Supporting Information

Intramolecular $\mathrm{N}-\mathrm{Me}$ and $\mathrm{N}-\mathrm{H}$ Aminoetherification for the Synthesis of N Unprotected 3-Amino-O-Heterocycles

 Muhammed Yousufuddin, ${ }^{\text {e }}$ Hong C. Shen, ${ }^{*, d}$ John R. Falck ${ }^{*, a}$, László Kürti*,c
${ }^{\dagger}$ Equal contributions

a. Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.
b. Department of Natural Products Chemistry, Fudan University, 826 Zhangheng Road, Shanghai 201203.
c. Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77030, United States.
d. Roche Pharma Research \& Early Development, Roche Innovation Center Shanghai, Roche R\&D Center (China) Ltd, Building 5, No. 371, Lishizhen Road, Shanghai 201203, P. R. China.
e. Life and Health Sciences Department, The University of North Texas at Dallas, 7400 University Hills Boulevard, Dallas, TX 75241, United States.

Contents

1 General Procedures 4
2 Synthesis of Starting Materials 5
2.1 $\quad \mathrm{N}$-Boc- N -methyl-O-tosyl hydroxylamine (S1) 5
2.2 $\quad N$-Methyl-O-tosyl hydroxylamine (2) 5
2.3 General Procedure for Synthesis of Styryl Alcohols. 6
2.3.1 (E)-4-(4-hydroxybut-1-en-1-yl)benzonitrile (1i) 6
2.3.2 Methyl (E)-4-(4-hydroxybut-1-en-1-yl)benzoate (1j) 6
2.3.3 (E)-4-(4-(methylsulfinyl)phenyl)but-3-en-1-ol (1I) 7
3 Aminoetherification 8
3.1 Optimization 8
3.2 Proposed mechanisms 9
3.3 General Procedure 10
$3.4\left(2 R^{*}, 3 S^{*}\right)-N$-methyl-2-phenyltetrahydrofuran-3-amine (3a) 10
$3.5 \quad\left(2 R^{*}, 3 S^{*}\right)$-2-(4-methoxyphenyl)- N-methyltetrahydrofuran-3-amine (3b) 10
$3.6\left(2 R^{*}, 3 S^{*}\right)$ - N-methyl-2-(o-tolyl)tetrahydrofuran-3-amine (3c) 11
$3.7 \quad\left(2 R^{*}, 3 S^{*}\right)-N$-methyl-2-(p-tolyl)tetrahydrofuran-3-amine (3d) 11
$3.8 \quad\left(2 R^{*}, 3 S^{*}\right)$ - N,2-dimethyl-2-phenyltetrahydrofuran-3-amine (3e) 12
$3.9 \quad\left(2 R^{*}, 3 S^{*}\right)$-2-(4-bromophenyl)-N-methyltetrahydrofuran-3-amine (3f) 12
$3.10\left(2 R^{*}, 3 S^{*}\right)$-2-(4-bromophenyl)-N-methyltetrahydrofuran-3-amine (3g) 13
3.11 ($2 R^{*}, 3 S^{*}$)-2-(4-fluorophenyl)- N-methyltetrahydrofuran-3-amine (3h) 13
3.12 4-((2R*, $\left.3 S^{*}\right)$-3-(methylamino)tetrahydrofuran-2-yl)benzonitrile (3i) 13
3.13 Methyl 4-((2R*,3S*)-3-(methylamino)tetrahydrofuran-2-yl)benzoate (3j) 14
$3.14\left(2 R^{*}, 3 S^{*}\right)-$ N-methyl-2-(4-(trifluoromethyl)phenyl)tetrahydrofuran-3-amine (3k) 14
$3.15\left(2 R^{*}, 3 S^{*}\right)$-N-methyl-2-(4-(methylsulfinyl)phenyl)tetrahydrofuran-3-amine (3I) 15
$3.16\left(2 R^{*}, 3 S^{*}\right)-N$-methyl-2-phenyltetrahydro-2H-pyran-3-amine (3m) 15
$3.17\left(2 S^{*}, 3 R^{*}\right)$-N-methyl-2-phenylchroman-3-amine (3n) 16
$3.18\left(2 R^{*}, 3 S^{*}\right)$-2-benzyl- N-methyltetrahydrofuran-3-amine (3o) 16
$3.19\left(2 R^{*}, 3 S^{*}\right)$-2-cyclohexyl- N-methyltetrahydrofuran-3-amine (3p) 16
$3.20 \quad\left(R^{*}\right)$ - N-methyl-1-phenyl-1-(($\left.R^{*}\right)$-tetrahydro-2H-pyran-2-yl)methanamine (3q) 17
$3.21\left(2 R^{*}, 3 S^{*}\right)$-2-phenyltetrahydrofuran-3-amine (5) 17
4 Determination of relative configurations of $\mathbf{3 a}$ and $\mathbf{3 q}$ 19
4.1 NOESY study on 3a 19
4.2 N,4-dimethyl- N-(($\left.R^{*}\right)$-phenyl(($\left.R^{*}\right)$-tetrahydro-2H-pyran-2-yl)methyl) benzenesulfonamide (S2) 20
5 Cis-Aminohydroxylation 22
5.1 (2-((2S*,3R*)-1-methyl-3-phenylaziridin-2-yl)ethan-1-ol (6) 22
$5.2\left(2 R^{*}, 3 R^{*}\right)$ - N-methyl-2-phenyltetrahydrofuran-3-amine and (2R*,3S*)-N-methyl-2-
phenyltetrahydrofuran-3-amine (cis-3a) 22
6 Crystallographic data for S2 24
8 Spectral data 26

