Supplementary Information

Enhancement of the carbamate activation rate enabled syntheses of tetracyclic benzolactams: 8 -oxoberbines and their 5 - and 7 -membered C-ring homologues

Hiroaki Kurouchi*
Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R \& D
Building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan

E-mail: hurouchi@itsuu.or.jp

Table of Contents

1. Experimental Section 2
2. Substrate scope of the previously reported method. 35
3. Computational Study 36
4. NMR spectra of new compounds. 41
5. References. 96

1. Experimental Section

I. General methods

NMR spectra were recorded on a JEOL ECZ 400S spectrometer (400 MHz for ${ }^{1} \mathrm{H}-$ NMR, 100 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$). Chemical shifts were reported in ppm on the δ scale relative to tetramethylsilane ($\delta=0$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$) and $\mathrm{CDCl}_{3}\left(\delta=77.0\right.$ for ${ }^{13} \mathrm{C}-\mathrm{NMR}$). Multiplicities are indicated as: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet). Coupling constants (J) are reported in Hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Scientific Exactive Plus. Melting points were determined with a Yanaco micro melting point apparatus Model MP-500D. Simple chemicals were analytical-grade and obtained commercially. Trifluoromethanesulfonic acid (TfOH) was purchased from Central Glass Co., Ltd., and used as received.

II. Synthesis of substrates

Compounds $4 \mathbf{a},{ }^{\mathrm{S} 1} \mathbf{4 b},{ }^{\mathrm{S} 2} \mathbf{4 c},{ }^{9} \mathbf{4 d},{ }^{9} \mathbf{4 e},{ }^{9} \mathbf{4 f},{ }^{\mathrm{S} 3} \mathbf{4 g},{ }^{\mathrm{S} 4} \mathbf{4 h},{ }^{\mathrm{S5}} \mathbf{4 i},{ }^{\mathrm{S6}} \mathbf{4 k},{ }^{\mathrm{S7}} \mathbf{4 m},{ }^{57} \mathbf{4 n},{ }^{\mathrm{S5}} \mathbf{4 s},{ }^{\mathrm{S} 8}$ $13 \mathrm{a},{ }^{\mathrm{S} 9} 13 \mathrm{~b},{ }^{\mathrm{S} 10} 13 \mathrm{c},{ }^{9} 13 \mathrm{~d},{ }^{9} 13 \mathrm{e},{ }^{9} 13 f,{ }^{\mathrm{S} 11} 12 \mathrm{~g},{ }^{\mathrm{S} 12} 13 \mathrm{~h},{ }^{\mathrm{S} 12} 13 \mathrm{i},{ }^{\mathrm{S} 13} 13 \mathrm{j},{ }^{\mathrm{S} 11} 13 \mathrm{k},{ }^{\mathrm{S} 14} 131,{ }^{\mathrm{S} 15} 13 \mathrm{~m},{ }^{\mathrm{S} 14}$ $13 \mathrm{n},{ }^{9} 13 \mathrm{p},{ }^{\mathrm{S} 16} 13 \mathrm{r},{ }^{\mathrm{S} 17} 13 \mathrm{~s},{ }^{9} 14 \mathrm{a},{ }^{\mathrm{S} 18} 14 \mathrm{~b},{ }^{\mathrm{S} 2} 14 \mathrm{c},{ }^{9} 14 \mathrm{~d},{ }^{\mathrm{S} 19} 14 \mathrm{e},{ }^{\mathrm{S} 19} 14 \mathrm{f},{ }^{\mathrm{S} 20} 14 \mathrm{~g},{ }^{\mathrm{S} 19} 14 \mathrm{~h},{ }^{\mathrm{S} 5} 14 \mathrm{i},{ }^{\mathrm{S} 6}$ $14 \mathrm{j},{ }^{\mathrm{S} 15} 14 \mathrm{k},{ }^{\mathrm{S} 15} 14 \mathrm{l},{ }^{\mathrm{S} 15} 14 \mathrm{~m},{ }^{\mathrm{S} 15} 14 \mathrm{n},{ }^{\mathrm{S} 21} 14 \mathrm{p}^{\mathrm{S} 16}, 17^{8 \mathrm{c}}$ and $18^{\mathrm{S} 13}$ were previously reported in literatures.

Synthesis of amides 13a-t
Typical procedure A: Synthesis of N-(3,4-dimethoxyphenethyl)-3-phenylpropanamide (13a)

To a mixture of 3 -phenylpropanoic acid (11a) ($4663 \mathrm{mg}, 31.1 \mathrm{mmol}$), thionyl chloride (5.0 mL) was added at $25^{\circ} \mathrm{C}$ under stirring. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 hours, then the solvent was removed under reduced pressure to afford 3 phenylpropanoyl chloride as a crude oil ($4885 \mathrm{mg}, 29.0 \mathrm{mmol}$). A part of the crude oil ($1187 \mathrm{mg}, 7.04 \mathrm{mmol}$) was dissolved in 5 mL of dichloromethane and added to a mixture of 2-(3,4-dimethoxyphenyl)ethan-1-amine (12a) ($1825 \mathrm{mg}, 10.1 \mathrm{mmol}$), dichloromethane (15 mL), and aqueous sodium hydroxide ($4 \mathrm{M}, 10 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$ under vigorous stirring. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The organic layer was separated by separatory funnel. Then, the organic layer was washed with aqueous hydrogen chloride ($1 \mathrm{M}, 20 \mathrm{~mL}$), brine (20 mL) and dried over sodium sulfate. The solvent was removed under reduced pressure to give white solid. The solid was recrystallized from dichloromethane and hexane to afford 13 a as white solid (1920 mg , $7.99 \mathrm{mmol}, 75 \%$ yield based on 11a).
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.26 (m, 2H), 7.22-7.17 (m, 3H), 6.78 (d, J = 8.0 Hz , $1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, \mathrm{J}=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (brs, 1H), 3.86 (s, 3H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dt}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 2 H), 2.43 ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$).

Typical procedure B: Synthesis of N-(3,4-dimethoxyphenethyl)-2-phenylacetamide (13b)

11a'

13b

To avoid the use of phenylacetic acid, which is regulated as a methamphetamine ingredient in Japan, ethyl phenylacetate was used as a legal substitute.

A mixture of ethyl phenylacetate ($11 \mathrm{a}^{\prime}$) ($1640 \mathrm{mg}, 10.0 \mathrm{mmol}$), and 2-(3,4-dimethoxyphenyl)ethan-1-amine (12 a) ($906 \mathrm{mg}, 5.0 \mathrm{mmol}$) in p-xylene (3 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 days. After cooling, n-hexane was added to obtain white precipitates. The solid was purified by silica-gel column chromatography (eluent: ethyl acetate: dichloromethane $=1: 1$) to afford 13 b as white solid ($1065 \mathrm{mg}, 3.56 \mathrm{mmol}, 71 \%$ yield based on 12a).
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{brs}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{dt}$, $\mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,148.9,147.5,134.7,131.0,129.3,128.8,127.1$, $120.5,111.7,111.2,55.8,55.7,43.7,40.7,34.9$.

Typical procedure C: Synthesis of N-phenethylbenzamide (12c)

A solution of benzoyl chloride (11a") (2902 mg, 20.64 mmol) in 10 mL of dichloromethane was added to a mixture of phenethylamine 12 b ($2437 \mathrm{mg}, 20.11$ $\mathrm{mmol})$, dichloromethane (15 mL), and aqueous sodium hydroxide $\left(4 \mathrm{M}, 10 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$ under vigorous stirring. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The organic layer was separated by separatory funnel. And the organic layer was washed with aqueous hydrogen chloride ($1 \mathrm{M}, 20 \mathrm{~mL}$), brine (20 mL) and dried over sodium sulfate. The solvent was removed under reduced pressure to give white solid. The solid was recrystallized from dichloromethane and hexane to afford N-phenethylbenzamide 13c as white solid ($4205 \mathrm{mg}, 18.66 \mathrm{mmol}, 93 \%$ yield based on 12 b).
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H})$, 7.35-7.31 (m, 2H), 7.26-7.23 (m, 3H), 6.16 (brs, 1H), 3.72 (dt, J = 7.0, 7.0 Hz, 2H), 2.94 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,138.9,134.6,131.4,128.8$, 128.7, 128.5, 126.8, 126.6, 41.1, 35.7.

Compounds 13d,e,j,k,n-s were synthesized following the procedure A using corresponding acids 11 and amines 12 . The yields were calculated based on 10. Compounds $13 \mathrm{i}, \mathrm{l}, \mathrm{m}$ were synthesized following the procedure B using ethyl phenylacetate 11a' and amines 12 . The yields were calculated based on 12 . Compounds $13 f-\mathrm{h}$ were synthesized following the procedure C using benzoyl chloride 11a" and amines 12 . The yields were calculated based on 11a".

Synthesis of 4-methyl- N -phenethylbenzamide (13d)

91% yield (4341 mg) from 4-methylbenzoic acid (11b) and 12b. Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 7.59(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (dd, J = 7.2, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.17$ (m, 5 H), 6.27 (brs, 1H), 3.69 (dt, J = 6.9, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.91 (t, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.36 (s, 3H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,141.7,138.9,131.7,129.1,128.8,128.6,126.8,126.5,41.1$, 35.7, 21.4. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 240.1383$. Found: 240.1383 .

Synthesis of 4-chloro-N-phenethylbenzamide (13e)

94% yield (4984 mg) from 4 -chlorobenzoic acid (11c) and 12b. Purified by recrystallization from ethyl acetate $/ n$-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) 8 7.62-7.60 (m, 2H), 7.33-7.17 (m, 7 H), 6.57 (brs, 1 H), 3.65 (dt, J = 7.0, 7.0 Hz , 2 H), 2.89 (t, J = 7.0 Hz, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,138.7,137.5,132.9$, 128.9, 128.6, 128.6, 128.2, 126.5, 41.2, 35.5. ESI-HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 260.0837$. Found: 260.0838.

Synthesis of N-(3,4-dimethoxyphenethyl)benzamide (13f)

89% yield (1065 mg) from 11a" and 12a. Purified by recrystallization from ethyl acetate $/ n$-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47-7.37 (m, 3H), $6.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.75$ (m, 2H), 6.28 (brs, 1H), 3.86 (s, 3 H), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), $3.69(\mathrm{dt}, \mathrm{J}=6.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of N-(4-methylphenethyl)benzamide (13g)

81% yield (2819 mg) from 11a" and 2 -(p-tolyl)ethan-1-amine (12c). Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) δ 7.70-7.68 (m, 2H), 7.49-7.45 (m, 1H), 7.41-7.37 (m, 2H), $7.12(\mathrm{~s}, 4 \mathrm{H}), 6.22(\mathrm{~s}$, $1 \mathrm{H}), 3.69$ (dd, J = 12.8, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.88 (t, J = 7.0 Hz, 2H), 2.33 ($\mathrm{s}, 3 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,136.1,135.7,134.7,131.3,129.4,128.6,128.5,126.8,41.2$, 35.2, 21.0.

Synthesis of N-(4-chlorophenethyl)benzamide (13h)

87% yield (4790 mg) from 11a" and 2-(4-chlorophenyl)ethan-1-amine (12d). Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 7.69(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, J = 7.4, 7.4 $\mathrm{Hz}, 2 \mathrm{H}$), 7.30-7.26 (m, 2H), 7.16 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.17 (brs, 1H), 3.69 (dt, J = 6.8, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,137.4,134.5$, 132.4, 131.5, 130.1, 128.8, 128.6, 126.8, 41.0, 35.1.

Synthesis of N -phenethyl-2-phenylacetamide (13i)

75% yield (2745 mg) from 11a' and 12b. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 2 \sim 1: 0)$. White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 7.36-7.17 (m, 8H), 7.04-7.02 (m, 2H), 5.37 (brs, 1H), 3.55 ($\mathrm{s}, 2 \mathrm{H}$), 3.46 (dt, J = 6.7, 6.7 $\mathrm{Hz}, 2 \mathrm{H}$), $2.72(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,138.6,134.6$, 129.5, 129.0, 128.7, 128.5, 127.3, 126.4, 43.8, 40.6, 35.4.

Synthesis of N-phenethyl-2-(p-tolyl)acetamide (13j)
92% yield (3421 mg) from $2-(p$-tolyl)acetic acid (11d) and 12 b . Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.25-7.17 (m, 3 H), $7.12(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 4 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H})$,
3.49 (s, 2H), 3.44 (dt, J = 6.7, $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.71 (t, J = $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.34 ($\mathrm{s}, 3 \mathrm{H}$). 13CNMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.1, 138.7, 136.9, 131.7, 129.6, 129.3, 128.7, 128.5, 126.3, 43.4, 40.6, 35.4, 21.0.

Synthesis of 2-(4-chlorophenyl)-N-phenethylacetamide (13k)

91% yield (3676 mg) from 2 -(4 -chlorophenyl)acetic acid (11e) and 12b. Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.28-7.18 (m, 5H), $7.09(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H})$, 3.47 (dt, J = 6.9, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.46 ($\mathrm{s}, 2 \mathrm{H}$), $2.73(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}$). 13C-NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.2,138.5,133.2,133.2,130.6,129.0,128.6,128.6,126.5,43.0,40.6,35.3$.

Synthesis of N-(4-methylphenethyl)-2-phenylacetamide (131)
74% yield (2705 mg) from 11a' and 12c. Purified by silica-gel column chromatography (eluent: ethyl acetate: n -hexane $=1: 2 \sim 1: 0$). White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.34-7.26 (m, 3H), 7.18-7.16 (m, 2H), $7.04(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.36(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{dt}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$. $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,135.9,135.5,134.8,129.4,129.2,129.0,128.5$, 127.3, 43.9, 40.7, 35.0, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]+: 254.1540$. Found: 254.1535.

Synthesis of N-(4-chlorophenethyl)-2-phenylacetamide (13m)

78% yield (3468 mg) from 11a' and 12d. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 2 \sim 1: 0)$. White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~s}$, 2 H), 3.43 (dt, J = 6.9, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.69 (t, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) § 170.9, 137.1, 134.7, 132.3, 130.0, 129.4, 129.0, 128.7, 127.4, 43.9, 40.5, 34.8.

Synthesis of N-phenethyl-3-phenylpropanamide (13n)

84% yield (6395 mg) from 11a and 12b. Purified by recrystallization from ethyl acetate $/ n$-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.31-7.18 (m, 9H), 7.08 (d, J = 6.9 Hz, 2H), 5.38 (s, 1H), 3.48 (dt, J = 6.7, $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.95(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.73 (t, J = 6.7 Hz, 2H), $2.42(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0$, 140.7, 138.8, 128.7, 128.6, 128.5, 128.3, 126.4, 126.2, 40.5, 38.6, 35.6, 31.6.

Synthesis of N-phenethyl-3-(p-tolyl)propanamide (13o)

61% yield (3652 mg) from 3 -(p-tolyl)propanoic acid (11f) and 12b. Purified by recrystallization from ethyl acetate $/ n$-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) δ 7.29-7.19 (m, 3H), 7.09-7.04 (m, 6H), $5.40(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{dt}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}$, 2 H), 2.89 ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.73(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,138.9,137.7,135.7,129.1,128.7$, 128.5, 128.2, 126.4, 40.5, 38.6, 35.6, 31.2, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 268.1696. Found: 268.1690.

Synthesis of 3-(4-chlorophenyl)-N-phenethylpropanamide (13p)

98% yield (2891 mg) from 3-(4-chlorophenyl)propanoic acid (11g) and 12b. Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.41$ (brs, 1 H), $3.47(\mathrm{dt}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}$, 2 H), 2.90 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.74(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,139.3,138.7,131.9,129.7,128.6,128.6,128.5,126.5,40.5$,
38.2, 35.6, 30.9. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]+$: 288.1150. Found: 288.1146.

Synthesis of N-(4-methylphenethyl)-3-phenylpropanamide (13q)
87% yield (2174 mg) from 11a and 12c. Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.16 (m, 5 H), 7.08 (d, J = 7.8 Hz, 2H), 6.97 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.36 (brs, 1 H), $3.45(\mathrm{dt}, \mathrm{J}=6.9,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,140.8,136.0,135.7,129.3,128.6,128.5$, 128.3, 126.2, 40.6, 38.5, 35.2, 31.7, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]+$: 268.1696. Found: 268.1690 .

Synthesis of N-(4-chlorophenethyl)-3-phenylpropanamide (13r)

80% yield (1705 mg) from 11a and 12d. Purified by recrystallization from ethyl acetate $/ n$-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.30-7.17 (m, 7 H), 6.99 (d, J = 8.2 Hz, 2H), 5.26 ($\mathrm{s}, 1 \mathrm{H}$), $3.44(\mathrm{dt}, \mathrm{J}=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.70(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of N-phenethyl-4-phenylbutanamide (13s)
84% yield (5801 mg) from 4 -phenylbutanoic acid (11h) and 12b. Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 7.33-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.56(\mathrm{brs}, 1 \mathrm{H}), 3.50(\mathrm{dt}, \mathrm{J}=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,141.4,138.8,128.7,128.6,128.4,128.3,126.4,125.8,40.4$, 35.7, 35.5, 35.0, 27.0.

Synthesis of N-phenethyl-2,3-diphenylpropanamide (13t)
89% yield (3198 mg) from 2,3-diphenylpropanoic acid (11i) and 12b. Purified by recrystallization from ethyl acetate/ n-hexane. White solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) δ 7.31-7.10 (m, 13H), 6.88-6.85 (m, 2H), 5.36 (brs, 1H), 3.57-3.45 (m, 2H), 3.38 (ddd, $\mathrm{J}=12.8,6.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.96(\mathrm{dd}, \mathrm{J}=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,139.7,139.6,138.8,129.0,128.7,128.7,128.5,128.2$, 128.0, 127.3, 126.3, 126.2, 55.7, 40.7, 39.5, 35.5. ESI-HRMS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 330.1853$. Found: 330.1844.

Synthesis of imines 14a-t
Typical procedure D: Synthesis of 1-phenyl-3,4-dihydroisoquinoline (14a)

13a

A solution of 13 a ($2504 \mathrm{mg}, 7.99 \mathrm{mmol}$) in 10 mL of phosphoryl chloride was refluxed under stirring for 3 hr . Then, the mixture was cooled, and poured into 50 mL of ice water. The mixture was basified with aqueous sodium hydroxide ($2 \mathrm{~mol} / \mathrm{L}$). The whole was extracted with ethyl acetate ($50 \mathrm{~mL} \times 2$). The organic layer was washed with brine, dried over sodium sulfate and the solvent was evaporated to give a crude oil mixture. The crude product was purified by silica-gel column chromatography
(eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$) to afford 14 ($1715 \mathrm{mg}, 5.81 \mathrm{mmol}, 73 \%$) as white solid.
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.32-7.17 (m, 5H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$). ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+:$: 296.1645 . Found: 296.1636.

