm{C}-6^{\prime \prime}\right)$, 61.7 (C-6), $38.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $27.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. HRMS (ESI): calcd m / z for $[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{16}$ 584.2161; found 584.2161.

1.5.REFERENCES

1 J. Mas Pons, A. Dumont, G. Sautejeau, E. Fugier, A. Baron, S. Dukan and B. Vauzeilles, Angewandte Chemie, 2014, 126, 1299-1302.
2 Z. Zhang and G. Magnusson, J. Org. Chem., 1996, 61, 2383-2393.
3 M. Matwiejuk and J. Thiem, European Journal of Organic Chemistry, 2011, 2011, 5860-5878.
4 G. Hirai, T. Watanabe, K. Yamaguchi, T. Miyagi and M. Sodeoka, J Am Chem Soc, 2007, 129, 15420-15421.
5 N. K. Jalsa, Tetrahedron Letters, 2011, 52, 6587-6590.
${ }^{1} \mathrm{H}$-NMR spectrum of S 3

CDCl3 600 MHz

S3

7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5 ppm
${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S 3}$
CDCl3 100 MHz

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{S 4}$

CDCl3
 400 MHz

${ }^{13} \mathrm{C}$-NMR spectrum of S4
CDCl3 100 MHz

$$
\begin{aligned}
& \dot{\infty} \dot{\infty} \infty \infty \dot{\infty} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}
\end{aligned}
$$

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{S 5}$

CDCl3
400 MHz

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{S 5}$

```
CDC13
    100MHz
```


$\stackrel{7}{\square}$

\cdots

m
$\stackrel{\infty}{\sim}$

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{S 7}$

CDCl3
600 MHz

${ }^{13}$ C-NMR spectrum of $\mathbf{S 7}$

CDCl3 $\quad 150 \mathrm{MHz}$

S7

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 0}$

CDCl3 600 MHz

${ }^{13} \mathrm{C}$-NMR spectrum of 10
CDC13
150 MHz

(Way

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 1}$

CDCl3
400 MHz

${ }^{13}$ C-NMR spectrum of 11

CDCl3
100 MHz

	\bigcirc	mor	m
$\infty \times \sim \times \infty$	$\stackrel{-}{1}$	$\cdots \cdot 0 \cdot 0 \cdot 0 \cdot 0$	\bigcirc
m M M N N ¢ N N N N N N	-		m

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 2}$

$$
\begin{aligned}
& \text { Py-d5 } \quad 400 \mathrm{MHz}
\end{aligned}
$$

$$
\begin{aligned}
& \text { の તत }
\end{aligned}
$$

${ }^{13}$ C-NMR spectrum of 12

100 MHz

$\begin{array}{llll}\forall & \cdots & \bullet & \dot{r} \\ \infty & \infty & \dot{\sim} & \dot{r}\end{array}$
$m \times \sim \sim \sim$

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 3}$

CDcl3
400 MHz

${ }^{13} \mathrm{C}$-NMR spectrum of 13
CDCl3 $\quad 100 \mathrm{MHz}$

$\stackrel{\infty}{\sim} \stackrel{6}{\sim}$

Maw

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 4}$

CDCl3 300 MHz

ィ

${ }^{13}$ C-NMR spectrum of 14
CDCl3 100 MHz

14

${ }^{1}$ H-NMR spectrum of 15

CDCl3 400 MHz

 MNO N O ু 心 6 N

 Ω

${ }^{13} \mathrm{C}$-NMR spectrum of 15

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 6}$

CDCl 3
400 MHz

${ }^{13}$ C－NMR spectrum of 16
CDCl3 $\quad 100 \mathrm{MHz}$

みク○ゥ

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 7}$
CDCl3 $\quad 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$-NMR spectrum of 17
CDCl3 $\quad 100 \mathrm{MHz}$

17

${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2}$

D20
$600 \mathrm{MHz} \quad 303 \mathrm{~K}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2}$
D2O $150 \mathrm{MHz} \quad 303 \mathrm{~K}$

の				
${ }^{\circ}$	$\stackrel{\sim}{\circ}$		\cdots	¢
-	∞	$\dot{m} \dot{\sim} \dot{\omega} \dot{\sim} \dot{\sim} \dot{\circ} \dot{\infty} \dot{\infty} \dot{\sim} \dot{\sim}$	$\stackrel{\infty}{\infty}$	${ }^{\circ}$

(1):

COSY 303 K

${ }^{1} \mathrm{H}$-NMR spectrum of 3

${ }^{13} \mathrm{C}$-NMR spectrum of 3

D20 150 MHz

$\begin{array}{ll}\circ & \stackrel{\infty}{\circ} \\ \circ & \stackrel{\circ}{\circ} \\ \infty & \stackrel{\circ}{\sim}\end{array}$

cosy

${ }^{1} \mathrm{H}$-NMR spectrum of 1

$400 \mathrm{MHz} \quad 297 \mathrm{~K}$

${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1}$
D20 150 MHz

[^0]: ${ }^{\text {a }}$. Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia. E-mail: nen@ioc.ac.ru. Tel./fax: (+) 7-499-135-87-84.
 ${ }^{\text {b }}$. Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941902, Rio de Janeiro, Brazil.