1 General Procedures

All reactions were carried out under a nitrogen atmosphere in oven-dried glassware unless otherwise noted. When needed, nonaqueous reagents were transferred under argon via syringe or cannula and dried prior to use. Dry solvents were obtained by passing deoxygenated solvents through activated alumina columns (MBraun SPS-800 series Solvent Purification System). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ on a Bruker AV II- 400 MHz spectrometer $\left({ }^{1} \mathrm{H} \mathrm{NMR}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz) or Bruker Avance DRX-600 spectrometer (${ }^{1} \mathrm{H} N M R$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C} \mathrm{NMR}$ at 151 MHz). The chemical shifts are reported in ppm relative to residual $\mathrm{CHCl}_{3}(\delta 7.26)$ or $\mathrm{CH}_{3} \mathrm{OH}(3.31 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(\delta 77.00) \mathrm{CD}_{3} \mathrm{OD}(49.00)$ for ${ }^{13} \mathrm{C}$ NMR. MS experiments were performed on an Agilent 5973 N instrument for EI-MS and a Waters Micromass GCT Premier instrument for High-resolution mass. Unless otherwise noted, all reagent-grade chemicals and other solvents were obtained from commercial suppliers and were used as received. Diastereomeric ratios (dr) were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixtures. Melting points (MP) were determined in open capillaries using an Optimelt (Stanford Research Systems) melting point system and are uncorrected. Reaction mixtures were heated using aluminum heating blocks maintained at specified temperatures on magnetic stirrer hotplates. Starting materials $\mathbf{1 a - q}$ are known compounds and were identified by comparison of their spectral data with those reported in the literature.

2 Synthesis of Starting Materials

2.1 N -Boc- N -methyl-O-tosyl hydroxylamine (S1)

Potassium carbonate ($14.5 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added to an ice cold solution of N-methyl hydroxylamine hydrochloride ($16.7 \mathrm{~g}, 0.2 \mathrm{~mol}$) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,80 \mathrm{ml})$. A solution of di-tert-butyl dicarbonate ($48.0 \mathrm{~g}, 0.2$ mol) in THF (60 ml) was added dropwise and stirring was continued for 2 hours at $0^{\circ} \mathrm{C}$ and then 3 hours at room temperature. The solution was reduced in vacuo and the residue dissolved in dichloromethane $(100 \mathrm{ml})$, washed with water ($3 \times 40 \mathrm{ml}$), brine (50 ml) and dried with anhydrous magnesium sulfate. The solvent was removed to yield a pale orange oil. The oil was dissolved in dichloromethane (250 ml) were added triethylamine ($30.6 \mathrm{ml}, 0.22 \mathrm{~mol}$) and p-toluenesulfonyl chloride ($41.94 \mathrm{~g}, 0.22 \mathrm{~mol}$). The reaction mixture was allowed to warm to ambient temperature and stirring was continued for 18 hours after which time the organic phase was washed with 2.0 M aq. hydrochloric acid ($2 \times 50 \mathrm{ml}$). The dichloromethane was further washed with brine (50 ml) and dried with anhydrous sodium sulphate. The solvent was removed under reduced pressure to yield the crude product which was recrystallized from petroleum ether to give the title compound as a colourless solid ($47.5 \mathrm{~g}, 78.8 \%$).

Spectral data matched those reported previously, as well as the commercial material. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.21$ ($\mathrm{s}, 9 \mathrm{H}$).
$\left\{{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}\right.$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 156.0,145.7,131.1,129.7,129.5,83.3,40.1,27.5,21.7$.