Typical procedure E: Synthesis of 1-phenyl-3,4-dihydroisoquinoline (14c)

To phosphorous pentoxide (20 g), 7 mL of phosphoric acid (70%) was slowly added under stirring to prepare polyphosphoric acid. Then, 13c ($3993 \mathrm{mg}, 17.7 \mathrm{mmol}$) was added to the acid and the mixture was stirred at $170^{\circ} \mathrm{C}$ for 1 hr . Then, the mixture was cooled in ice bath and basified with 200 mL of aqueous sodium hydroxide ($2 \mathrm{~mol} / \mathrm{L}$). The whole was extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The organic layer was washed with brine, dried over sodium sulfate and the solvent was evaporated to give a crude oil mixture. The crude product was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$) to afford 14 c ($3155 \mathrm{mg}, 15.22 \mathrm{mmol}, 86 \%$) as pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8$ 7.61-7.59 (m, 2H), 7.43-7.37 (m, 4H), 7.28-7.22 (m, 3H), 3.85 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.3 Hz, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.2, 139.0, 138.8, 130.6, 129.3, 128.8, 128.8, 128.1, 127.9, 127.4, 126.5, 47.6, 26.3.

Compounds $14 \mathrm{a}, 14 \mathrm{~b}$, and 14 f were synthesized following the procedure D. Compounds $14 \mathrm{c}-\mathrm{e}, 14 \mathrm{~g}-\mathrm{t}$ were synthesized following the procedure E .
Synthesis of 1-benzyl-6,7-dimethoxy-3,4-dihydroisoquinoline (14b)
78% yield (1303 mg) from 13b. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.25(\mathrm{~m}, 4 \mathrm{H})$, 7.20-7.16 (m, 1H), $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 2.65 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$).
13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,150.6,147.2,138.2,131.8,128.6,128.5,126.4$, 121.6, 110.2, 109.6, 55.9, 55.9, 47.3, 43.6, 25.8.

ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}+[\mathrm{M}+\mathrm{H}]+:$ 282.1489. Found: 282.1479.

Synthesis of 1-(p-tolyl)-3,4-dihydroisoquinoline (14d)

88% yield (2576 mg) from 13d. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49$ (d, J = 7.8 Hz, 2H), 7.34 (dd, $\mathrm{J}=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.81(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, 2 H), 2.76 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.38 (s, 3 H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.9, 139.1, 138.7, 136.0, 130.4, 130.1, 128.7, 128.6, 128.6, 128.3, 127.8, 127.2, 126.3, 47.4, 26.2, 21.2. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+:$ 222.1277. Found: 222.1279.

Synthesis of 1-(4-chlorophenyl)-3,4-dihydroisoquinoline (14e)

85% yield (2953 mg) from 13e. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). White solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54$
(d, J = 8.2 Hz, 2H), 7.39-7.36 (m, 3H), 7.26-7.20 (m, 3H), 3.84-3.80 (m, 2H), $2.78(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,138.7,137.2,135.2,130.7,130.0$, 128.3, 128.2, 127.4, 127.4, 126.5, 47.5, 26.1

ESI-HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 242.0731$. Found: 242.0731.

Synthesis of 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline (14f)

89% yield (712 mg) from 13 f . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.61-7.43 (m, 3H), $6.80(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (s, 3H), $2.74(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+:$ 268.1332. Found: 268.1325.

Synthesis of 7-methyl-1-phenyl-3,4-dihydroisoquinoline (14g)

81% yield (1697 mg) from 13 g . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 ($\mathrm{s}, 1 \mathrm{H}$), $3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.76$ (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.29 ($\mathrm{s}, 3 \mathrm{H}$). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,139.2,136.1,135.8,131.3,129.2,128.8,128.7,128.4,128.1$, 127.2, 47.9, 25.9, 21.2. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 222.1277. Found: 222.1279 .

Synthesis of 7-chloro-1-phenyl-3,4-dihydroisoquinoline (14h)

18% yield (376 mg) from 13 h . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.59-7.57 (m, 2H), 7.46-7.42 (m, 3H), 7.36 (dd, J = 8.0, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87-3.83 (m, 2H), 2.77 (t, J = 7.3 Hz, 2H). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,138.3,137.1,132.2$, 130.5, 130.0, 129.6, 128.7, 128.6, 128.3, 127.8, 47.6, 25.7. ESI-HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]+$: 242.0731. Found: 242.0731.

Synthesis of 1-benzyl-3,4-dihydroisoquinoline (14i)

90% yield (1486 mg) from 13 i . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ (d, J = 7.5 Hz, 1H), 7.31-7.24 (m, 5H), 7.20-7.14 (m, 3H), 4.08 (s, 2H), 3.76 (t, J = 7.4 $\mathrm{Hz}, 2 \mathrm{H}$), $2.71(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,138.0,137.9$, 130.4, 128.8, 128.6, 128.5, 127.5, 126.8, 126.3, 125.7, 47.1, 42.9, 26.1. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+:}$222.1277. Found: 222.1273.

Synthesis of 1-(4-methylbenzyl)-3,4-dihydroisoquinoline (14j)

89% yield (1780 mg) from 13 j . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ (d, J = 7.5 Hz, 1H), 7.28-7.23 (m, 1H), 7.19-7.12 (m, 4H), $7.06(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03$ ($\mathrm{s}, 2 \mathrm{H}$), $3.74(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.69(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27$ (s, 3H). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,138.0,135.7,134.7$, 130.3, 129.2, 128.8, 128.5, 127.4, 126.7, 125.6, 47.1, 42.5, 26.1, 20.9. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 236.1434$. Found: 236.1429 .

Synthesis of 1-(4-chlorobenzyl)-3,4-dihydroisoquinoline (14k)

88% yield (1981 mg) from 13k. Purified by silica-gel column chromatography (eluent:
ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40$ (d, J = 7.8 Hz, 1H), 7.30 (td, J = 7.4, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25-7.15 (m, 6H), 4.03 (s, 2H), 3.74 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.70(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,138.0$, $136.3,132.1,130.6,130.0,128.6,128.6,127.6,126.8,125.4,47.1,42.1,26.0$. ESIHRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 256.0888$. Found: 256.0881.

Synthesis of 1-benzyl-7-methyl-3,4-dihydroisoquinoline (141)

85% yield (1576 mg) from 131 . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.31-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{dd}, \mathrm{J}=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,138.0,136.2,134.9,131.0,128.7,128.6,128.4,127.3$, 126.2, 126.2, 47.3, 42.7, 25.7, 21.2. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 236.1434$. Found: 236.1428.

Synthesis of 1-benzyl-7-chloro-3,4-dihydroisoquinoline (14m)

63% yield (1512 mg) from 13 m . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43$ (d, J = 2.1 Hz, 1H), 7.29-7.16 (m, 6H), 7.07 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 ($\mathrm{s}, 2 \mathrm{H}$), 3.74 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.65(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,137.3,136.3$, 132.3, 130.3, 130.0, 128.8, 128.7, 128.6, 126.5, 125.7, 47.0, 42.7, 25.5. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: ~ 256.0888$. Found: 256.0881.

Synthesis of 1-phenethyl-3,4-dihydroisoquinoline (14n)

83% yield (1152 mg) from 13 n . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50$ (d, J = 7.5 Hz, 1H), 7.35 (ddd, J = 7.3, 7.3, 1.4 Hz, 1H), 7.31-7.17 (m, 7H), 3.71-3.67 (m, 2 H), 3.06-2.96 (m, 4H), 2.68 (t, J = 7.4 Hz, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3$, $141.9,137.8,130.4,129.0,128.4,128.4,127.6,126.9,125.9,124.8,46.9,37.6,33.1,26.1$. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 236.1434$. Found: 236.1429.

Synthesis of 1-(4-methylphenethyl)-3,4-dihydroisoquinoline (140)

89% yield (2919 mg) from 13o. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale brown oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48$ (d, J = 7.8 Hz, 1H), 7.35-7.25 (m, 2H), 7.18-7.06 (m, 5H), $3.68(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03^{-}$ $2.92(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,138.8,137.7,135.3,130.3,129.0,128.9,128.2$, 127.5, 126.8, 124.7, 46.8, 37.7, 32.6, 26.1, 20.9.

ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 250.1590$. Found: 250.1585.

Synthesis of 1-(4-chlorophenethyl)-3,4-dihydroisoquinoline (14p)

87% yield (1587 mg) from 13p. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale brown oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47$ (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (dd, $\mathrm{J}=7.4,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.27 (m, 1H), 7.25-7.14 (m, 5 H), 3.68 (t, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.02-2.95 (m, 4H), 2.67 (t, J = 7.4 Hz, 2H). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,140.3,137.8,131.6,130.5,129.8,128.9,128.4,127.6,126.9$, 124.7, 46.9, 37.3, 32.3, 26.1. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]+: 270.1044$. Found: 270.1040.

Synthesis of 7-methyl-1-phenethyl-3,4-dihydroisoquinoline (14q)
97% yield (1496 mg) from 13q. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale brown oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32^{-}$ 7.17 (m, 8H), 7.09 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.05-2.98 (m, 4H), 2.65 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.36 ($\mathrm{s}, 3 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.4, 142.1, 136.4, $134.8,131.0,128.9,128.4,128.4,127.4,125.9,125.5,47.1,37.6,33.0,25.8,21.3$. ESIHRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+: 250.1590$. Found: 250.1584.

Synthesis of 7-chloro-1-phenethyl-3,4-dihydroisoquinoline (14r)

27% yield (493 mg) from 13 r . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale brown oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$ (d, J = 2.1 Hz, 1H), 7.33-7.06 (m, 7H), 3.69 (t, J = 7.4 Hz, 2H), 3.00-2.94 (m, 4H), 2.64 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,141.6,136.0,132.5,130.3$, 129.8, 128.9, 128.4, 128.4, 126.0, 125.0, 46.8, 37.4, 32.8, 25.5. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]+:$ 270.1044. Found: 270.1039.

Synthesis of 1-(3-phenylpropyl)-3,4-dihydroisoquinoline (14s)

74% yield (1003 mg) from 13s. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39$ (d, J = 7.5 Hz, 1H), 7.33 (ddd, J = 7.3, 7.3, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.25 (m, 3H), 7.17 (dd, J = $12.8,6.9 \mathrm{~Hz}, 4 \mathrm{H}$), 3.66 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.77-2.65 (m, 6H), 2.03-1.96 (m, 2H). 13CNMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,142.1,137.8,130.3,129.0,128.5,128.3,127.5,126.8$, 125.7, 124.9, 46.9, 35.7, 35.3, 28.7, 26.2. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+$: 250.1590. Found: 250.1586 .

Synthesis of 1-(1,2-diphenylethyl)-3,4-dihydroisoquinoline (14t)

85% yield $(2358 \mathrm{mg}$) from 13t. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 2: 1$). Pale yellow oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ (d, J = 7.8 Hz, 1H), 7.24-7.09 (m, 11H), 7.02-7.00 (m, 2H), 4.43 (dd, J = 8.2, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, \mathrm{J}=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=13.3,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.672.63 (m, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,141.9,140.8,138.1,130.0,129.4$, 129.3, 128.4, 128.1, 127.9, 127.4, 126.7, 126.5, 125.7, 125.1, 52.1, 47.0, 41.4, 26.2. ESIHRMS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 312.1747$. Found: 312.1740.

Synthesis of amines 4a-t
Typical procedure F: Synthesis of 6,7-dimethoxy-1-phenethyl-1,2,3,4tetrahydroisoquinoline (4a)

To a solution of 14a ($1157 \mathrm{mg}, 3.92 \mathrm{mmol}$) in methanol (20 mL), sodium borohydride ($393 \mathrm{mg}, 10.4 \mathrm{mmol}, 2.7 \mathrm{eq}$.) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ under air for 1 hr . Then the mixture was quenched with 20 mL of ice water and the whole was extracted with ethyl acetate ($30 \mathrm{~mL} \times 2$). The organic layer was washed with brine, dried over sodium sulfate and the solvent was evaporated to give
a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 2 \sim 1: 0$) to afford $4 \mathrm{a}(1144 \mathrm{mg}, 3.84 \mathrm{mmol}, 98 \%$ yield $)$ as pale yellow oil.
1H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8 7.31-7.17 (m, 5H), 6.58 ($\mathrm{s}, 1 \mathrm{H}$), 6.57 (s, 1H), 3.96 (dd, J $=8.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.97$ (m, 1H), 2.88-2.63 (m, 4H), 2.17-1.99 (m, 2H), 1.59 (brs, 1H). 13C-NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.2,147.1,142.3,131.3,128.3,127.2,125.7,111.8,109.1,55.9,55.7,55.0$, 41.0, 38.2, 32.4, 29.5. ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+:$ 298.1802. Found: 298.1789 .

Compounds $4 \mathrm{~b}-\mathrm{t}$ were synthesized following the procedure F .
Synthesis of 1-benzyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (4b)
97% yield from 14b. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.34-7.22 (m, 5 H), 6.62 $(\mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.18$ $(\mathrm{m}, 2 \mathrm{H}), 2.94-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.72$ (brs, 1 H). $13 \mathrm{C}-\mathrm{NMR}$ (101 MHz , CDCl_{3}) $\delta 147.4,146.9,139.1,130.5,129.3,128.5,127.3,126.4,111.7,109.4,56.8,55.9$, 55.7, 42.8, 40.6, 29.4. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+: 284.1645$. Found: 284.1634 .

Synthesis of 1-phenyl-1,2,3,4-tetrahydroisoquinoline (4c)

72% yield (1782 mg) from 14c. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 5 \mathrm{H})$, 7.15-7.12 (m, 2H), 7.06-7.01 (m, 1H), $6.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.30-3.23$ $(\mathrm{m}, 1 \mathrm{H}), 3.13-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.81$ (brs, 1 H$) .13 \mathrm{C}-\mathrm{NMR}$ (101 MHz , CDCl_{3}) $\delta 144.9,138.3,135.4,129.0,129.0,128.4,128.1,127.3,126.2,125.6,62.1,42.3$, 29.8.

Synthesis of 1-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4d)
97% yield (1864 mg) from 14d. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale brown solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.16-7.11 (m, 6 H), 7.05$7.00(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.99(\mathrm{~m}, 2 \mathrm{H})$, $2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.82$ (brs, 1 H). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.9$, 138.5, 136.9, 135.4, 129.1, 129.0, 128.8, 128.1, 126.1, 125.6, 61.8, 42.2, 29.8, 21.1. ESIHRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+:$: 224.1434 . Found: 224.1435.

Synthesis of 1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (4e)
94% yield (2498 mg) from 14 e . Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8$ 7.30-7.27 (m, 2 H), 7.22$7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, 3.28-3.22 (m, 1H), 3.12-2.99 (m, 2H), 2.84-2.79 (m, 1H), 1.83 (brs, 1H). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4,137.8,135.4,133.1,130.3,129.1,128.5,127.9,126.4,125.7,61.4$, 42.2, 29.7. ESI-HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 244.0888$. Found: 244.0889.

Synthesis of 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4f)
90% yield (397 mg) from 14f. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.34-7.24(\mathrm{~m}, 6 \mathrm{H})$, $6.63(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dt}, \mathrm{J}=12.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dt}, \mathrm{J}=15.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (brs,

1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 147.6, 147.0, 144.8, 129.8, 128.9, 128.4, 127.7, 127.3, 111.4, 111.0, 61.4, 55.8, 41.8, 29.3. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+$: 270.1489. Found: 270.1480.

Synthesis of 7-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4 g)

79% yield (1392 mg) from 14 g . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 2 \sim 1: 0)$. Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.06$ $(\mathrm{s}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.86$ (brs, $1 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 145.0, 137.9, 135.0, 132.4, 129.0, 128.9, 128.5, 128.4, 127.3, 127.1, 62.0, 42.2, 29.4, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+$: 224.1434. Found: 224.1426 .

Synthesis of 7-chloro-1-phenyl-1,2,3,4-tetrahydroisoquinoline (4h)

94% yield (658 mg) from 14 h . Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.06(\mathrm{~m}, 5 \mathrm{H})$, 7.12-7.06 (m, 2H), 6.74 (d, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.04(\mathrm{~s}, 1 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.95$ (m, 2H), 2.81-2.75 (m, 1H), 1.79 (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.0, 140.1, 133.9, 131.2, 130.4, 128.9, 128.6, 127.8, 127.7, 126.5, 62.0, 42.1, 29.2. ESI-HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]+:$ 244.0888. Found: 244.0879.

Synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinoline (4i)

96% yield (701 mg) from 14i. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.34-7.09 (m, 9H), 4.20 (dd, $\mathrm{J}=10.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.73(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H}) .13 \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,138.6,135.2,129.3,129.3,128.5,126.4,126.1,126.1$, $125.6,57.2,42.5,40.6,29.9$. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 224.1434$. Found: 224.1431.

Synthesis of 1-(4-methylbenzyl)-1,2,3,4-tetrahydroisoquinoline (4j)
97% yield (1016 mg) from 14j. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 7 \mathrm{H}), 4.16(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.76(\mathrm{~m}, 4 \mathrm{H})$, 2.33 (s, 3H), 1.78 (s, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7$, 136.0, 135.9, 135.2, 129.2, 129.1, 126.1, 126.0, 125.6, 57.2, 42.0, 40.6, 29.9, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 238.1590$. Found: 238.1585.

Synthesis of 1-(4-chlorobenzyl)-1,2,3,4-tetrahydroisoquinoline (4k)
94% yield (948 mg) from 14k. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{dt}, \mathrm{J}=8.7$, $2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21-7.08 (m, 6H), 4.16 (dd, J = 10.1, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22-3.15 (m, 2H), 2.93$2.70(\mathrm{~m}, 4 \mathrm{H}), 1.68$ (brs, 1 H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,137.6,135.2,132.1$, 130.6, 129.3, 128.6, 126.1, 126.0, 125.6, 57.0, 41.8, 40.6, 29.8. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 258.1044$. Found: 258.1039.

Synthesis of 1-benzyl-7-methyl-1,2,3,4-tetrahydroisoquinoline (41)
67% yield (950 mg) from 141. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 2 \sim 1: 0)$. Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{dd}, \mathrm{J}=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$
(dd, $\mathrm{J}=13.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.69$ (brs, 1 H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,138.4,135.0,132.1,129.3,129.1,128.5$, 126.9, 126.7, 126.4, 57.2, 42.5, 40.7, 29.6, 21.1. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}^{+}$ [M+H]+: 238.1590. Found: 238.1586.

Synthesis of 1-benzyl-7-chloro-1,2,3,4-tetrahydroisoquinoline (4m)

63% yield (716 mg) from 14 m . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 2 \sim 1: 0)$. Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.01(\mathrm{~m}, 8 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=10.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.65(\mathrm{~m}$, 4 H), 1.68 (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4,138.6,133.7,131.1,130.6$, 129.2, $128.6,126.5,126.2,126.1,57.0,42.2,40.5,29.4$. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}:$258.1044. Found: 258.1039.

Synthesis of 1-phenethyl-1,2,3,4-tetrahydroisoquinoline (4n)

91% yield (1151 mg) from 14 n . Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.06(\mathrm{~m}, 9 \mathrm{H})$, $4.00(\mathrm{dd}, \mathrm{J}=8.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dt}, \mathrm{J}=12.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H})$, 2.872.70 (m, 4H), 2.19-2.00 (m, 2H), 1.60 (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3$, $139.5,135.2,129.2,128.4,128.4,126.0,125.8,125.7,125.7,55.3,40.9,38.1,32.4,30.0$. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: ~ 238.1590$. Found: 238.1584.

Synthesis of 1-(4-methylphenethyl)-1,2,3,4-tetrahydroisoquinoline (40)

96% yield (2114 mg) from 14o. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.12-7.07 (m, 8H), $3.99-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.62$ (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,139.1,135.2$, 135.1, 129.2, 129.0, 128.2, 126.0, 125.8, 125.7, 55.3, 40.9, 38.2, 31.9, 29.9, 20.9. ESIHRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 252.1747$. Found: 252.1743.

Synthesis of 1-(4-chlorophenethyl)-1,2,3,4-tetrahydroisoquinoline (4p)

89% yield (1097 mg) from 14 p. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) $7.25-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.16-7.07 (m, 6H), 3.99 (dd, J = 8.8, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (dt, $\mathrm{J}=12.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05-$ $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.57$ (brs, 1 H$) .13 \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 140.8,139.3,135.3,131.4,129.7,129.3,128.4,126.0,125.9,125.8,55.1,40.9$, 38.1, 31.7, 30.0. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]+:$ 272.1201. Found: 272.1195.

Synthesis of 7-methyl-1-phenethyl-1,2,3,4-tetrahydroisoquinoline (4q)
95% yield (1211 mg) from 14q. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.14(\mathrm{~m}, 5 \mathrm{H})$, 6.98-6.89 (m, 3H), 3.97 (dd, J = 9.1, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (dt, J = 12.4, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02$2.96(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.63$ (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.4, 139.3, 135.1, 132.1, 129.1, 128.4, 128.4, 126.7, 126.6, 125.7, 55.4, 41.1, 38.2, 32.5, 29.6, 21.1. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}^{+}$ [M+H]+: 252.1747. Found: 252.1740.

Synthesis of 7-chloro-1-phenethyl-1,2,3,4-tetrahydroisoquinoline (4r)
99% yield (429 mg) from 14 r . Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.32-6.99$ (m, 8H),
$3.95(\mathrm{dd}, \mathrm{J}=9.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dt}, \mathrm{J}=12.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02-2.96 (m, 1H), 2.892.64 (m, 6H), 2.16-1.97 (m, 2H), 1.59 (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0$, 141.3, 133.7, 131.3, 130.6, 128.4, 128.4, 126.1, 126.0, 125.9, 55.1, 40.7, 38.0, 32.3, 29.4. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]+:$ 272.1201. Found: 272.1200.

Synthesis of 1-(3-phenylpropyl)-1,2,3,4-tetrahydroisoquinoline (4s)

94% yield (941 mg) from 14s. Purified by silica-gel column chromatography (eluent: ethyl acetate). Pale orange sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 7.29-7.07 (m, 9H), $3.98(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.62(\mathrm{~m}, 4 \mathrm{H}), 1.91-$ $1.75(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 1 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,139.4,135.1,129.2$, 128.4, 128.2, 126.0, 125.8, 125.7, 125.7, 55.5, 41.0, 35.9, 35.9, 29.9, 27.9. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+:$ 252.1747. Found: 252.1739.

Synthesis of Racemic mixture of (R)-1-((R)-1,2-diphenylethyl)-1,2,3,4tetrahydroisoquinoline and
 (S)-1-((S)-1,2-diphenylethyl)-1,2,3,4-

 tetrahydroisoquinoline (4t)90% yield (1037 mg) from 14 t . Purified by silica-gel column chromatography (eluent: ethyl acetate). White amorphous solid. 1H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22^{-7.03 ~(m, ~}$ $13 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{td}, \mathrm{J}=7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.33 (dd, J = 13.5, $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12-3.00 (m, 2H), 2.78-2.71 (m, 1H), 2.54 (dt, J = 16.1, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42-2.34 (m, 1H), 1.47 (brs, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8$, $140.8,138.1,136.5,129.1,129.0,128.9,128.2,127.9,127.2,126.4,125.9,125.8,125.3$, 58.2, 52.1, 41.1, 38.8, 29.9. ESI-HRMS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]+: 314.1903$. Found: 314.1898.

Synthesis of dimethyl 2,2'-(carbonylbis(oxy))bis(3-nitrobenzoate) (15)

To a solution of methyl 2-hydroxy-3-nitrobenzoate ($5532 \mathrm{mg}, 28.1 \mathrm{mmol}$) and triphosgene ($1459 \mathrm{mg}, 4.92 \mathrm{mmol}$) in dry dichloromethane (50 mL) was added a dry pyridine (5.0 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched with aqueous $\mathrm{HCl}(1 \mathrm{~mol} / \mathrm{L})(40 \mathrm{~mL})$. The reaction mixture was extracted with dichloromethane (50 mL). The organic phase was washed with brine (20 mL), dried over sodium sulfate, and the solvent was evaporated to give the crude solid. The crude solid was purified by recrystallization (solvent: dichloromethane and hexane) to afford 14 as white powder ($5615 \mathrm{mg}, 13.4 \mathrm{mmol}, 95 \%$ yield).
Mp. 98-101 ${ }^{\circ} \mathrm{C}$ (White powder, recrystallized from dichloromethane n-hexane). $1 \mathrm{H}^{-}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 88.23 (dd, J = $7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.17 (dd, J = 8.1, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.55 (dd, J = 8.1, $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.02 ($\mathrm{s}, 6 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.4, 148.6, 143.0, 142.2, 136.1, 129.0, 127.3, 126.8, 53.3. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{11}{ }^{+}$ [M+Na]+: 443.0333. Found: 443.0323.

Synthesis of dimethyl 6,6'-(carbonylbis(oxy))bis(3-nitrobenzoate) (16)

To a solution of methyl 2-hydroxy-5-nitrobenzoate ($2085 \mathrm{mg}, 10.6 \mathrm{mmol}$) and triphosgene ($593 \mathrm{mg}, 2.00 \mathrm{mmol}$) in dry dichloromethane (40 mL) was added a dry pyridine (3.0 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . The reaction was quenched with aqueous $\mathrm{HCl}(1 \mathrm{~mol} / \mathrm{L})(40 \mathrm{~mL})$. The reaction mixture was extracted with dichloromethane (50 mL). The organic phase was washed with brine (20 mL), dried over sodium sulfate, and the solvent was evaporated to give the crude solid. The crude solid was purified by recrystallization (solvent: dichloromethane) to afford 15 as
white powder ($1947 \mathrm{mg}, 4.63 \mathrm{mmol}$, 88% yield).
Mp. 185-187 ${ }^{\circ} \mathrm{C}$ (Colorless needles, recrystallized from dichloromethane). 1H-NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.70$ ($\mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 8.61 ($\mathrm{dd}, \mathrm{J}=8.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (d, $\mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.95 (s, 6H). 13C-NMR (101 MHz, DMSO- d_{6}) $\delta 162.7,153.2$, 149.2, $145.7,129.6,126.8,125.3,123.8$, 53.3. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{11}{ }^{+}$ [M+Na]+: 443.0333. Found: 443.0324.

Synthesis of tetramethyl 2,2'-(carbonylbis(oxy))diisophthalate(17)

A mixture of 2 -hydroxyisophthalaldehyde ($465 \mathrm{mg}, 3.10 \mathrm{mmol}$), sodium hydroxide ($1305 \mathrm{mg}, 32.6 \mathrm{mmol}$) and silver(I) oxide ($1438 \mathrm{mg}, 6.21 \mathrm{mmol}$) in water (12 mL) was heated at $60^{\circ} \mathrm{C}$ for 10 min . The solution was filtered. Then pH was lowered to 1 by adding HCl . The whole was extracted with ethyl acetate (50 mL). The organic layer was washed with brine, dried over sulfate and the solvent was evaporated to afford dimethyl 2 -hydroxyisophthalate as white solid ($525 \mathrm{mg}, 2.88 \mathrm{mmol}, 93 \%$ yield). The NMR spectra are in accord with previous report. ${ }^{222}$
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 8.10(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}$, $1 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.$, methanol- d_{4}) δ 171.1, 163.3, 137.7, 119.5, 117.8.

Dimethyl 2-hydroxyisophthalate was synthesized according to previously reported procedure from 2 -hydroxyisophthalic acid (89% yield). ${ }^{523}$

To a solution of dimethyl 2-hydroxyisophthalate ($325 \mathrm{mg}, 1.54 \mathrm{mmol}$) and triphosgene ($78 \mathrm{mg}, 0.26 \mathrm{mmol}$) in dry dichloromethane (2 mL) was added a dry pyridine (0.50 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched with aqueous $\mathrm{HCl}(1 \mathrm{~mol} / \mathrm{L})(40 \mathrm{~mL})$. The reaction mixture was extracted with dichloromethane $(30 \mathrm{~mL})$. The organic phase was washed with brine (10 mL), dried over sodium sulfate, and the solvent was evaporated to give the crude solid. The crude solid was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 1: 2$) to afford 17 as white powder ($213 \mathrm{mg}, 0.48 \mathrm{mmol}, 62 \%$ yield).
Mp. 129-130 ${ }^{\circ} \mathrm{C}$ (White powder, recrystallized from dichloromethane $/ n$-hexane). $1 \mathrm{H}^{-}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.41 ($\mathrm{dd}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.96 (s, 12H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.6, 150.2, 148.8, 135.1, 126.3, 125.8, 52.7. ESI-HRMS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NaO}_{11}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 469.0741$. Found: 469.0720 .

Synthesis of substrate 2-(methoxycarbonyl)phenyl 6,7-dimethoxy-1-phenethyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (1a)

Dimethyl 2,2'(carbonylbis(oxy))dibenzoate (18) was synthesized according to previously reported procedure. ${ }^{8 c}$
White solid. 1H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (dd, $\mathrm{J}=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63-7.59 (m, 2 H), 7.40-7.34 (m, 4H), 3.95 (s, 6H).

A solution of 18 ($336 \mathrm{mg}, 1.02 \mathrm{mmol}$) and $4 \mathrm{a}(360 \mathrm{mg}, 1.21 \mathrm{mmol}, 1.2$ eq.) in tetrahydrofuran (5.0 mL) was stirred at $25^{\circ} \mathrm{C}$ for 15 h . The solvent was evaporated under reduced pressure to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 1: 2$) to afford 1a as colorless sticky oil ($446 \mathrm{mg}, 0.939 \mathrm{mmol}, 78 \%$ yield).
Colorless sticky oil. $1 \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers (A and B) with respect to the amide bond were observed (approximately A:B $=6: 4$ ratio at $25^{\circ} \mathrm{C}$), 87.96 (dd, $\mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), $7.51(\mathrm{td}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.23-7.28 (m, 5 H , rotamer A and B), 7.14-7.18 ($\mathrm{m}, 2 \mathrm{H}$, rotamer A and B), $6.64(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), $6.59(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), \quad 6.57(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A$), 5.34(\mathrm{~s}, 0.4 \mathrm{H}$,
rotamer B), 5.23 (s, 0.6 H , rotamer A), 4.24-4.33 (m, 1H, rotamer A and B), 3.81-3.89 ($\mathrm{m}, 6 \mathrm{H}$, rotamer A and B), 3.73 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), $3.54-3.61$ ($\mathrm{m}, 0.6 \mathrm{H}$, rotamer A), $3.54(\mathrm{~m}, 1.2 \mathrm{H}$, rotamer B), $3.39(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), 2.71-3.11 ($\mathrm{m}, 4 \mathrm{H}$, rotamer A and B), 2.09-2.27 (m, 2 H , rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ two rotamers with respect to the amide bond were observed, $\delta 165.46,165.24,153.84,151.18,150.82$, $148.08,147.80,142.02,141.76,133.33,131.66,131.51,129.71,129.47,128.34,126.16$, 125.93 , 125.77, $125.34,124.10,124.00$, 111.89, 110.59, 110.35, 56.13, 55.99, 55.26, 55.06, 51.86, 39.12, 38.70, 38.47, 32.82, 32.70, 28.14, 27.70. ESI-HRMS: Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NNaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 498.1887$. Found: .498.1874.

Synthesis of substrates 6a-t
Typical Procedure F: Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6a)

A solution of $15(1427 \mathrm{mg}, 3.40 \mathrm{mmol})$ and $4 \mathrm{a}(1144 \mathrm{mg}, 3.84 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) in$ dichloromethane (10.0 mL) was stirred at $25^{\circ} \mathrm{C}$ for 5 min . The solvent was evaporated under reduced pressure to give a crude oil. The crude oil was dissolved in ethyl acetate (50 mL) and washed with 10 mL of aqueous tripotassium phosphate ($0.5 \mathrm{~mol} / \mathrm{L}$) two times, and then washed with brine once. The organic layer was dried over sodium sulfate. The solvent was evaporated under reduced pressure to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n^{-} hexane $=1: 4 \sim 1: 1$) to afford 6 a as pale yellow sticky oil ($1425 \mathrm{mg}, 2.74 \mathrm{mmol}, 81 \%$ yield).
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $88.22(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 8.19-8.14 (m, 1 H , rotamer A and B), 7.46-7.40 (m, 1 H , rotamer A and B), 7.36-7.26 (m,5H, rotamer A and B), $6.73(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), $6.54(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B$), 6.48(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), 6.40(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A$), 4.25-4.13(\mathrm{~m}$, 1 H , rotamer A and B), 3.91 (s, 3 H , rotamer A and B), 3.77 ($\mathrm{s}, 3 \mathrm{H}$, rotamer A and B), $3.62(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), $3.50(\mathrm{~s}, 1 \mathrm{H}$, rotamer B), $3.44-3.37(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), $3.28-3.03(\mathrm{~m}, 1.4 \mathrm{H}$, rotamer A and B), 2.80-2.72 ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B). 13C-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, δ $164.2,164.0,152.0,151.4,148.2,148.2$, 147.5, 144.5, 144.3, 143.8, 141.8, 141.5, 136.3, $136.2,129.0,129.0,128.6,128.6,128.3,128.3,127.7,127.3,126.8,126.8,126.3,126.1$, $125.7,125.6,111.3,111.2,111.1,110.8,58.4,57.8,55.9,55.9,52.5,52.4,38.9,38.5,28.1$, 27.5. ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{8}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 515.1425$. Found: 515.1404.

Compounds 6b-t were synthesized following the procedure F.
Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-benzyl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (6b)
92% yield (466 mg) from 4 b . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately
$\mathrm{A}: \mathrm{B}=6: 4$ ratio at $\left.25{ }^{\circ} \mathrm{C}\right), \delta 8.26-8.15(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 7.26-7.17 (m, 3 H , rotamer A and B), 7.12-7.07 (m, 2 H , rotamer A and B), 6.63 , ($\mathrm{s}, 0.6 \mathrm{H}$, rotamer A), $6.62(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), 6.12(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A), $6.04(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B), 5.41 (dd, J = 8.7, $3.9 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.26 (dd, J = 8.1, $5.1 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.09-3.96 (m, 1 H , rotamer A and B), 3.87 ($\mathrm{s}, 3 \mathrm{H}$, rotamer A and B), $3.80(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), $3.70(\mathrm{~s}, 1.2 \mathrm{H}$, rotamer B), $3.67-3.61$ (m, 0.6 H , rotamer A), 3.58 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), $3.54(\mathrm{~s}, 1.2 \mathrm{H}$, rotamer B), $3.49(\mathrm{dd}, \mathrm{J}=13.0,3.9 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 3.39-3.28 (m, 1 H , rotamer A and B), 3.17-3.04 ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B), $2.99-2.84(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 2.71-2.63 ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B).
$13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, $\delta 182.0$, 163.9, 163.7, 151.9, 151.9, 147.8, 146.8, 146.7, 144.7, 144.6, 143.9, $143.8,137.8,137.7,136.2,136.0,130.1,130.0,129.1,129.0,128.3,128.2,128.0,127.4$, $127.2,127.1,127.0,126.5,126.5,126.0,125.9,125.6,125.5,111.1,111.0,110.5,110.5$, $57.2,55.8,55.8,55.6,55.5,52.6,43.1,42.5,40.5,40.3,28.0,27.7$.
ESI-HRMS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{8}{ }^{+}[\mathrm{M}+\mathrm{Na}]+$: 529.1581 . Foundः 529.1572 .

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6c)

76% yield (132 mg) from 4c. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.21(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B$), 8.17-8.14(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 7.46-7.40 (m, 1 H , rotamer A and B), 7.34-7.19 (m, 8 H , rotamer A and B), $7.10(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), $6.55(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), 6.46(\mathrm{~s}$, 0.6 H , rotamer A), $4.24-4.11(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 3.61 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), 3.56$3.49(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), 3.46 (s, 1.2 H , rotamer B), 3.38-3.31 (m, 0.4 H , rotamer B), 3.23-3.07 ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B), 2.89-2.80 (m, 1 H , rotamer A and B). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, δ $163.9,152.1,151.6,144.5,143.8,141.7,141.4,136.3,136.2,134.8,134.7,134.6,129.1$, $129.0,129.0,128.8,128.5,128.4,128.4,128.4,128.3,127.6,127.6,127.3,127.2,126.2$, 125.7, 125.6, 58.9, 58.3, 52.5, 52.4, 39.3, 39.0, 28.5, 27.9. ESI-HRMS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+: 455.1213$. Found: 455.1194.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-(p-tolyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (6d)

83% yield (556 mg) from 4d. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25{ }^{\circ} \mathrm{C}$), $88.20(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B$), 8.16-8.12$ $(\mathrm{m}, 1 \mathrm{H}$, rotamer A and B), 7.46-7.40 (m, 1 H , rotamer A and B), 7.25-7.08 (m, 8 H , rotamer A and B), $6.53(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), 6.43(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A), 4.22-4.18 (m, 1 H , rotamer A and B), $3.62(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), $3.54-3.48(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), 3.46 $(\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), $3.37-3.30(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $3.26-3.06(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), $2.88-2.79(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 2.33 (s, 1.2 H , rotamer B), 2.31 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta 164.2$, 163.9, 152.0, 151.6, 144.5, 144.3, 143.8, 138.8, 138.4, 137.3, $137.3,136.3,136.1,134.9,134.8,134.6,129.0,128.9,128.8,128.5,128.4,128.3,127.3$, $127.2,127.1,126.1,125.6,125.5,58.6,58.0,52.5,52.3,39.2,38.8,28.5,27.9$, 21.0. ESIHRMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+$: 469.1370 . Found: 469.1350.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-(4-chlorophenyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (6e)
75% yield (534 mg) from 4 e . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 8.16 (ddd, $\mathrm{J}=8.0,4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.46-7.40 (m, 1 H , rotamer A and B), 7.33-7.20 (m, 7H, rotamer A and B), 7.08 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), $6.52(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B), $6.41(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A), 4.23-4.10 (m, 1 H , rotamer A and B), 3.67 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), $3.53-3.46$ (m, 0.6 H , rotamer A), 3.50 (s, 1.2 H , rotamer A), $3.34-3.27(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $3.21-3.06(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 2.88-2.79 (m, 1 H , rotamer A and B).
$13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, $\delta 164.0,163.7,152.2$, 151.5, 144.5, 144.2, 143.7, 140.3, 140.0, 136.3, 136.1, 134.7, 134.3, 134.1, 133.6, 133.5, 129.8, 129.7, 129.2, 129.1, 129.0, 128.9, 128.5, 128.4, $128.4,128.2,127.5,127.4,127.2,127.1,126.4,125.8,125.7,58.3,57.6,52.5,52.4,39.4$, 39.0, 28.4, 27.8.