2.2 N-Methyl-O-tosyl hydroxylamine (2)

To an ice-cold solution of N-Boc- N-methyl- O-tosyl hydroxylamine (S1) (3.0 g, 10 mmol) in dichloromethane (15 ml), was added excess trifluoroacetic acid ($14.8 \mathrm{ml}, 200 \mathrm{mmol}$). The reaction was allowed to stir for 3 hours at $0{ }^{\circ} \mathrm{C}$ before pouring onto ice water (50 ml) and extracting with dichloromethane ($3 \times 30 \mathrm{ml}$). The combined organic layers were dried over anhydrous sodium sulfate and concentrated to yield a clear oil which solidified upon cooling (1.9 g, 95\%).

Spectral data matched those reported previously. ${ }^{1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$, 2.45 ($s, 3 H$).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta}: 144.9,132.2,129.5,128.9,40.1,21.6$.

[^0]
2.3 General Procedure for Synthesis of Styryl Alcohols

Under argon atmosphere, triphenylphosphine ($9.5 \mathrm{~g}, 36.2 \mathrm{mmol}$), 3-bromopropan-1-ol ($5.0 \mathrm{~g}, 36 \mathrm{mmol}$) and p-xylene (30 mL) were added in a round bottom flask equipped with a mechanical stirrer. The mixture was heated to $130^{\circ} \mathrm{C}$ and stirred for 6 h . After that, the reaction was then cooled to room temperature and diethyl ether (50 mL) was added. The solids were collected by filtration and dried under vacuum to afford 3-(triphenylphosphonium) propan-1-ol bromide (S2) as a white solid which was used in the next step without further purification. Lithium bis(trimethylsilyl)amide (LiHMDS, $10.5 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added dropwise at $-20^{\circ} \mathrm{C}$ to a suspension of (3-propan-1-ol)triphenylphosphonium bromide (4.5 mmol) in 10 mL of tetrahydrofuran. The solution was stirred at $-20^{\circ} \mathrm{C}$ for 1 hour and aldehyde (3.75 mmol) was added dropwise. After that, the mixture was stirred at the same temperature for 2 hours. The mixture was warmed to room temperature and stirred for another 12 hours, then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added. The organic layer was dried over MgSO_{4} and then concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/Petroleum ether $=$ 1/5; v/v).

2.3.1 (E)-4-(4-hydroxybut-1-en-1-yl)benzonitrile (1i)

White solid; (3.0 g, 48\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}), 6.41-$ $6.34(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 141.8,132.3,131.0,131.0,126.5,119.0,110.3,61.7,36.3$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11}$ NO 173.0841; Found 173.0840.

2.3.2 Methyl (E)-4-(4-hydroxybut-1-en-1-yl)benzoate (1j)

White solid; ($3.8 \mathrm{~g}, 52 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 6.39-$ $6.31(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 2.54-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.9,141.7,131.7,129.9,129.5,128.6,125.9,61.8,52.0,36.4$.

HRMS (ESI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ 206.0943; Found 206.0945.

2.3.3 (E)-4-(4-(methylsulfinyl)phenyl)but-3-en-1-ol (1I)

White solid; (4.3 g, 57\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8: 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}), 6.37-6.29(\mathrm{~m}$, $1 \mathrm{H}), 3.76$ (t, 2H, J = 6.2 Hz$), 2.52-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.14$ (br s, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 143.7,140.4,131.1,129.5,126.8,123.8,61.7,43.8,36.4$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} 210.0715$; Found 210.0716.

3 Aminoetherification

3.1 Optimization

Table S1. Optimization studies for intermolecular $N-M e$ aminoetherification. ${ }^{\text {a }}$

		 solve		
\#		Solvent	Temperature/Time	Yield (\%)
1	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	THF (0.2 M)	$65^{\circ} \mathrm{C}, 5 \mathrm{~h}$	$<10^{\text {b }}$
2	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	MeCN (0.2 M)	$65^{\circ} \mathrm{C}, 5 \mathrm{~h}$	$<10^{\text {b }}$
3	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.2 M)	$65^{\circ} \mathrm{C}, 5 \mathrm{~h}$	73
4	$1 \% \mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.2 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$	66
5	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.2 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $50^{\circ} \mathrm{C}$, overnight	37
6	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.2 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $50^{\circ} \mathrm{C}, 5 \mathrm{~h}$	70
7	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.1 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $65{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	78
8	$1 \% \mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.2 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $65^{\circ} \mathrm{C}, 5 \mathrm{~h}$	84
9	1\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.5 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $65{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$	75
10	0.5\% $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$	TFE (0.2 M)	$\mathrm{rt}, 2 \mathrm{~h}$, then $65^{\circ} \mathrm{C}, 5 \mathrm{~h}$	81

[^1]
3.2 Proposed mechanisms

The aziridination mechanism has previously been established computationally. ${ }^{2}$

A Proposed aziridination-aziridine opening mechanism

Note: Aziridine can be isolated
B Proposed pathways for the cis-aziridine scrambling via a benzylic carbocation intermediate

Scheme S1: Mechanistic proposals for the cascade process and the stereochemical scrambling.