ESI-HRMS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 489.0824$. Found: 489.0804.
Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6f)
81% yield (500 mg) from 4 f . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.22(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 8.19-8.14 $(\mathrm{m}, 1 \mathrm{H}$, rotamer A and B), 7.46-7.40 (m, 1 H , rotamer A and B), 7.36-7.26 (m, 5 H , rotamer A and B), 6.73 (s, 1 H , rotamer A and B), $6.54(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), 6.48 $(\mathrm{s}, 0.4 \mathrm{H}$, rotamer B), $6.40(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A), $4.25-4.13$ ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B), $3.91(\mathrm{~s}, 3 \mathrm{H}$, rotamer A and B), 3.77 (s, 3 H , rotamer A and B), 3.62 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), $3.50(\mathrm{~s}, 1 \mathrm{H}$, rotamer B$), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B$), 3.28-3.03(\mathrm{~m}, 1.4 \mathrm{H}$, rotamer A and B$), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B$)$.
13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta 164.2,164.0,152.0,151.4,148.2,148.2,147.5,144.5,144.3,143.8,141.8$, $141.5,136.3,136.2,129.0,129.0,128.6,128.6,128.3,128.3,127.7,127.3,126.8,126.8$, $126.3,126.1,125.7,125.6,111.3,111.2,111.1,110.8,58.4,57.8,55.9,55.9,52.5,52.4$, 38.9, 38.5, 28.1, 27.5.

ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{8}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 515.1425$. Found: 515.1404.
Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 7-methyl-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6 g)
89% yield (948 mg) from 4 g . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25{ }^{\circ} \mathrm{C}$), $\delta 8.22(\mathrm{dd}, \mathrm{J}=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B$), 8.19-8.14$ $(\mathrm{m}, 1 \mathrm{H}$, rotamer A and B), 7.46-7.40 (m, 1 H , rotamer A and B), 7.37-7.26 (m, 5 H , rotamer A and B), 7.14 (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.07 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), $6.91(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), $6.50(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), 6.41(\mathrm{~s}$, 0.6 H , rotamer A), $4.22-4.10\left(\mathrm{~m}, 1 \mathrm{H}\right.$, rotamer A and B), 3.60 (s, 1.8 H , rotamer A), 3.53^{-}
$3.49(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), 3.46 (s, 1.2 H , rotamer B), 3.36-3.29 (m, 0.4 H , rotamer B), 3.18-3.03 (m, 1H, rotamer A and B), 2.87-2.77 (m, 1 H , rotamer A and B), $2.30(\mathrm{~s}, 3 \mathrm{H}$, rotamer A and B). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta 164.3,164.0,152.1,151.6,144.5,144.3,143.8,141.9$, $141.5,136.3,136.2,135.8,135.8,134.5,134.4,131.6,129.0,129.0,128.9,128.7,128.7$, $128.5,128.5,128.3,128.3,128.2,128.1,127.6,127.6,127.4,127.4,125.7,125.6,58.9$, $58.3,52.5,52.4,39.4,39.0,28.1,27.5$, 21.0.ESI-HRMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}$ [M+Na]+: 469.1370. Found: 469.1350.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 7-chloro-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6h)

89% yield (616 mg) from 4 h . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $88.21(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B$), 8.16(\mathrm{dd}, \mathrm{J}=7.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.45-7.40 (m, 1H, rotamer A and B), 7.38-7.18 (m, 7 H , rotamer A and B), $7.10(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), $6.52(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B$), 6.43(\mathrm{~s}$, 0.6 H , rotamer A), 4.24-4.13 (m, 1 H , rotamer A and B), 3.62 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), 3.54 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), $3.51-3.44(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), $3.35-3.28$ ($\mathrm{m}, 0.40 \mathrm{H}$, rotamer B), 3.20-3.03 (m, 1H, rotamer A and B), $2.85-2.78$ ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B).
$13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers with respect to the amide bond were observed, $\delta 164.0,163.8,152.0$, 151.5, 144.4, 144.3, 143.7, 141.0, 140.8, 136.5, 136.3, $136.2,133.3,133.2$, 131.9, 131.9, 130.4, 130.2, 129.1, 129.0, 128.5, 128.4, 128.4, 128.3, $128.0,127.9,127.5,127.5,127.2,125.8,125.7,58.6,57.9,52.5,52.4,38.9,38.6,28.0$, 27.4.

ESI-HRMS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 489.0824$. Found: 489.0805.
Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-benzyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6i)
75% yield (333 mg) from 4i. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $\left.25^{\circ} \mathrm{C}\right), \delta 8.21-8.08(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.41-7.34(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 7.24-7.01 (m, 8 H , rotamer A and B), 6.87-6.82 (m, 1H, rotamer A and B), 5.51 (dd, J = 7.5, $4.3 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.37 (dd, J = $6.3,6.3 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.03-3.96 (m, 0.6H, rotamer A), 3.88-3.83 (m, 0.4H, rotamer B), 3.76 (s, 1.8 H , rotamer A), 3.65 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), $3.65-3.58$ (m, 0.6 H , rotamer A), 3.43 (dd, $\mathrm{J}=13.3,4.1 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), $3.33-3.13$ ($\mathrm{m}, 2 \mathrm{H}$, rotamer A and B), 3.00-2.92 (m, 0.6 H , rotamer A), $2.90-2.82(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $2.68-2.57$ ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, $\delta 163.7$, 163.5, 152.0, 151.9, 144.5, 144.4, 143.8, 143.7, 137.4, 137.3, 136.0, $135.8,135.5,135.2,134.3,134.1,129.8,129.7,128.9,128.8,128.4,128.3,128.1,128.1$, $127.3,127.3,127.0,126.9,126.8,126.4,126.4,125.9$, 125.9, 125.5, 125.4, 57.5, 57.4, 52.5, 43.0, 42.4, 40.6, 40.5, 28.2, 27.9. ESI-HRMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+:$ 469.1370. Found: 469.1360 .

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-(4-methylbenzyl)-3,4dihydroisoquinoline $-2(1 \mathrm{H}$)-carboxylate (6 j)
87% yield (397 mg) from 4 j . Purified by silica-gel column chromatography (eluent:
ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25{ }^{\circ} \mathrm{C}$), $\delta 8.22-8.10(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), $7.23-6.84(\mathrm{~m}, 8 \mathrm{H}$, rotamer A and B), 5.48 (dd, J $=7.3,4.3 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.34 (dd, $\mathrm{J}=6.2,6.2 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.03-3.97 (m, 0.6 H , rotamer A), $3.91-3.85(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B$), 3.77(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), $3.65(\mathrm{~s}, 1.2 \mathrm{H}$, rotamer B$)$, $3.63-3.58(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), 3.40-3.09 (m, 2 H , rotamer A and B), $3.00-2.84(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), 2.70-2.59 (m, 1 H , rotamer A and B), 2.29 (s, 1.2 H , rotamer B), 2.29 (s, 1.8 H , rotamer A). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta 163.8,163.6,152.0,151.9,144.6,144.5,143.9,143.8$, 136.1, 136.0, 135.9, 135.7, 135.4, 134.4, 134.3, 134.2, 134.2, 129.7, 129.6, 129.0, 128.9, $128.9,128.8,128.5,128.3,127.4,127.4,127.1,127.0,126.9,126.8,126.0,125.9,125.6$, 125.4, 57.6, 57.5, 52.5, 42.6, 42.1, 40.6, 28.3, 28.0, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+: 483.1526$. Found: 483.1517.

Synthesis of $\quad 2$-(methoxycarbonyl)-6-nitrophenyl \quad-(4-chlorobenzyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (6k)
87% yield (415 mg) from $4 \mathbf{k}$. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.23-8.18(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B , rotamer A and B$), 8.14$ (ddd, $\mathrm{J}=8.1,8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.44-7.38 (m, H , rotamer A and B, rotamer A and B), 7.24-7.12 (m, 5 H , rotamer A and B), 7.02-6.86 ($\mathrm{m}, 3 \mathrm{H}$, rotamer A and B), 5.48 (dd, J $=7.1,4.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.33 (dd, J $=6.2,6.2 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.01-3.95 (m, 0.6 H , rotamer A), 3.89-3.83 (m, 0.4 H , rotamer B), 3.79 (s, 1.8 H , rotamer A), 3.67 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), 3.64-3.57 (m, 0.6 H , rotamer A), 3.37 (dd, $\mathrm{J}=13.5,4.3 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), $3.31-3.11(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B), $3.00-2.83$ (m, 1 H , rotamer A and B), $2.68-2.57$ (m, 1 H , rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}$ (101 MHz , CDCl_{3}), two rotamers with respect to the amide bond were observed, $\delta 163.6,163.4$, $152.0,144.6,144.5,143.9,143.7,136.1,135.9,135.9,135.3,134.9,134.4,134.2,132.4$, $132.3,131.2,131.1,129.0,128.9,128.6,128.4,128.3,128.2,127.3,127.2,127.1,127.0$, $127.0,126.9,126.1,126.1,125.6,125.5,57.3,52.5,42.3,41.8,40.6,28.3,27.9$. ESIHRMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+: 503.0980$. Found: 503.0971.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-benzyl-7-methyl-3,4dihydroisoquinoline $-2(1 \mathrm{H}$)-carboxylate (61)
82% yield (388 mg) from 4l. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $\left.25^{\circ} \mathrm{C}\right), 88.19-8.06(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), $7.24-6.98(\mathrm{~m}, 7 \mathrm{H}$, rotamer A and B$), 6.67(\mathrm{~s}, 0.6 \mathrm{H}$, rotamer A), 6.61 ($\mathrm{s}, 0.4 \mathrm{H}$, rotamer B), 5.46 (dd, J = 7.4, $4.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.32 (dd, J = 6.3, 6.3 $\mathrm{Hz}, 0.6 \mathrm{H}$, rotamer A), 4.03-3.97 (m, 0.6 H , rotamer A), 3.87-3.83 (m, 0.4 H , rotamer B), $3.74(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), 3.64 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), $3.61-3.55$ ($\mathrm{m}, 0.6 \mathrm{H}$, rotamer A), 3.41 (dd, J = 13.3, $4.3 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), $3.30-3.12$ (m, 2 H , rotamer A and B), 2.96$2.88(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), $2.85-2.78(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), 2.61-2.50 (m, 1 H , rotamer A and B), 2.23 (s, 1.8 H , rotamer A), 2.22 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B).
$13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, $\delta 163.7,163.5,152.0,151.8,144.4,143.8,143.7,137.4,137.4,135.9,135.8$,
$135.4,135.3,135.2,134.9,131.2,131.0,129.8,129.7,128.9,128.8,128.2,128.1,128.0$, $127.8,127.6,127.6,127.0,126.9,126.4,126.3,125.5,125.4,57.5,57.4,52.4,42.9,42.4$, 40.6, 40.5, 27.8, 27.4, 20.9.

ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+:$ 483.1526. Found: 483.1516.
Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-benzyl-7-chloro-3,4dihydroisoquinoline $-2(1 \mathrm{H})$-carboxylate (6 m)
71% yield (350 mg) from 4 m . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $\left.25{ }^{\circ} \mathrm{C}\right), \delta 8.23-8.11(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), $7.26-7.03(\mathrm{~m}, 7 \mathrm{H}$, rotamer A and B), $6.86(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 6.81 (d, J = $1.4 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.48 (dd, J $=7.3,4.3 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.33 (dd, J = 6.2, $6.2 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.05-3.99 (m, 0.6 H , rotamer A), $3.92-3.86(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $3.77(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), $3.70(\mathrm{~s}, 1.2 \mathrm{H}$, rotamer B), 3.58-3.52 (m, 1H, rotamer A), $3.40(\mathrm{dd}, \mathrm{J}=13.4,4.2 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 3.28-3.13 $(\mathrm{m}, 2 \mathrm{H}$, rotamer A and B), 2.97-2.89 (m, 0.6 H , rotamer A), 2.86-2.79 ($\mathrm{m}, 0.4 \mathrm{H}$, rotamer B), $2.61-2.50$ ($\mathrm{m}, 1 \mathrm{H}$, rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers with respect to the amide bond were observed, $\delta 163.6,163.5,151.9,151.8,144.5,143.7$, $143.7,137.3,137.0,136.9,136.8,136.1,135.9,132.9,132.7,131.5,131.4,129.8,129.7$, 129.7, 129.0, 128.9, 128.3, 128.2, 127.2, 127.2, 127.1, 127.0, 126.9, 126.8, 126.7, 126.6, 125.7, 125.5, 57.1, 57.0, 52.5, 42.7, 42.2, 40.2, 27.7, 27.4. ESI-HRMS: Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]+: 503.0980$. Foundः 503.0971.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-phenethyl-3,4-dihydroisoquinoline-

 2(1H)-carboxylate (6n)78% yield (534 mg) from 4 n . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.20-8.11(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B), 7.38 (dd, $\mathrm{J}=7.9,7.9$ $\mathrm{Hz}, 1 \mathrm{H}$, rotamer A and B), 7.26-7.09 (m, 9H, rotamer A and B), 5.36 (dd, J = 7.9, 5.4 $\mathrm{Hz}, 0.4 \mathrm{H}$, rotamer B), 5.28 (dd, J $=9.4,4.1 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.34-4.31 (m, 0.6 H , rotamer A), 4.19-4.16 ($\mathrm{m}, 0.4 \mathrm{H}$, rotamer B), 3.77 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), 3.66-3.59 (m, 0.6 H , rotamer A), 3.53-3.45 (m, 0.4 H , rotamer B), 3.49 (s, 1.2 H , rotamer B), 3.22-3.14 $(\mathrm{m}, 0.6 \mathrm{H}$, rotamer A), $3.10-3.02(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $2.88-2.78(\mathrm{~m}, 3 \mathrm{H}$, rotamer A and B), $2.34-2.08$ ($\mathrm{m}, 2 \mathrm{H}$, rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta 164.0,163.6,152.1,144.6,144.2,143.8$, $143.8,141.8,141.6,136.9,136.1,135.9,133.7,133.6,129.0,128.9,128.8,128.3,128.3$, $127.2,127.1,126.9,126.8,126.7,126.2,126.2,125.8$, 125.7, 125.6, 125.5, 56.1, 55.5, $52.6,52.4,39.2,39.1,38.6,38.4,32.4,32.4,28.5,27.9$. ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 483.1527$. Found: 483.1517.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-(4-methylphenethyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (60)
82% yield (797 mg) from 4o. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow amorphous solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}), two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $8 \quad 8.18-8.09(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B), 7.37 (dd, J = 8.1 Hz, 1H, rotamer A and B), 7.24-7.03 (m, 8 H , rotamer A and B), 5.34 (dd, J
$=7.7,5.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), $5.27(\mathrm{dd}, \mathrm{J}=9.3,4.1 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.34-4.30 $(\mathrm{m}, 0.6 \mathrm{H}$, rotamer A), 4.18-4.14 (m, 0.4 H , rotamer B), 3.77 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), 3.653.58 (m, 0.6H, rotamer A), 3.49 (s, 1.2 H , rotamr B), 3.53-3.45 (m, 0.4H, rotamer B), $3.21-3.13(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), $3.09-3.01(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $2.88-2.74(\mathrm{~m}, 3 \mathrm{H}$, rotamer A and B), 2.32-2.06 (m, 2 H , rotamer A and B), 2.28 (s, 1.8 H , rotamer A), 2.26 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers with respect to the amide bond were observed, δ 164.0, 163.6, 152.1, 152.0, 144.6, 144.2, 143.7, 138.6, $138.4,137.0,136.1,135.9,135.1,135.1,133.7,133.6,128.9,128.9,128.8,128.2,128.1$, 127.1, 127.1, 126.8, 126.8, 126.6, 126.2, 126.2, 125.5, 125.5, 56.0, 55.5, 52.5, 52.3, 39.1, 38.7, 38.6, 32.0, 31.9, 28.5, 27.9, 20.9. ESI-HRMS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}+[\mathrm{M}+\mathrm{Na}]+:$ 497.1683. Found: 497.1672.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-(4-chlorophenethyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (6p)
86% yield (433 mg) from 4 p . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=7: 3$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.21^{-8.11}(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.40(\mathrm{dd}, \mathrm{J}=8.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}$, rotamer A and B), 7.23-7.06 (m, 8H, rotamer A and B), 5.34 (dd, J = 8.5, 5.3 $\mathrm{Hz}, 0.3 \mathrm{H}$, rotamer B), 5.25 (dd, J = 9.8, $4.3 \mathrm{~Hz}, 0.7 \mathrm{H}$, rotamer A), 4.32 (ddd, J = 13.4, $5.4,3.9 \mathrm{~Hz}, 0.7 \mathrm{H}$, rotamer A), 4.20-4.14 (m, 0.3 H , rotamer B), 3.77 (s, 2.1 H , rotamer A), 3.64-3.57 (m, 0.7H, rotamer A and B), $3.50(\mathrm{~s}, 0.9 \mathrm{H}$, rotamer B), $3.50-3.44(\mathrm{~m}, 0.3 \mathrm{H}$, rotamer A and B), $3.22-3.14(\mathrm{~m}, 0.7 \mathrm{H}$, rotamer A), $3.10-3.02(\mathrm{~m}, 0.3 \mathrm{H}$, rotamer B), 2.90$2.74(\mathrm{~m}, 3 \mathrm{H}$, rotamer A and B), 2.32-2.03 (m, 2 H , rotamer A and B). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, δ 163.9, 163.5, 152.1, 152.1, 144.7, 144.2, 143.8, 143.7, 140.2, 140.0, 136.7, 136.7, 136.2, 136.0, $133.8,133.6,131.4,131.4,129.8,129.6,129.0,128.9,128.9,128.3,127.1,127.0,127.0$, $126.8,126.3,126.3,125.6,125.5,55.9,55.2,52.6,52.3,39.2,38.5,38.3,31.8,31.6,28.5$, 27.9. ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 517.1137$. Found: 517.1125.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 7-methyl-1-phenethyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6q)

83% yield (467 mg) from 4q. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.17-8.08(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.35(\mathrm{dd}, \mathrm{J}=8.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}$, rotamer A and B), 7.26-6.90 (m, 8H, rotamer A and B), 5.32 (dd, J = 8.2, 5.3 $\mathrm{Hz}, 0.4 \mathrm{H}$, rotamer B), 5.24 (dd, J $=9.6,4.1 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.33-4.30 (m, 0.6 H , rotamer A), 4.18-4.15 (m, 0.4H, rotamer B), 3.76 ($\mathrm{s}, 1.8 \mathrm{H}$, rotamer A), 3.63-3.56 (m, 1 H , rotamer A), $3.49(\mathrm{~S}, 1.2 \mathrm{H}$, rotamer B) 3.49-3.42 (m, 0.4H, rotamer B), 3.17-3.09 $(\mathrm{m}, 0.6 \mathrm{H}$, rotamer A), $3.05-2.97(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B$), 2.93-2.78(\mathrm{~m}, 3 \mathrm{H}$, rotamer A and B), $2.31(\mathrm{~s}, 1.2 \mathrm{H}$, rotamer B), $2.28(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), 2.28-2.10 (m, 2 H , rotamer A and B). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta \quad 164.0,163.6,152.0,144.6,144.2,143.8,143.7,141.8,141.6,136.7$, $136.0,135.8,135.6,135.5,130.6,130.4,128.8,128.7,128.6,128.3,128.2,127.7$, 127.5, $127.2,127.1,125.7,125.6,125.5,125.4,56.1,55.5,52.5,52.3,39.2,38.5,38.4,32.4$, 32.3, 28.1, 27.5, 20.9. ESI-HRMS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}$[M+Na]+: 497.1683. Found: 497.1672.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 7-chloro-1-phenethyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (6 r)
68% yield (412 mg) from 4 r . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $88.22-8.14(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.41(\mathrm{dd}, \mathrm{J}=8.1,8.1$ $\mathrm{Hz}, 1 \mathrm{H}$, rotamer A and B), 7.29-7.03 (m, 8H, rotamer A and B), 5.34 (dd, J = 8.9, 5.0 $\mathrm{Hz}, 0.4 \mathrm{H}$, rotamer B), 5.25 (dd, $\mathrm{J}=10.1,4.3 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.35 (ddd, J = 13.6, $5.5,3.2 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.21 (ddd, J = $13.3,5.5,3.7 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 3.80 (s, 1.8 H , rotamer A), $3.60-3.53(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), 3.58 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), 3.47$3.40(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), 3.19-3.10 ($\mathrm{m}, 0.6 \mathrm{H}$, rotamer A), 3.07-2.99 (m, 0.4 H , rotamer B), 2.92-2.77 (m, 3 H , rotamer A and B), 2.32-2.06 (m, 2 H , rotamer A and B). 13C-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, δ $163.8,163.5,152.1,144.7,144.3,143.7,141.5,141.3,138.8,138.7,136.2,136.0,132.3$, $132.1,131.8,130.4,130.2,129.8,129.0,128.4,128.3,128.3,127.1,127.1,127.0,126.9$, 126.7, 125.9, 125.9, 125.7, 125.6, 55.8, 55.1, 52.6, 52.5, 38.8, 38.8, 38.5, 38.4, 32.4, 32.3, 28.0, 27.4. ESI-HRMS: Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 517.1137. Found: 517.1127.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl 1-(3-phenylpropyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (6s)
76% yield (546 mg) from 4 s . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $88.18-8.14(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B$), 8.10(\mathrm{dq}, \mathrm{J}=8.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, rotamer A and B), 7.36 (dd, J $=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.26-7.12 $(\mathrm{m}, 8 \mathrm{H}$, rotamer A and B), $7.10-7.05(\mathrm{~m}, 1 \mathrm{H}$, rotamer A and B), $5.31-5.27(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), 5.23 (dd, J = 9.5, 3.5 Hz, 0.6 H , rotamer A), 4.26 (ddd, J = 13.4, 5.4, 3.8 Hz , 0.6 H , rotamer A), 4.12 (ddd, $\mathrm{J}=13.2,5.6,3.7 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 3.67 (s, 1.8 H , rotamer A), $3.54-3.47$ (m, 0.6 H , rotamer A), 3.43 ($\mathrm{s}, 1.2 \mathrm{H}$, rotamer B), 3.39-3.32 (m, 0.4 H , rotamer B), 3.19-3.10 (m, 0.6H, rotamer A), 3.07-2.98 ($\mathrm{m}, 0.4 \mathrm{H}$, rotamer B), 2.88$2.62(\mathrm{~m}, 3 \mathrm{H}$, rotamer A and B), 2.02-1.78 (m, 4 H , rotamer A and B). 13C-NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, δ 164.0, $163.6,152.1,152.0,144.6,144.2,143.8,143.7,142.1,141.9,137.2,137.2,136.1,135.9$, 133.6, 133.5, 128.9, 128.8, 128.8, 128.4, 128.4, 128.2, 128.1, 127.2, 127.1, 127.0, 126.8, $126.7,126.6,126.1,125.6,125.6,125.5,125.4,56.1,55.3,52.5,52.3,38.9,38.8,36.1$, 36.0, 35.4, 35.3, 28.4, 27.8, 27.5. ESI-HRMS: Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 497.1683. Found: 497.1679.

Synthesis of 2-(methoxycarbonyl)-6-nitrophenyl (R)-1-((R)-1,2-diphenylethyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate and 2-(methoxycarbonyl)-6-nitrophenyl (S)-1-((S)-1,2-diphenylethyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (6t)
90% yield (486 mg) from 4 t . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 5 \sim 1: 2$). Pale yellow sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=8: 2$ ratio at $\left.25^{\circ} \mathrm{C}\right), \delta 8.14-8.05(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B$), 7.35-7.06(\mathrm{~m}, 15 \mathrm{H}$, rotamer A and B), $5.64(\mathrm{~s}, 0.2 \mathrm{H}$, rotamer B), $5.56(\mathrm{~s}, 1 \mathrm{H}$, rotamer A), $3.90-3.16(\mathrm{~m}, 7 \mathrm{H}$, rotamer A and B), 2.89-2.69 (m, 2 H , rotamer A and B), 2.48-2.39 (m, 1 H , rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond
were observed, $\delta \quad 163.9,163.5,152.9,152.7,144.5,143.9,143.7,140.4,140.1,139.8$, $139.5,136.0,135.8,135.6,134.5,134.4,129.2,128.9,128.8,128.5,128.1,127.9,127.6$, $127.4,126.9,126.8,126.7,126.6,125.9,125.7,125.6,125.4,59.6,59.1,54.7,54.0,52.4$, 52.2 , 40.8, 40.3, 38.3, 38.1, 27.9, 27.4. ESI-HRMS: Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6}+[\mathrm{M}+\mathrm{Na}]^{+}$: 559.1839 . Found: 559.1832.

Synthesis of 2-(methoxycarbonyl)-4-nitrophenyl 6,7-dimethoxy-1-phenethyl-3,4-dihydroisoquinoline-2(1H)-carboxylate (7a)

A solution of 16 ($645 \mathrm{mg}, 1.53 \mathrm{mmol}$) and 4 a ($523 \mathrm{mg}, 1.76 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in tetrahydrofuran (4.0 mL) was stirred at $25^{\circ} \mathrm{C}$ for 15 h . The solvent was evaporated under reduced pressure to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 1: 1$) to afford 7a as colorless sticky oil ($717 \mathrm{mg}, 1.38 \mathrm{mmol}, 90 \%$ yield).
$1 \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.83$ (d, J $=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 8.38 (dd, $\mathrm{J}=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), $7.38-7.18$ ($\mathrm{m}, 6 \mathrm{H}$, rotamer A and B), $6.66(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), $6.61(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B), 6.56 (s, 0.6 H , rotamer A), 5.33 (dd, J = 8.5, $4.8 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.20 (dd, J = 4.5, 4.5 Hz , 0.6 H , rotamer A), 4.34-4.29 (m, 0.6H, rotamer A), 4.25-4.22 (m, 0.4H, rotamer B), 3.87 $(\mathrm{s}, 3 \mathrm{H}$, rotamer A and B), $3.86(\mathrm{~s}, 1.2 \mathrm{H}$, rotamer B$), 3.83(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A$), 3.80(\mathrm{~s}$, 1.8 H , rotamer A), 3.65 ($\mathrm{s}, 0.4 \mathrm{H}$, rotamer B), $3.61-3.58$ (m, 0.6 H , rotamer A), 3.47-3.40 $(\mathrm{m}, 0.4 \mathrm{H}$, rotamer B), $3.14-2.75(\mathrm{~m}, 4 \mathrm{H}$, rotamer A and B), 2.32-2.10 (m, 2 H , rotamer A and B). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers with respect to the amide bond were observed, $\delta \quad 163.4,163.2,155.7,155.3,152.6,152.5,147.9,147.8,147.5,144.7$, $144.6,141.6,141.3,128.9,128.6,128.4,128.3,128.2,128.2,128.0,127.2,127.0,126.0$, $125.8,125.6,125.4,125.2,125.0,124.9,111.5,111.3,109.9,109.7,55.9,55.8,55.4,55.2$, $52.6,52.5,39.1,38.6,38.4,38.2,32.6,32.5,28.0,27.5 . E S I-H R M S: ~ C a l c d ~ f o r ~$ $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{8}{ }^{+}[\mathrm{M}+\mathrm{Na}]+: 543.1738$. Foundः 543.1729.

Synthesis of dimethyl 4-((6,7-dimethoxy-1-phenethyl-1,2,3,4-tetrahydroisoquinoline ${ }^{-}$ 2-carbonyl)oxy)isophthalate (8a)

Tetramethyl 4,4'-(carbonylbis(oxy))diisophthalate (19) was synthesized accorting to previously reported procedure.
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.28$ (dd, J = 8.5, $2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.98 ($\mathrm{s}, 6 \mathrm{H}$), 3.96 (s, 6H).

A solution of 19 ($650 \mathrm{mg}, 1.46 \mathrm{mmol}$) and $4 \mathrm{a}(454 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in tetrahydrofuran (5.0 mL) was stirred at $25^{\circ} \mathrm{C}$ for 5 h . The solvent was evaporated under reduced pressure to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 1: 1$) to afford 8 a as colorless sticky oil ($755 \mathrm{mg}, 1.41 \mathrm{mmol}, 97 \%$ yield).
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers (A and B) with respect to the amide bond were observed (approximately $\mathrm{A}: \mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), 8.20 (dd, $\mathrm{J}=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A and B), 7.28-7.24 (m, 5H, rotamer A and B), 7.17-7.16 (m, 1 H , rotamer A and B), $6.65(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B), $6.62(\mathrm{~s}, 0.4 \mathrm{H}$, rotamer B), 6.57 (s, 0.6 H , rotamer A), 5.35 ($\mathrm{q}, \mathrm{J}=4.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 5.22 (q, J $=4.7 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), $4.33(\mathrm{td}, \mathrm{J}=8.5,4.7 \mathrm{~Hz}, 0.6 \mathrm{H}$, rotamer A), 4.24 (dt, J = $10.4,2.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, rotamer B), 3.90 (s, 3 H , rotamer A and B), 3.85 ($\mathrm{s}, 4.2 \mathrm{H}$, rotamer A and B$), 3.81(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), $3.76(\mathrm{~s}, 1.8 \mathrm{H}$, rotamer A), 3.66-3.56 (m, 0.6 H , rotamer A), $3.59(\mathrm{~s}, 1.2 \mathrm{H}$, , rotamer B), $3.44-3.37(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), $3.13-2.72(\mathrm{~m}, 4 \mathrm{H}$,
rotamer A and B), 2.34-2.08 ($\mathrm{m}, 2 \mathrm{H}$, rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers with respect to the amide bond were observed, $\delta 165.3,164.4,164.2$, $154.4,153.9,152.9,152.8,147.7,147.6,147.3,141.6,141.3,134.2,133.0,132.8,129.0$, $128.7,128.2,128.1,127.3,127.2,125.7,125.6,125.4,124.1,124.0,123.9,123.8,111.3$, $111.2,109.8,109.5,55.7,55.6,55.0,54.8,52.0,52.0,51.9,38.8,38.3,38.2,38.1,32.5$, 32.4, 27.8, 27.4. ESI-HRMS: Calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NNaO}_{8}{ }^{+}$[M+Na] ${ }^{+}$: 556.1942. Found: 556.1935.

Synthesis of dimethyl 2-((6,7-dimethoxy-1-phenethyl-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)oxy)isophthalate (9a)

A solution of 17 ($190 \mathrm{mg}, 0.426 \mathrm{mmol}$) and $4 \mathrm{a}(149 \mathrm{mg}, 0.501 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in$ tetrahydrofuran (2.0 mL) was stirred at $50^{\circ} \mathrm{C}$ for 10 h . The solvent was evaporated under reduced pressure to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 1: 1$) to afford 9 a as white solid ($187 \mathrm{mg}, 0.351 \mathrm{mmol}, 82 \%$ yield).
Mp. $156-158{ }^{\circ} \mathrm{C}$ (Colorless cubes, recrystallized from dichloromethane/ n-hexane). $1 \mathrm{H}^{-}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), two rotamers (A and B) with respect to the amide bond were observed (approximately A: B = 6:4 ratio at $25^{\circ} \mathrm{C}$), $88.13(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 0.6 \mathrm{H}), 6.60(\mathrm{~s}, 0.4 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 0.4 \mathrm{H}), 5.24(\mathrm{~m}$, $0.6 \mathrm{H}), 4.40(\mathrm{~m}, 0.6 \mathrm{H}), 4.27(\mathrm{~m}, 0.4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 1.2 \mathrm{H}), 3.83(\mathrm{~s}, 1.8 \mathrm{H}), 3.77(\mathrm{~s}$, 3.6 H), $3.64-3.58(\mathrm{~m}, 0.6 \mathrm{H}), 3.58(\mathrm{~s}, 2.4 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 0.4 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 0.6 \mathrm{H}), 3.04-$ $2.72(\mathrm{~m}, 3.4 \mathrm{H}), 2.32-2.08(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, two rotamers with respect to the amide bond were observed, $\delta 165.1,164.8,153.3,150.8,150.1,147.8,147.7,147.5$, $147.4,142.1,142.0$, 135.5, 135.5, 129.4, 129.4, 128.4, 128.3, 126.0, 125.8, 125.7, 125.3, 125.2 , 111.4, 111.4, 110.0, 109.7, 56.0, 55.9, 55.9, 55.4, 54.9, 52.3, 52.2, 38.9, 38.6, 38.6, 32.7, 32.5, 28.1, 27.6. ESI-HRMS: Calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NNaO}_{8}{ }^{+}$[M+Na]+: 556.1942. Found: 556.1923.

Synthesis of 6,7-dimethoxy-1-phenethyl-3,4-dihydroisoquinoline-2(1H)-carbonyl chloride (10a)

To a solution of $4 \mathrm{a}(915 \mathrm{mg}, 3.1 \mathrm{mmol})$ and triphosgene ($431 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.4$ eq.) in dry dichloromethane (15 mL) was added a dry pyridine (2.0 mL) at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with aqueous $\mathrm{HCl}(1 \mathrm{~mol} / \mathrm{L})(20 \mathrm{~mL})$. The reaction mixture was extracted with dichloromethane (50 mL). The organic phase was washed with brine (20 mL), dried over sodium sulfate, and the solvent was evaporated to give the crude solid. The crude solid was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 10$) to afford 10a as pale yellow oil ($797 \mathrm{mg}, 2.21 \mathrm{mmol}, 72 \%$ yield).
$1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers (A and B) with respect to the amide bond were observed (approximately A: $\mathrm{B}=6: 4$ ratio at $25^{\circ} \mathrm{C}$), $\delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}$, rotamer A and B), 7.22-7.17 (m, 3 H , rotamer A and B), $6.61(\mathrm{~s}, 1 \mathrm{H}$, rotamer A and B$), 6.56(\mathrm{~s}$, 0.4 H , rotamer B), $6.51\left(\mathrm{~s}, 0.6 \mathrm{H}\right.$, rotamer A), $5.35-5.27$ (m, 1 H , rotamer A and B), 4.32^{-} $4.28(\mathrm{~m}, 0.4 \mathrm{H}$, rotamer B), 4.23 ($\mathrm{q}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, rotamer A), 3.85 (s, 3.6 H , rotamer A), $3.82(\mathrm{~s}, 2.4 \mathrm{H}$, rotamer B), $3.61-3.54(\mathrm{~m}, 0.6 \mathrm{H}$, rotamer A), $3.44-3.37$ (m, 0.4 H , rotamer B), $3.04-2.93(\mathrm{~m}, 1.6 \mathrm{H}$, rotamer B), $2.87-2.68(\mathrm{~m}, 2.4 \mathrm{H}$, rotamer A), 2.26-2.08 ($\mathrm{m}, 2 \mathrm{H}$, rotamer A and B). $13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), two rotamers with respect to the amide bond were observed, $\delta 149.1,148.8,147.9,147.8,147.5,147.4,141.0,140.8$, $128.5,128.5,128.2,128.2,128.0,127.8,126.2,126.1,125.0,124.8,111.0,110.9,109.3$,
109.2, 59.4, 57.3, 56.0, 55.9, 55.8, 43.0, 40.7, 38.5, 38.1, 32.6, 32.5, 28.1, 27.5. ESIHRMS: Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}+[\mathrm{M}+\mathrm{H}]+: 360.1361$. Found: 360.1356.

III. Acid-promoted reaction of substrates: Screening of the reaction condition

 Compounds $2,{ }^{8 \mathrm{c}} 3 \mathrm{a},{ }^{7 \mathrm{i}}$ and $5^{8 \mathrm{c}}$ were previously reported in literatures.
Reaction of 1a (Table 1, Entry 1 in main text)

A solution of $1 \mathrm{a}(117 \mathrm{mg}, 0.246 \mathrm{mmol})$ in trifluoroacetic acid $(0.91 \mathrm{~mL}, 50$ eq.) was stirred at $25^{\circ} \mathrm{C}$ under argon atmosphere for 24 hrs . Then the mixture was quenched with 10 mL of ice water. The whole was extracted with 50 mL of dichloromethane by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a recovery of 1 a ($112 \mathrm{mg}, 0.235 \mathrm{mmol}, 96 \%$ yield).

Reaction of 1a (Table 1, Entry 2 in main text)

To a solution of 1a ($79 \mathrm{mg}, 0.17 \mathrm{mmol}$) in dry dichloromethane (0.88 mL), trifluoromethanesulfonic acid ($0.020 \mathrm{~mL}, 1.4$ eq.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ under argon atmosphere for 18 hr . Then the mixture was quenched with of ice water. The whole was extracted with 20 mL of dichloromethane twice by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil (69 mg) which contained methyl salicylate (52% yield), $\mathbf{1 a}$ (25% yield) and protonated $\mathbf{4 a}$ (48% yield). The ratio was determined by ${ }^{1} \mathrm{H}^{-}$ NMR.

Reaction of 1a (Table 1, Entry 3 in main text)

To a solution of 1 a ($289 \mathrm{mg}, 0.607 \mathrm{mmol}$) in dry dichloromethane (3.1 mL), trifluoromethanesulfonic acid ($0.53 \mathrm{~mL}, 10$ eq.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ under argon atmosphere for 1 hr . Then the mixture was quenched with of ice water. The whole was extracted with 20 mL of dichloromethane twice by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 6,7 -dimethoxy3,4 -dihydroisoquinolin-1(2 H)-one (2) ($98.5 \mathrm{mg}, 0.475 \mathrm{mmol}, 78 \%$ yield), and 2,3 -dimethoxy-5,6,14,14a-tetrahydrobenzo[5,6]azepino[2,1-a]isoquinolin-8(13H)-one (3a) ($4.3 \mathrm{mg}, 0.013 \mathrm{mmol}, 2 \%$ yield).

Product 2: 1H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 6.81$ (brs, 1 H), $6.68(\mathrm{~s}, 1 \mathrm{H}), 3.93$ ($\mathrm{s}, 3 \mathrm{H}$), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{td}, \mathrm{J}=6.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.93$ (t, J = 6.7 Hz, 2H). 13C-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.55,152.07,147.95,132.61,121.37,110.05,109.52,56.03$, 55.97, 40.35, 27.92. ESI-HRMS: Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]+:$ 230.0788. Found: 230.0785 .

Product 3a: White solid. 1H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70$ (dd, J = 7.4, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, J = 7.4, 7.4, 1.4 Hz, 1H), 7.38-7.35 (m, 1H), 7.22 (d, J = 7.3 Hz, 1H), 6.70 (s, $1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=12.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.87-$ 3.82 (m, 1H), 3.78 (s, 3 H), 3.01 (td, J = 12.8, $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91-2.88 (m, 2H), 2.77 (dd, $\mathrm{J}=13.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,147.8$, $147.7,137.3,136.2,130.9,128.7,128.2,127.7,127.2,127.2,111.3,109.2,56.0,55.9$, 55.1, 39.6, 39.1, 30.8, 28.5. ESI-HRMS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NNaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]+: 346.1414$. Found: 346.1404.

Reaction of 1a (Table 1, Entry 4 in main text)

A solution of $1 \mathrm{a}(109 \mathrm{mg}, 0.228 \mathrm{mmol})$ in trifluoromethanesulfonic acid (1.0 mL , 50 eq.) was stirred at $25^{\circ} \mathrm{C}$ under argon atmosphere for 1 hr . Then the mixture was quenched with 30 mL of ice water. The whole was extracted with 20 mL of dichloromethane twice by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 2 ($30 \mathrm{mg}, 0.14 \mathrm{mmol}, 63 \%$ yield).

Reaction of 1a (Table 1, Entry 5 in main text)

A solution of 1a ($270 \mathrm{mg}, 0.569 \mathrm{mmol}$) in trifluoromethanesulfonic acid (3.2 mL , 50 eq.) was stirred at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then the mixture was quenched with 10 mL of ice water. The whole was extracted with 50 mL of dichloromethane twice by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 1$) to afford methyl 2-(((3,4-dimethoxyphenethyl)carbamoyl)oxy)benzoate (5) (130 mg, 0.362 $\mathrm{mmol}, 64 \%$ yield). Trace amount of 2 was detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ measurement of crude oil.

Product 5: 1H-NMR (400 MHz, CDCl_{3}) $\delta 7.98$ (dd, $\mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (ddd, $\mathrm{J}=$ $7.8,7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 3 \mathrm{H}), 5.38$ (t, J = 5.9 Hz, 1H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dt}, \mathrm{J}=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.85(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,154.3,150.4,148.6,147.3$, $133.6,131.3,131.0,125.5,124.0,123.6,120.5,111.6,110.9,55.7,55.6,52.1,42.6,35.4$.

Reaction of 6a (Table 1, Entry 8 in main text) (Typical procedure G)

To a solution of $4 \mathbf{a}(200 \mathrm{mg}, 0.384 \mathrm{mmol})$ in dry dichloromethane (1.9 mL), trifluoromethanesulfonic acid ($0.34 \mathrm{~mL}, 10$ eq.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then the mixture was diluted with 20 mL of dichloromethane and quenched with 10 mL of ice water. The organic layer was separated by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silicagel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 2 ($15 \mathrm{mg}, 0.072 \mathrm{mmol}, 19 \%$ yield) and 3 a ($96 \mathrm{mg}, 0.30 \mathrm{mmol}, 77 \%$ yield).

Reaction of 6a (Table 1, comment (d) in main text, 1.3 mmol scale)

To a solution of $6 \mathbf{a}$ ($664 \mathrm{mg}, 1.28 \mathrm{mmol}$) in dry dichloromethane (6.4 mL), trifluoromethanesulfonic acid ($1.2 \mathrm{~mL}, 10$ eq.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then the mixture was diluted with 20 mL of dichloromethane and quenched with 10 mL of ice water. The organic layer was separated by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silicagel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 2 ($42 \mathrm{mg}, 0.20 \mathrm{mmol}, 16 \%$ yield) and 3 a ($315 \mathrm{mg}, 0.974 \mathrm{mmol}, 76 \%$ yield).

Reaction of 7a (Table 1, Entry 10 in main text)

To a solution of $7 \mathrm{a}(252 \mathrm{mg}, 0.484 \mathrm{mmol})$ in dry dichloromethane $(2.4 \mathrm{~mL})$,
trifluoromethanesulfonic acid ($0.43 \mathrm{~mL}, 10$ eq.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then the mixture was diluted with 20 mL of dichloromethane and quenched with 10 mL of ice water. The organic layer was separated by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silicagel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 2 ($54 \mathrm{mg}, 0.259 \mathrm{mmol}, 53 \%$ yield) and 3 a ($38 \mathrm{mg}, 0.12 \mathrm{mmol}, 24 \%$ yield).

Reaction of 8a (Table 1, Entry 11 in main text)

To a solution of 8 a ($189 \mathrm{mg}, 0.354 \mathrm{mmol}$) in dry dichloromethane (1.8 mL), trifluoromethanesulfonic acid ($0.32 \mathrm{~mL}, 10 \mathrm{eq}$.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 10 min . Then the mixture was diluted with 20 mL of dichloromethane and quenched with 10 mL of ice water. The organic layer was separated by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silicagel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 2 ($32 \mathrm{mg}, 0.15 \mathrm{mmol}, 44 \%$ yield) and 3 a ($55 \mathrm{mg}, 0.17 \mathrm{mmol}, 48 \%$ yield).

Reaction of 9a (Table 1, Entry 11 in main text)

To a solution of 9 a ($110 \mathrm{mg}, 0.206 \mathrm{mmol}$) in dry dichloromethane (1.0 mL), trifluoromethanesulfonic acid ($0.18 \mathrm{~mL}, 10$ eq.) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then the mixture was diluted with 20 mL of dichloromethane and quenched with 10 mL of ice water. The organic layer was separated by separatory funnel. The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silicagel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$) to afford 2 ($10 \mathrm{mg}, 0.049 \mathrm{mmol}, 24 \%$ yield) and 3 a ($39 \mathrm{mg}, 0.12 \mathrm{mmol}, 58 \%$ yield).

Reaction of 10a (Table 1, Entry 13 in main text)

To a solution of 10 a ($114 \mathrm{mg}, 0.317 \mathrm{mmol}$) in dry benzene $(2.0 \mathrm{~mL})$, aluminium trichloride ($60 \mathrm{mg}, 0.374 \mathrm{mmol}, 1.18 \mathrm{eq}$.) was added at $25^{\circ} \mathrm{C}$. The mixture was refluxed under argon atmosphere for 20 hrs . Then the mixture was cooled to $25^{\circ} \mathrm{C}$ and quenched with 10 mL of ice water. The organic layer was extracted with dichloromethane ($20 \mathrm{~mL} \times 2$). The organic layer was dried over sodium sulfate and the solvent was evaporated to give a crude oil. The crude oil was purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 4 \sim 4: 1$) to afford 3 a (26 $\mathrm{mg}, 0.080 \mathrm{mmol}, 25 \%$ yield) and demethylated products (total 19% yield).
IV. Acid-promoted reaction of substrates: Substrate scope of the reaction

All reactions of this section were conducted following the procedure G.
Compounds $3 \mathrm{~b},{ }^{\mathrm{S} 24} 3 \mathbf{c},{ }^{\text {S25 }} 3 \mathrm{f},{ }^{\mathrm{S} 26} 3 \mathrm{i},{ }^{3 \mathrm{a}} 3 \mathrm{n},{ }^{7 \mathrm{i}} \mathbf{3 o},{ }^{7 \mathrm{i}}$ and $3 \mathbf{q}^{7 \mathrm{i}}$ and 9^{9} were previously reported in literatures.

Synthesis of 2,3-dimethoxy-13,13a-dihydro-5H-isoquinolino[3,2-a]isoquinolin-8(6H)one (3b)

89% yield (56 mg) from 6b. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.14 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (t, J = 7.4 Hz, 1H), 7.39 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.97-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{dd}, \mathrm{J}=13.3,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, \mathrm{J}=15.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.82$ ($\mathrm{m}, 1 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.60,148.03,147.96,137.27,131.76,129.08$, $128.56,127.64,127.30,126.82,111.47,108.86,56.15,55.92,54.98,38.71,38.10,29.19$. ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{3}+[\mathrm{M}+\mathrm{Na}]+:$ 332.1257. Found: 332.1252.

Synthesis of 5,6-dihydroisoindolo[1,2-a]isoquinolin-8(12bH)-one (3c)

78% yield (52 mg) from 6 c . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.87-7.84 (m, 2H), 7.61-7.57 (m, 2H), 7.47 (dd, J = 7.5, 7.5 Hz, 1H), 7.28-7.16 (m, 3H), $5.64(\mathrm{~s}, 1 \mathrm{H}), 4.41$ (ddd, $\mathrm{J}=12.9,5.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $\mathrm{J}=12.9,9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08-3.00 (m, 1H), 2.86 (dt, J = 15.8, 4.7 Hz, 1H)

13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,144.1,134.6,134.2,132.7,131.4,129.1,128.3$, 127.3, 126.6, 125.1, 123.7, 123.4, 59.0, 38.0, 29.3

ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 258.0889$. Found: 258.0882.
Synthesis of 10-methyl-5,12b-dihydroisoindolo[1,2-a]isoquinolin-8(6H)-one (3d) 96% yield (64 mg) from 6d. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). Colorless sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 87.73$ (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 ($\mathrm{s}, 1 \mathrm{H}$), $7.60(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.17(\mathrm{~m}, 3 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,141.4,138.5,134.7$, 134.6, 132.9, 132.4, 129.2, 127.3, 126.6, 125.2, 124.0, 123.1, 58.9, 38.1, 29.4, 21.2. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 272.1046$. Found: 272.1032.

Synthesis of 10-chloro-5,12b-dihydroisoindolo[1,2-a]isoquinolin-8(6H)-one (3e)
74% yield (48 mg) from 6 e . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.85 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.55 (m, 2H), 7.31-7.20 (m, 3H), $5.66(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dt}, \mathrm{J}=15.9$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,142.3,134.9,134.6,134.6,133.8$, 131.6, 129.4, 127.6, 126.8, 125.0, 124.7, 124.0, 58.9, 38.3, 29.3. ESI-HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]+: 270.0680$. Found: 270.0669.

Synthesis of 2,3-dimethoxy-5,6-dihydroisoindolo[1,2-a]isoquinolin-8(12bH)-one (3f) 74% yield (95 mg) from 6 f. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $5.63(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.05(\mathrm{~m}$,
$1 \mathrm{H}), 2.78$ (dt, J = 15.8, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.83,147.96$, $147.52,144.47,132.50,131.51,128.34,126.63,125.70,123.77,122.91,111.55,108.13$, 58.82, 55.97, 55.76, 38.03, 28.93. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}:$ 318.1101. Foundः 318.1090.

Synthesis of 2-methyl-5,12b-dihydroisoindolo[1,2-a]isoquinolin-8(6H)-one (3g)

74% yield (175 mg) from 6 g . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). Pale yellow amorphous solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 7.88$ (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61(\mathrm{td}, \mathrm{J}=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=7.8,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (m, 1H), 2.87-2.82 (m, 1H), $2.36(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,144.2$, 136.3, 134.1, 132.8, 131.7, 131.4, 129.1, 128.4, 128.2, 125.7, 123.8, 123.4, 59.1, 38.3, 29.0, 21.2. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: ~ 250.1227$. Found: 250.1215.

Synthesis of 2-chloro-5,12b-dihydroisoindolo[1,2-a]isoquinolin-8(6H)-one (3h)
97% yield (57 mg) from 6 h . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). Colorless oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89$ (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (ddd, J = 7.5, 7.5, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (s, 1H), 7.52 (dd, J = 7.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (dd, J = $8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.62(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{dt}, \mathrm{J}=13.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.87$ (dt, J = 16.0, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9$, 143.4, 135.8, 133.2, $132.4,132.4,131.9$, $130.5,128.8,127.6$, 125.2, 124.0, 123.4, 58.9, 38.1, 28.8. ESIHRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]+:$ 270.0680. Found: 270.0669.

Synthesis of 5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one (3i)
88% yield (78 mg) from 6 i. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.14 (dd, J = 7.7, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, J = 7.5, $7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (dd, J = 7.7, 7.5 $\mathrm{Hz}, 1 \mathrm{H}$), 7.28-7.20 (m, 5H), 4.97 (td, J = 5.5, $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92 (dd, J = 13.5, 3.7 Hz , 1 H), 3.24 (dd, J = $15.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03-2.95 (m, 3H), 2.89-2.83 (m, 1H).
13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,137.2,135.8,134.9,131.7,128.9,128.9,128.4$, 127.2, 126.8, 126.7, 126.6, 125.8, 55.1, 38.6, 37.7, 29.6.

ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 250.1227$. Found: 250.1216.

Synthesis of 10-methyl-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8one (3j)

91% yield (74 mg) from 6 j . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.96(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.89$ (dd, J $=13.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.20(\mathrm{dd}, \mathrm{J}=15.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,137.0,136.0,135.0,134.3,132.5,128.9,128.8,128.7$, 126.7, 126.7, 126.6, 125.9, 55.3, 38.6, 37.4, 29.7, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 286.1202$. Found: 286.1196.

Synthesis of 10-chloro-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one (3k)
92% yield (76 mg) from $6 \mathbf{k}$. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.12(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.97-4.90(\mathrm{~m}$,

2 H), $3.24(\mathrm{dd}, \mathrm{J}=15.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.86(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.4,135.6,135.5,134.9,133.4,131.7,130.6,129.0,128.5,128.4,127.0,126.8,125.9$, 55.1, 38.8, 37.2, 29.6. ESI-HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNNaO}^{+}[\mathrm{M}+\mathrm{Na}]+: 306.0656$. Found: 306.0649.

Synthesis of 2-methyl-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one (31)

98% yield (115 mg) from 6l. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 8.14(\mathrm{dd}, \mathrm{J}=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44(\mathrm{dd}, \mathrm{J}=7.6,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=$ $7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.10-7.03 (m, 3H), 5.01-4.93 (m, 1H), 4.87 (dd, $\mathrm{J}=13.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23(\mathrm{dd}, \mathrm{J}=15.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,137.3,136.2,135.6,131.8$, 131.6, 129.0, 128.7, 128.4, 127.6, 127.1, 126.8, 126.3, 55.1, 38.7, 37.8, 29.2, 21.1. ESIHRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 286.1202$. Found: 286.1195.

Synthesis of 2-chloro-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one (3m)

96% yield (72 mg) from 6 m . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 8.14(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=7.5,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, 1 H), 7.27 ($\mathrm{s}, 1 \mathrm{H}$), $7.26(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.21(\mathrm{dd}, \mathrm{J}=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03-4.96 (m, 1H), $4.90(\mathrm{dd}, \mathrm{J}=13.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, \mathrm{J}=15.8,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06-2.80(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5,137.7,136.9,133.6$, 132.4, 131.9, 130.3, 128.8, 128.6, 127.4, 127.1, 126.9, 126.0, 54.9, 38.5, 37.6, 29.2. ESIHRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 284.0837$. Found: 284.0831.

Synthesis of 5,6,14,14a-tetrahydrobenzo[5,6]azepino[2,1-a]isoquinolin-8(13H)-one (3n)

92% yield (92 mg) from 6 n . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71 (dd, J = 7.4, 1.4 Hz, 1H), 7.43 (ddd, J = 7.4, 7.4, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35-7.39 (m, 1H), 7.14-7.23 (m, 4H), $6.98(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, \mathrm{J}=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.95$ (m, 2H), 2.96-3.06 (m, 3H), 2.77 (dd, J = 13.7, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-2.27 (m, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,137.3,135.9,135.9,135.1,130.8,128.6,128.2,128.1,127.0$, 126.9, 126.5, 126.0, 55.4, 39.7, 39.3, 30.7, 28.8. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}^{+}$ [M+Na]+: 286.1202. Found: 286.1198.

Synthesis of 10-methyl-5,13,14,14a-tetrahydrobenzo[5,6]azepino[2,1-a]isoquinolin-8(6H)-one (30)

87% yield (84 mg) from 60. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. Colorless sticky oil. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52$ ($\mathrm{s}, 1 \mathrm{H}$), $7.23-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, \mathrm{J}=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92$3.89(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.72$ (dd, J = 13.8, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.08$ (m, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.7, 136.7, 136.0, 135.7, 135.1, 134.2, 131.5, 129.1, 128.2, 128.1, 126.8, 126.5, 125.9, 55.4, 39.7, 39.4, 30.3, 28.8, 20.9. ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 278.1540$. Found: 278.1533.

Synthesis of 10-chloro-5,13,14,14a-tetrahydrobenzo[5,6]azepino[2,1-a]isoquinolin-8(6H)-one (3p)

57% yield (49 mg) from $6 \mathbf{p}$. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.68 (d, J = 2.3 Hz, 1H), 7.38 (dd, J = 8.2, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21-7.14 (m, 4H), 6.97 (d, J = $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (dd, J = 12.1, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95-3.86 (m, 2H), 3.00-2.91 (m, 3H), 2.76 (dd, J = 13.8, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.21-2.10(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1$, $137.5,135.7,135.6,135.0,133.0,130.8,129.7,128.8,128.3,127.1,126.7,126.0,55.4$, 39.9, 39.1, 30.2, 28.8. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]+: 298.0993$. Found: 298.0988.

Synthesis of 2-methyl-5,6,14,14a-tetrahydrobenzo[5,6]azepino[2,1-a]isoquinolin-8(13H)-one (3q)

77% yield (91 mg) from 6q. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0)$. White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.69 (dd, J = 7.5, 1.0 Hz, 1H), 7.41 (td, J = 7.5, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, 4.46 (dd, J = 12.5, 5.6 Hz, 1H), 3.85-3.95 (m, 2H), 3.00 (m, 1H), 2.91 (t, J = 5.6 Hz, 2H), 2.75 (dd, J = 6.7, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (s, 3 H), $2.07-2.22$ (m, 2 H). $13 \mathrm{C}-\mathrm{NMR}$ (101 MHz , CDCl_{3}) $\delta 170.49,137.29,136.11,136.02,135.74,131.99,130.81,128.58,128.10,128.06$, 127.64, 127.04, 126.57, 55.42, 39.90, 39.32, 30.77, 28.41, 20.92. ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1359$. Found: 300.1348.

Synthesis of 2-chloro-5,6,14,14a-tetrahydrobenzo[5,6]azepino[2,1-a]isoquinolin-8(13H)-one (3r)

92% yield (106 mg) from 6 r. Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta 7.69(\mathrm{dd}, \mathrm{J}=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (ddd, $\mathrm{J}=7.5,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (ddd, $\mathrm{J}=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=12.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.78(\mathrm{dd}, \mathrm{J}=$ $13.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.24-2.11$ (m, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,137.8,137.1$, $135.8,133.6,132.2,131.1,129.7,128.7,128.3,127.3,127.1,126.1,55.1,39.4,39.1,30.7$, 28.5. ESI-HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]+:$ 298.0993. Found: 298.0988.

Synthesis of 7,8,12b,13,14,15-hexahydro-5H-benzo[6,7] azocino[2,1-a]isoquinolin-5one (3s) and $3 s^{\prime}$
Compound 3 s : 8% yield (10 mg) from 6 s . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 H$-NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39-7.36 (m, 2H), 7.24-7.21 (m, 2H), 7.13-7.11 (m, 3H), 6.89-6.87 (m, $1 \mathrm{H}), 4.92(\mathrm{dd}, \mathrm{J}=12.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{td}, \mathrm{J}=12.7,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.24-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}) .13 \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,139.9,138.1,135.3,134.3,130.4,129.3,129.0,127.8$, 127.1, 126.6, 126.5, 126.2, 56.8, 36.1, 35.6, 32.4, 28.6, 28.5. ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1359$. Found: 300.1357.

Compound 3 s ': 83% yield (106 mg) from 6 s . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98$ (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (brs, 1 H), 7.22 (dd, J = 7.7, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, \mathrm{J}=$
$6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H})$, 1.93-1.86 (m, 1H), 1.84-1.74 (m, 2H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.1, 143.7, 138.8, 137.4, 136.8, 133.4, 129.5, 129.4, 129.0, 126.4, 126.0, 125.9, 125.8, 41.8, 39.5, 31.2, 29.5, 24.8, 21.0. ESI-HRMS: Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]+: 300.1359$. Found: 300.1357 .

Synthesis of 13 -benzyl-5,6,13,13a-tetrahydro-8H-isoquinolino[3,2-a]isoquinolin-8-one (3t)
76% yield (86 mg) from 6 t . Purified by silica-gel column chromatography (eluent: ethyl acetate: n-hexane $=1: 3 \sim 1: 0$). White amorphous solid. $1 \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.06 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.17$ (m, H), $7.11-6.99$ (m, 5 H), 4.91-4.85 (m, 1H), 4.66 ($\mathrm{s}, 1 \mathrm{H}$), $3.82(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.73$ (m, 1H). 13C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,139.9,138.9,137.2,136.0,132.0,129.5$, $129.2,128.6,128.5,127.9,127.5,127.2,127.1,126.7,125.8,122.8,58.3,43.3,42.8,40.7$, 27.4. ESI-HRMS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 362.1515$. Found: 362.1504.

2. Substrate scope of the previously reported method

Historically, a similar synthetic approach to 8 -oxoberbines has been already reported by Stambach and Jung. ${ }^{\text {at }}$ They only demonstrated 6 -membered ring formation. Generally, 6 -membered ring-formation is much easier than formation of the other ring-size compounds, and it is unclear that the method is also applicable to other substrates. In order to compare the applicability of our method and the previously proposed method, we examined the substrate scope briefly (Table S1).

The literature example of 6-membered ring-formation was reproduced (Entry 1). The reaction actually proceeded much faster than the reaction time described in the literature. On the other hand, 7 -membered ring formation with the methoxy-substituted substrate was not as successful, as described in Table 1 of the main text as we mentioned in Table 1 of the main sentence, demethylation and polymerization occurred to afford the desired product in 25% yield (Entry 2). Demethylation of the methoxy groups in this condition was also discribed in the original literature. Introduction of a chloro group to the reactant retarded the reaction (Entry 3 and 4). Elongation of the reaction time caused polymerization of the reactants and the yield decreased significantly, compared with our method (74% and 57% yields for the product of Entry 3 and 4, respectively).

We initially anticipated that benzene, which was used as solvent in the previous method, could react with a reactive intermediate and forms benzoyl amine product, because carbamoyl cation can be used for the intermolecular reaction with benzene. ${ }^{8 d}$ But such compound was not observed in this case. Although it is unclear, we consider that the reactive intermediate of this Lewis-acid promoted reaction is somewhat different from the carbamoyl cation produced in strong Brønsted acid, owing to the difference of the reactivity.

Table S1. Substrate scope of AlCl_{3}-promoted reaction

3. Computational Study

3-A. General Methods

The DFT calculations of structures, energies, and frequencies employed default procedures in Gaussian16 program ${ }^{\text {S27 }}$ unless otherwise noted. Complete structures and energetics are provided in sections below. All absolute energies are in Hartrees. All relative energies are presented in $\mathrm{kcal} / \mathrm{mol}$. The transition state structures were validated with frequency calculations and then intrinsic reaction coordinate (IRC) calculation.

3-B. Geometry optimization of relatively simple structure

For the geometry calculation, all possible conformations were generated by careful modeling on GaussView, ${ }^{\mathrm{S} 28}$ referring to previously examined geometries. ${ }^{8 c, d}$ Then, the conformers were optimized to local minimum and their frequencies were calculated at using M06-2X functional and $6-31 \mathrm{G}^{*}$ basis sets. The solvent effect was modeled using polarizable continuum model. For these DFT-optimized geometries, single-point energies were calculated at $\operatorname{PCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)-\mathrm{M} 06-2 \mathrm{X} / 6-311+\mathrm{G}^{* *}$ level of theory, the thermal corrections at the $\operatorname{PCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)-\mathrm{M} 06-2 \mathrm{X} / 6-31 \mathrm{G} *$ level were incremented to obtain the Gibbs free energies at $1 \mathrm{~atm}, 298 \mathrm{~K}$. The conformation having the minimum Gibbs free energy was defined as the global minimum energy conformation.

3-C. Information of the optimized geometries.

$\operatorname{PCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$-M06-2X/6-31G* level of theory

SM-1'				
Number of imaginary frequency $=0$				
Zero-point correction=				0. 247169 (a. u.)
Thermal correction to Energy=				0. 262633
Thermal correction to Enthalpy=				0. 263577
Thermal correction to Gibbs Free Energy=				0. 204162
Sum of electronic and zero-point Energies=				-782. 526778
Sum of electronic and thermal Energies=				-782. 511314
Sum of electronic and thermal Enthalpies=				-782. 510369
Sum of electronic and thermal Free Energies=				-782. 569785
Electronic Energy =				-782. 773947
Charge $=1$ Multiplicity $=1$				
C	-2. 165609	2. 395814	-0. 194811	
C	-0.821509	2. 759473	-0. 20504	
C	0. 169374	1. 782832	-0. 269936	
C	-0. 1996	0. 448976	-0. 297178	
c	-1. 540234	0.057968	-0. 273839	
C	-2. 521801	1. 053261	-0. 236552	
H	-2. 936729	3. 156547	-0.15578	
H	-0. 536886	3. 805446	-0.177044	
H	1. 220266	2. 047144	-0.314854	
H	-3. 564891	0. 757636	-0. 225492	
C	-1.946889	-1. 368673	-0. 227283	
0	0.836699	-0. 488417	-0.493013	
C	1. 447613	-1. 007874	0.570876	
0	0.754099	-1. 481222	1. 54562	
N	2. 748713	-1. 053853	0.570177	
C	3. 572508	-0.419741	-0.463364	
H	4. 266146	0. 266128	0. 026304	
H	4. 134051	-1. 197063	-0. 98466	
H	2. 946488	0.118006	-1. 169776	
C	3. 479107	-1. 754196	1. 631657	
H	4. 180877	-2. 445588	1. 162591	
H	4. 028452	-1. 019165	2. 222935	
H	2. 782544	-2. 298028	2. 263733	
0	-3. 07683	-1.611278	-0.840883	
0	-1.312627	-2. 245266	0. 358373	
H	-0.167904	-1. 784662	1. 175584	

C	-3. 577257	-2. 961597	-0.760454	
H	-4. 519661	-2. 948011	$1-1.300902$	
H	-2. 86628	-3. 642111	$1-1.228826$	
H	-3. 726057	-3. 235121	10.284307	
SM-6'				
Number of imaginary frequency $=0$				
Zero-point correction=				0. 250356 (a. u.)
Thermal correction to Energy=				0. 268362
Thermal correction to Enthalpy=				0. 269306
Thermal correction to Gibbs Free Energy=				0. 204174
Sum of electronic and zero-point Energies=				-986.939848
Sum of electronic and thermal Energies=				-986. 921842
Sum of electronic and th			thermal Enthalpies=	-986. 920898
Sum of electronic and th			thermal Free Energies=	-986. 986030
Electronic Energy =				-987. 190204
Charge $=1$ Multiplicity $=1$				
C	-1. 68412	2. 837227	-0.151627	
C	-0. 300126	2. 786533	-0.04448	
C	0. 33733	1. 55345	-0.021114	
C	-0.380144	0. 361124	-0.11147	
C	-1.770219	0. 416998	-0. 203279	
C	-2. 413506	1. 657656	-0. 229637	
H	-2. 190955	3. 794405	-0.167921	
H	0. 300245	3. 686178	$8 \quad 0.02319$	
H	-3. 494794	1. 68139	-0.305025	
C	-2. 585331	-0.830629	-0.187788	
0	0. 29535	-0.841246	-0.31666	
C	0.674247	-1. 59379	$9 \quad 0.720073$	
0	-0.085557	-1.680042	1.761526	
N	1. 780773	-2. 260328	- 0.619386	
C	2. 735269	-2. 070486	-0.477989	
H	3. 684958	-1.744108	-0.050454	
H	2. 864457	-3. 027601	-0.985763	
H	2. 367272	-1. 324568	-1. 175297	
C	2. 179815	-3. 212136	1.663047	
H	2. 517608	-4. 126019	9 1.173363	

```
2.999153-2.777059 2.238836
1.335525-3.423806 2.313438
-3.664147-0.754504-0.922499
-2.294152-1.810963 0.487688
-1.054997-1.657534 1.445541
-4.549737-1.89389-0.881864
-5. 382951-1.629033-1.526607
    -4.02652 -2. 773277-1.257096
-4.881064-2.061451 0.143112
    1.793515 1.545702 0.134473
    2.408269 2.498539-0.292661
2.289802 0.593513 0.716058
```


SM-7'

Number of imaginary frequency $=0$
Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies= $\quad-986.944829$
Sum of electronic and thermal Energies= -986.926479
Sum of electronic and thermal Enthalpies $=\quad-986.925535$
Sum of electronic and thermal Free Energies= -986. 992924
Electronic Energy =
-987. 194252
Charge $=1$ Multiplicity $=1$

C	2.166334	-2.698668	0.429631
C	0.897012	-3.221024	0.229189
C	-0.130803	-2.350374	-0.110596
C	0.131827	-0.991976	-0.210904
C	1.41115	-0.470436	0.005463
C	2.448218	-1.3483	0.315709
H	0.724247	-4.28577	0.323726
H	-1.128593	-2.722749	-0.311431
H	3.454034	-0.980832	0.478689
C	1.691103	0.991771	-0.026303
O	-0.911813	-0.18232	-0.681956
C	-1.747229	0.398415	0.182782
O	-1.288281	0.960725	1.246524
N	-3.014502	0.405172	-0.104169
C	-3.589092	-0.328318	-1.237089
H	-4.39649	-0.95711	-0.858043
H	-3.990648	0.394449	-1.94963
H	-2.830509	-0.938913	-1.718513
C	-3.964059	1.16962	0.713846
H	-4.60138	1.743166	0.039858
H	-4.573107	0.471567	1.291086
H	-3.424618	1.836973	1.38043
O	2.880253	1.280644	-0.480997
O	0.898262	1.84055	0.370684
H	-0.343144	1.323007	1.043936
C	3.256011	2.675283	-0.463142
H	4.273489	2.699167	-0.842506
H	2.581841	3.239257	-1.107601
H	3.205752	3.052083	0.558411
N	3.263868	-3.616878	0.775424
O	2.994607	-4.798264	0.872682
O	4.367349	-3.134288	0.941723

INT-1'
Number of imaginary frequency $=0$
Zero-point correction=
0.247768 (a. u.)

Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
0. 263585
0. 264529

Sum of electronic and zero-point Energies $=\quad-782.513405$
Sum of electronic and thermal Energies= -782.497588
Sum of electronic and thermal Enthalpies= -782. 496644
Sum of electronic and thermal Free Energies= -782. 557176
Electronic Energy =
-782. 761173
Charge $=1$ Multiplicity $=1$
$\begin{array}{llll}\text { C } & 2.465018 & 2.489699 & -0.05689\end{array}$
$\begin{array}{lllll}\text { C } & 1.198471 & 3.070354 & 0.050972\end{array}$
$\begin{array}{llll}\text { C } & 0.051408 & 2.291295 & 0.156272\end{array}$
$\begin{array}{llll}\text { C } & 0.171081 & 0.909002 & 0.147778\end{array}$
$\begin{array}{llll}\text { C } & 1.439983 & 0.305014 & 0.044994\end{array}$

C	2.586723	1.113328	-0.055434
H	3.348044	3.112589	-0.134113
H	1.100069	4.150576	0.059501
H	-0.926499	2.746464	0.239406
H	3.559502	0.641212	-0.126863
C	1.602701	-1.137417	0.04647
O	-0.915729	0.080119	0.310912
C	-2.111266	0.365422	-0.392968
O	-2.132433	1.177397	-1.284404
N	-3.107181	-0.393738	0.076685
C	-2.965233	-1.356054	1.16352
H	-3.934197	-1.452716	1.656054
H	-2.66895	-2.340547	0.784042
H	-2.239824	-1.00579	1.895878
C	-4.386546	-0.371798	-0.623043
H	-4.600666	-1.363932	-1.031063
H	-5.179722	-0.092162	0.074728
H	-4.338354	0.353817	-1.431966
O	2.779903	-1.611903	-0.110871
O	0.640898	-1.978344	0.19857
H	-0.21769	-1.497295	0.308052
C	2.97361	-3.053695	-0.110404
H	4.04041	-3.183354	-0.261068
H	2.654039	-3.453605	0.850769
H	2.398577	-3.487792	-0.927062

INT-6'
Number of imaginary frequency $=0$

Zero-point correction=	0.250493 (a. u. $)$
Thermal correction to Energy=	0.268837
Thermal correction to Enthalpy=	0.269782
Thermal correction to Gibbs Free Energy=	0.203395
Sum of electronic and zero-point Energies=	-986.925653
Sum of electronic and thermal Energies=	-986.907308
Sum of electronic and thermal Enthalpies=	-986.906364
Sum of electronic and thermal Free Energies=	-986.972751
Electronic Energy =	-987.176145

Electronic Energy =
-987. 176145
Charge $=1$ Multiplicity $=1$
$\begin{array}{llll}\text { C } & -1.951496 & 2.686915 & 0.37868\end{array}$
$\begin{array}{lll}-0.568697 & 2.834816 & 0.331992\end{array}$
$\begin{array}{lll}0.244226 & 1.736758 & 0.086868\end{array}$
$-0.287899 \quad 0.456816-0.077038$
$-1.687354 \quad 0.315997-0.022368$
$\begin{array}{llll}-2.508872 & 1.434583 & 0.191402\end{array}$
$-2.584049 \quad 3.54805 \quad 0.553348$
$\begin{array}{llll}-0.100109 & 3.802549 & 0.46965\end{array}$
$\begin{array}{llll}H & -3.583864 & 1.300504 & 0.214551\end{array}$
$-2.321485-0.988561-0.18754$ $0.467436-0.652604-0.302113$ 1. $58852-0.866892 \quad 0.567335$ 1. $627095-0.3116341 .636631$ 2. $430877-1.732824 \quad 0.015588$ 2. $344635-2.189913-1.36883$ 3. $360735-2.370135-1.723222$ 1. $775176-3.121766-1.441388$ 1. $88841-1.42264-1.991866$ 3. $558159-2.207262 \quad 0.811747$ 3. $585065-3.2989390 .778086$ 4. $491941-1.809078 \quad 0.405849$ 3. $435493-1.874525-1.840356$ $-3.591021-1.047167-0.082815$ $-1.692476-2.078749-0.43768$ $-0.718407-1.916127-0.4986$ $-4.266052-2.326732-0.263519$
$-5.318248-2.095858-0.134134$
$-4.055259-2.695057-1.26633$
$\begin{array}{llll}-3.909827 & -3.021437 & 0.495494\end{array}$
N 1.684771 1.983509-0. 039811
$\begin{array}{llll}2.143374 & 2.920805 & 0.577351\end{array}$
2. $316899 \quad 1.256264-0.786981$

INT-7'
Number of imaginary frequency $=0$
$\begin{array}{ll}\text { Zero-point correction= } & \text { 0. } 250331 \\ \text { Thermal correction to Energy }= & 0.268828 \\ \text { Thermal correction to Enthalpy }= & 0.269773\end{array}$
Thermal correction to Gibbs Free Energy= 0. 201993

Sum of electronic and zero-point Energies $=\quad-986.930724$ Sum of electronic and thermal Energies= -986.912227 Sum of electronic and thermal Enthalpies $=\quad-986.911283$ Sum of electronic and thermal Free Energies= -986.979063 Electronic Energy =
-987. 181055
Charge $=1$ Multiplicity $=1$

2. $404569-0.897795-0.132474$

1. $537639-1.983851-0.231184$
$0.170288-1.76523-0.260346$
$-0.315876-0.46174-0.187294$
$0.573382 \quad 0.629336-0.092157$
2. $95495 \quad 0.401942-0.066666$ 1. $940245-2.98772-0.291346$ 2. $655442 \quad 1.225066 \quad 0.001861$
3. 102437 2. $007507-0.014567$
$-1.648378-0.177726-0.27381$
$-2.581958-1.010843 \quad 0.411435$
$-2.209501-1.7766271 .263618$
$-3.816021-0.761228-0.028071$
-4. $1378870.179581-1.096733$
$-3.347148 \quad 0.198115-1.844798$
$-5.057213-0.16042-1.575981$
$-4.305238 \quad 1.186427-0.698617$
-4. $938033-1.3898770 .662246$
$-5.600932-0.615922 \quad 1.058536$
$-5.494443-2.016957-0.038709$
$-4.558636-2.000591 .478565$
$0.973799 \quad 2.925354 \quad 0.138586$
$-1.130048 \quad 2.35762-0.09131$
$-1.7130831 .566761-0.206062$
$0.543913 \quad 4.316528 \quad 0.213599$
4. $464209 \quad 4.875467 \quad 0.346784$
$0.0442984 .579488-0.717503$
$-0.123615 \quad 4.430859 \quad 1.066202$
$-0.518112-2.595556-0.337797$
5. $853106-1.142924-0.104508$
6. $58483-0.174349-0.030363$
7. $224466-2.299133-0.156921$

TS-1'
Number of imaginary frequency $=1$
Zero-point correction=
0.245261 (a. u.)

Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.201125
0. 261230
0. 262174
electronic and zero-point Energies= -782.483125
Sum of electronic and thermal Energies= -782.467157
Sum of electronic and thermal Enthalpies $=\quad-782.466213$
Sum of electronic and thermal Free Energies= -782. 527262
Electronic Energy =
-782. 728387
Charge $=1$ Multiplicity $=1$

2.554859	2.472378	-0.095463
1.346631	3.01596	0.345834
0.271782	2.195333	0.665293
0.404519	0.815555	0.539566
1.613788	0.252325	0.095145
2.685482	1.096704	-0.215119
3.38865	3.120515	-0.339734
1.240458	4.091103	0.445948
-0.667489	2.606339	1.019741
3.617783	0.655592	-0.549324
1.722555	-1.21804	-0.0129
-0.671628	0.03132	0.85252
-2.364683	0.435106	-0.520154
-1.869046	1.196996	-1.22164
-3.229802	-0.352488	-0.02241
-3.194945	-0.988359	1.313823
-4.22823	-1.031275	1.656016
-2.7896	-1.996027	1.211741
-2.596959	-0.389612	1.99258
-4.394408	-0.676936	-0.897773
-4.443191	-1.7625	-0.980493
-5.289457	-0.277352	-0.422067
-4.252492	-0.231254	-1.880652
2.890709	-1.643797	-0.454833
0.807222	-1.982462	0.283274

$\begin{array}{llll}\text { H } & -0.3667 & -0.917046 & 0.761193\end{array}$
C $3.042719-3.067899-0.565422$
4. $054457-3.222328-0.931796$
2. $907569-3.532485 \quad 0.412047$
2. $309662-3.465948-1.268179$

TS-6'
$\begin{array}{ll}\text { Number of imaginary frequency }=1 & \\ \text { Zero-point correction= } & 0.247487 \text { (a. u.) } \\ \text { Thermal correction to Energy= } & 0.265835 \\ \text { Thermal correction to Enthalpy= } & 0.266779 \\ \text { Thermal correction to Gibbs Free Energy= } & 0.200021 \\ \text { Sum of electronic and zero-point Energies= } & -986.904965 \\ \text { Sum of electronic and thermal Energies= } & -986.886618 \\ \text { Sum of electronic and thermal Enthalpies= } & -986.885674 \\ \text { Sum of electronic and thermal Free Energies= } & -986.952431 \\ \text { Electronic Energy = } & -987.152453\end{array}$
Charge $=1$ Multiplicity $=1$
C $\quad-1.950123 \quad 2.747214 \quad 0.530131$
$\begin{array}{llll}\text { C } & -0.595614 & 2.923388 & 0.286272\end{array}$
C $\quad 0.194935 \quad 1.842163-0.093036$
C $-0.3557650 .564271-0.242178$
C $-1.731682 \quad 0.399131-0.002088$
$\begin{array}{llll}\text { C } & -2.516505 & 1.487377 & 0.378585\end{array}$
H $\quad-2.559664 \quad 3.590259 \quad 0.830828$
$\begin{array}{llll}\text { H } & -0.127232 & 3.89528 & 0.382911\end{array}$
$\begin{array}{llll}\text { H } & -3.574907 & 1.331494 & 0.553316\end{array}$
C $-2.317054-0.950524-0.192519$ $0.395813-0.505157-0.62412$ 1. $692708-0.991734 \quad 0.771606$ 1. $302441-0.53291 \quad 1.760341$ 2. $506782-1.738211 \quad 0.118745$ 2. $635491-1.820793-1.347829$ $3.671574-2.089005-1.54993$

1. $971426-2.596836-1.731867$ 2. $410077-0.854887-1.789576$
2. $437937-2.554314 \quad 0.938192$
3.343616-3.590733 0.6133 4. $451552-2.1875150 .773861$ 3. $17105-2.468872 \quad 1.989988$
$-3.596105-1.029914 \quad 0.068916$
$-1.644169-1.91032-0.572368$
H $\quad-0.273715-1.283943-0.729074$
C $\quad-4.211476-2.319903-0.123538$
H $\quad-5.257394-2.177061 \quad 0.133079$
H $\quad-4.100095-2.625048-1.164158$
H $\quad-3.742016-3.050787 \quad 0.534977$
N $\quad 1.610137 \quad 2.104605-0.351657$
$0 \quad 1.949089 \quad 3.258924-0.500884$
$0 \quad 2.380472 \quad 1.154436-0.401601$

TS-7

Number of imaginary frequency $=1$	0.247889 (a. u.)
Zero-point correction=	0.266385
Thermal correction to Energy=	0.267329
Thermal correction to Enthalpy=	0.199271
Thermal correction to Gibbs Free Energy=	
Sum of electronic and zero-point Energies $=$	-986.905338
Sum of electronic and thermal Energies=	-986.886842
Sum of electronic and thermal Enthalpies=	-986.885897
Sum of electronic and thermal Free Energies=	-986.953956
Electronic Energy =	-987.153226

ectronic Energy =
-987. 153226
Charge $=1$ Multiplicity $=1$
C $2.504449-0.97054-0.040539$

1. $635608-1.993446-0.409439$
$0.308056-1.689338-0.663694$
$\begin{array}{lll}-0.125781 & -0.37108 & -0.54081\end{array}$
$0.761535 \quad 0.654469-0.165413$
2. $096304 \quad 0.345838 \quad 0.082113$
3. $004247-3.007853-0.497336$
4. $799974 \quad 1.118865 \quad 0.365179$
5. $250848 \quad 2.042256-0.061042$
$-1.436914-0.090221-0.793507$
$-2.713481-1.0841290 .488286$
$\begin{array}{lll}-2.00475 & -1.617255 & 1.225337\end{array}$
$-3.849222-0.736976 \quad 0.016968$
```
-4.121999-0.051347-1.262818
-3.356244-0.30058-1.989943
-5.089802-0.416148-1.604301
-4.171368 1.024833-1.0895
-5.025085-1.041827 0.880876
-5.555802-0.105156 1.0527
-5.654297-1.756376 0.350812
-4.688465-1.461878 1.826621
    1.149193 2.920816 0.314285
-0.917702 2.33166-0.309926
-1.534397 0.915185-0.699527
    llll
    1.5759 4.849692 0.734074
    0.339284 4.629623-0.547872
-0.094327 4.353205 1.16367
-0.392979 -2.459014-0.965077
    3. 90939-1. 298348-0.225044
    4.65437-0.385916 0.531968
4.244858 -2.46398 0. 123142
```

PD-1'
Number of imaginary frequency $=0$
Zero-point correction=
Thermal correction to Energy=
0. 245304 (a. u.)

Thermal correction to Energy=
0. 202405 0. 263349
$\begin{array}{ll}\text { Thermal correction to Gibbs Free Energy }= & 0.198882 \\ \text { Sum of electronic and zero-point Energies }= & -782.484275\end{array}$
Sum of electronic and thermal Energies $\quad-782.467174$
Sum of electronic and thermal Enthalpies= -782. 466229
Sum of electronic and thermal Free Energies= -782. 530696
Electronic Energy =
-782. 729579
Charge $=1$ Multiplicity $=1$

2. 506035	2. $448722-0.056336$	
1. 261409	2. 9450160.342629	
0. 208666	2. $085004 \quad 0.62001$	
0.388142	0.7059550 .497406	
1. 637457	0.1935390 .099623	
2. 687929	1. $080359-0.172242$	
3. 323498	3. $127751-0.269974$	
1. 111779	4. 0153960.441511	
-0. 75726	2. $461066 \quad 0.94253$	
3. 646327	$0.673662-0.474952$	
1. 810648	$-1.269135-0.013527$	
-0.671171	$\begin{array}{lll}-0.098062 & 0.768179\end{array}$	
-2. 671653	$0.461265-0.699434$	
-2. 041022	1. $170216-1.33477$	
-3. 471347	$-0.304954-0.096838$	
-3. 480513	-0.471 1.380964	
-4. 504294	-0. 292901 1. 708217	
-3. 170887	-1.493396 1.597554	
-2. 79382	$0.237508 \quad 1.833424$	
-4. 478378	-1. $066758-0.891322$	
-4. 352525	$-2.11934-0.639929$	
-5. 464863	-0.705559-0.602387	
-4. 307809	-0.907261-1.954286	
3. 023863	-1.640245-0.393078	
0.918347	-2. 0779120.221349	
-0. 36272	-1.033852 0.67047	
3. 239956	$-3.053699-0.509079$	
4. 275956	-3.163889-0.820259	
3. 07074	-3.537384 0.453939	
2. 564373	-3. $474697-1.255022$	
D-6' Number of imaginary frequency $=0$		
Zero-point corr	rection=	0. 248599 (a. u.)
Thermal correct	tion to Energy=	0. 267824
Thermal correct	tion to Enthalpy=	0. 268768
Thermal correct	ction to Gibbs Free Energy=	0. 200014
Sum of electron	onic and zero-point Energies=	-986. 908868
Sum of electron	隹ic and thermal Energies=	-986. 889643
Sum of electron	onic and thermal Enthalpies=	-986. 888698
Sum of electron	onic and thermal Free Energies=	-986. 957453
Electronic Ener	rgy =	-987. 157466
Charge $=1$ Multiplicity $=1$		
C -1.922911	2. 6545160.647192	

C	-0.58303	2.778545	0.316515
C	0.12295	1.684165	-0.178084
C	-0.492652	0.434718	-0.376336
C	-1.863939	0.332682	-0.048353
C	-2.556723	1.431801	0.458665
H	-2.46721	3.502729	1.043113
H	-0.057185	3.71788	0.438094
H	-3.6065	1.314109	0.70202
C	-2.547091	-0.965621	-0.266449
O	0.190584	-0.604987	-0.870432
C	2.033658	-1.084486	0.933035
O	1.390236	-0.551039	1.713407
N	2.816822	-1.800222	0.249544
C	2.997178	-1.732909	-1.222969
H	3.989629	-1.322719	-1.409858
H	2.923092	-2.755913	-1.591414
H	2.226883	-1.102641	-1.652546
C	3.676111	-2.765912	0.999149
H	3.413511	-3.767282	0.660066
H	4.711635	-2.52523	0.760398
H	3.500306	-2.666412	2.068902
O	-3.815532	-0.966904	0.092598
O	-1.986076	-1.94865	-0.738146
H	-0.459893	-1.352402	-0.983411
C	-4.52691	-2.200306	-0.107003
H	-5.539123	-2.007306	0.238671
H	-4.519729	-2.464068	-1.165116
H	-4.060471	-2.994883	0.476482
N	1.526203	1.905803	-0.50456
O	1.881572	3.045432	-0.723032
O	2.291258	0.946538	-0.534788

PD-7'
Number of imaginary frequency $=0$
Thermal correction to Energy=
Thermal correction to Enthalpy=
Sum of electronic and zero-point Energies= -986 909154
Sum of electronic and thermal Energies= $\quad-986.889603$
Sum of electronic and thermal Enthalpies= -986.888659
Sum of electronic and thermal Free Energies= -986. 959147
Electronic Energy =
-987. 157491
Charge $=1$ Multiplicity $=1$
2. $471317-0.806143-0.191206$
$1.59361-1.818357-0.581788$
$0.259241-1.515195-0.766693$
$-0.19966-0.207665-0.557688$
0. $704011 \quad 0.805611-0.171246$
2. $050361 \quad 0.494863 \quad 0.011358$

1. $966718-2.823131-0.737055$
2. $756318 \quad 1.260495 \quad 0.308131$
3. $200791 \quad 2.184378 \quad 0.027249$
$-1.510289 \quad 0.032623-0.734522$
$-3.091654-1.5286050 .650742$
$-2.185673-2.010381 .150701$
$-4.139729-1.038086 \quad 0.154885$
-4. $296076-0.849627-1.313876$
$-3.39902-1.192369-1.822584$
$-5.166866-1.429553-1.617881$
-4. $448063 \quad 0.215019-1.490767$
$-5.266267-0.6442531 .049849$
$-5.432136 \quad 0.423496 \quad 0.911288$
$-6.137476-1.223846 \quad 0.747442$
$-5.004251-0.858819 \quad 2.084158$
4. $134218 \quad 3.046793 \quad 0.382796$
$-0.974375 \quad 2.494912-0.126994$
$-1.6623341 .000696-0.580102$
$0.698436 \quad 4.402252 \quad 0.577238$
5. $590988 \quad 4.954209 \quad 0.860421$ 0. $277301 \quad 4.79198-0.350268$
$-0.050961 \quad 4.44062 \quad 1.368724$
$-0.446967-2.275402-1.081708$
$\begin{array}{lll}3.882608-1.129551 & 0.007269\end{array}$
6. $631504-0.229991 \quad 0.346853$
7. $231282-2.282918-0.177084$

4-D. Information of the single point calculation for each optimized geometry.

$\operatorname{PCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$-M06-2X/6-3111G** level of theory (unit: a.u.)
SM-1': E (RM062X) = -782.997416831
SM-6': $E($ RM062X $)=-987.476263947$
SM-7': $E(R M 062 X)=-987.480885316$
INT-1': E (RMO62X) $=-782.985498754$
INT-6': $E($ RMO62X $)=-987.463776360$
INT-7': E(RM062X) $=-987.468730404$
TS-1': E (RM062X) $=-782.958351497$
TS-6': E (RM062X) $=-987.443209595$
TS-7': E (RM062X) $=-987.445580789$
PD-1': E (RM062X) $=-782.961221363$
PD-6': $E($ RM062X $)=-987.450747281$
PD-7': E (RM062X) = -987. 452392616

4. NMR spectra of new compounds

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra are shown in this section. 1a (Solvent: CDCl_{3})

3d (Solvent: CDCl_{3})

3e (Solvent: CDCl_{3})

3 g (Solvent: CDCl_{3})

3h (Solvent: CDCl_{3})

3 j (Solvent: CDCl_{3})

$3 \mathbf{k}$ (Solvent: CDCl_{3})

31 (Solvent: CDCl_{3})

3 m (Solvent: CDCl_{3})

3p (Solvent: CDCl_{3})

3r (Solvent: CDCl_{3})

3s (Solvent: CDCl_{3})

3t (Solvent: CDCl_{3})

4 j (Solvent: CDCl_{3})

41 (Solvent: CDCl_{3})

4o (Solvent: CDCl_{3})

$4 \mathbf{p}$ (Solvent: CDCl_{3})

4 q (Solvent: CDCl_{3})

4r (Solvent: CDCl_{3})

4 t (Solvent: CDCl_{3})

6a (Solvent: CDCl_{3})

6b (Solvent: CDCl_{3})

6c (Solvent: CDCl_{3})

6d (Solvent: CDCl_{3})

6e (Solvent: CDCl_{3})

6f(Solvent: CDCl_{3})

6g (Solvent: CDCl_{3})

6h (Solvent: CDCl_{3})

6i (Solvent: CDCl_{3})

6j (Solvent: CDCl_{3})

6k (Solvent: CDCl_{3})

61 (Solvent: CDCl_{3})

6 m (Solvent: CDCl_{3})

6n (Solvent: CDCl_{3})

6 (Solvent: CDCl_{3})

6p (Solvent: CDCl_{3})

$6 \mathbf{q}$ (Solvent: CDCl_{3})

$6 \mathbf{r}$ (Solvent: CDCl_{3})

6s (Solvent: CDCl_{3})

6t (Solvent: CDCl_{3})

7a (Solvent: CDCl_{3})

8a (Solvent: CDCl_{3})

9a (Solvent: CDCl_{3})

10a (Solvent: CDCl_{3})

130 (Solvent: CDCl_{3})

$13 q$ (Solvent: CDCl_{3})

13t (Solvent: CDCl_{3})

14 (Solvent: CDCl_{3})

14q (Solvent: CDCl_{3})

$14 \mathbf{r}$ (Solvent: CDCl_{3})

14s (Solvent: CDCl_{3})

14t (Solvent: CDCl_{3})

15 (Solvent: CDCl_{3})

16 (Solvent: DMSO- d_{6})

17 (Solvent: CDCl_{3})

5. References

S1 Meyers, A. I.; Hellring, S.; Hoeve, W. T., Tetrahedron Lett. 1981, 22, 5115-5118.
S2 Evanno, L.; Ormala, J.; Pihko, P. M., Chem Eur J. 2009, 15, 12963-12967.
S3 Awuah, E.; Capretta, A. J Org. Chem. 2010, 75, 5627-5634.
S4 Georgiev, V. S.; Carlson, R. P.; Inwegen, R. G. V.; Khandwala A. J. Med. Chem. 1979, 22, 348-352.
S5 Feng, G.; Ji, Y.; Liu, H.; Shi, L.; Zhou, Y., Tetrahedron Lett. 2016, 57, 747-749.
S6 Kawai, Hiroshi; Kotake, Yaichiro; Ohta, Shigeru, Bioorg. Med. Chem. Lett. 2000, 10, 1669-1671.
S7 Bel, P.; Mandelbaum, A. Org. Mass Spec. 1980, 15, 568-572.
S8 Yamaguchi, R.; Tanaka, M.; Matsuda T.; Fujita, K. Chem. Commun. 1999, 22132214.

S9 Puerto Galvis, C. E.; Kouznetsov, V. V., J. Org. Chem. 2019, 84, 15294-15308.
S10 Gabriel, C. M.; Keener, M.; Gallou, F.; Lipshutz, B. H., Org. Lett. 2015, 17, 39683971.

S11 Xu, X.; Feng, H.; Huang, L.; Liu, X., J. Org. Chem. 2018, 83, 7962-7969.
S12 Chen, L.; Wu, M., Synthesis, 2019, 51, 1595-1602.
S13 Álvarez-Pérez, A.; Esteruelas, M. A.; Izquierdo, S.; Varela, J. A.; Saá, C., Org. Lett. 2019, 21, 5346-5350.
S14 Gruen, A.; Milen, M.; Foeldesi, T.; Abranyi-Balogh, P.; Drahos, L.; Keglevich, G., Synthetic Commun. 2013, 43, 1491-1498.
S15 Martin, N. H.; Jefford C. W., Helv. Chim. Acta 1982, 65, 762-774.
S16 Tute, M. S.; Brammer, K. W.; Kaye, B.; Broadbentb R. W. J. Med. Chem. 1970 13, 44-48.
S17 McDonald, C. E.; Ramsey, J. D.; McAtee, C. C.; Mauck, J. R.; Hale, E. M.; Cumens, J. A., J. Org. Chem. 2016, 81, 5903-5914.

S18 Santangelo Freel, R. M.; Ogden, K. K.; Strong, K. L.; Khatri, A.; Chepiga, K. M.; Jensen, H. S.; Traynelis, S. F.; Liotta, D. C., J. Med. Chem. 2013, 56, 5351-5381.
S19 Min, L.; Yang, W.; Weng, Y.; Zheng, W.; Wang, X.; Hu, Y. Org. Lett. 2019, 21, 2574-2577.
S20 Valpuesta, M.; Ariza, M.; Díaz A.; Suau R., Eur J. Org. Chem. 2010, 23, 43934401.

S21 Caronna G. ; Palazzo S., Gazz. Chim. Ital., 1963, 93, 198-203.
S22 Estelle G.; Augustin L.; Roselyne R.; Gilles L.; Marion J.; Sébastien L.; Sabine B.B.; Célia G.; Laure-Lise C.; Jean-Pierre D.; Alexandre M., Org. Lett. 2019, 21, 1999-2003.
S23 Xin P.; Tan, S.; Wang, Y.; Sun, Y.; Wang, Y.; Xu Y.; Chen, C.-P. Chem. Commun., 2017, 53, 625-628.
S24 Rodríguez, G; Castedo, L.; Domínguez, D.; Saá, C.; Adam W.; Saha-Möller, C. R., J. Org. Chem. 1999, 64, 877-883.

S25 Castro-Castillo, V.; Suárez-Rozas, C.; Pabón, A.; Pérez, E. G.; Cassels B. K.; Blair, S. Bioorganic Med. Chem. Lett. 2013, 23, 327-329.

S26 Othman, R. B.; Affani, R.; Tranchant, M. J.; Antoniotti, S.; Dalla V.; Duñach, E. Angew. Chem. Int. Ed. 2010, 49, 776-780.
S27 Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.;

Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
S28 GaussView, Version 6, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2016.