[^2]
3.3 General Procedure

$\mathrm{Rh}_{2}(\mathrm{esp})_{2}$ (Du Bois' catalyst, 1 mol\%) was added to a vigorously stirring (1400 rpm), rt solution of alkene (1.0 equiv) and TsONHMe (1.5 equiv) in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(0.1 \mathrm{M}$) in an 8 ml screw-cap vial under argon at rt , unless otherwise specified. The reaction was stirred at the specified temperature and monitored by TLC (DCM: $\mathrm{MeOH}=10: 100$; UV; Ninhydrin stain). More catalyst and aminating agent were added, if required. After the alkene was consumed (about 2 h), the reaction was heated at 50 or $65^{\circ} \mathrm{C}$ until LCMS show the reaction was completed, then the reaction mixture was diluted with EtOAc and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The aqueous layer was extracted twice with EtOAc and the combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified on pre-packed SiO_{2} columns using a CombiFlash automated flash chromatography unit (DCM: $\mathrm{MeOH}=$ 100:1 to 100:15).

Notes:

- Vigorous stirring is needed for a successful initiation of the reaction.
- If no product is seen after first 30 min , a second portion of $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$ has to be added to the vigorously stirred reaction mixture.
- A successful reaction turns opaque and dark brown.

3.4 ($\left.2 R^{*}, 3 S^{*}\right)$ - -methyl-2-phenyltetrahydrofuran-3-amine (3a)

Following the general procedure, (E)-4-phenylbut-3-en-1-ol (1a) (148.2 mg, 1 mmol$)$, TsONHMe (2) (301.8 mg , 1.5 mmol$)$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM: $\mathrm{MeOH}=100: 1$ to $100: 15$) afforded the title product as a yellow oil ($150.6 \mathrm{mg}, 85 \%$).

Note: For determination of relative stereochemistry see section 4.1.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 4.18(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}$ $=8.3,5.3 \mathrm{~Hz}$), 4.09 (app. q., $1 \mathrm{H}, J=7.7 \mathrm{~Hz}$), $3.15(\mathrm{dt}, 1 \mathrm{H}, J=7.0,5.2 \mathrm{~Hz}$), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{dq}, 1 \mathrm{H}, J=12.6$, $7.4 \mathrm{~Hz}), 1.88$ (ddt, 1H, J = 12.6, 7.7, 5.2 Hz), 1.29 (br s, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 141.6,128.5,127.6,125.9,85.6,68.1,67.5,34.9,32.1$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}+\mathrm{H}\right]^{+}$178.1226, Found 178.1227.

3.5 (2R*,3S*)-2-(4-methoxyphenyl)-N-methyltetrahydrofuran-3-amine (3b)

Following the general procedure, (E)-4-(4-methoxyphenyl)but-3-en-1-ol $\mathbf{1 b}$ ($178.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5$ mL) at rt for 2 h , then at $65^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil ($176.2 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}), 4.16-4.12(\mathrm{~m}$, 1H), 4.07-4.03 (m, 1H), $3.12(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.1,133.4,127.3,113.8,85.5,67.9,67.2,55.2,35.0,32.3$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$208.1332, Found 208.1336.

3.6 (2R*,3S*)-N-methyl-2-(o-tolyl)tetrahydrofuran-3-amine (3c)

Following the general procedure, (E)-4-(o-tolyl)but-3-en-1-ol 1c (162.2 mg, $1 \mathbf{m m o l}$), TsONHMe (2) (301.8 $\mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to $100: 15$) afforded the title product as a yellow oil ($162.6 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 7.36-7.34 (m, 1H), 7.22-7.12 (m, 3H), $4.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}), 4.27-4.21(\mathrm{~m}$, 1H), 4.11-4.05 (m, 1H), 3.18-3.15 (m, 1H), 2.46 (s, 3H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13}{ }^{\mathrm{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 139.7,135.0,130.4,127.3,126.0,125.7,83.3,67.5,66.9,34.9,31.4$, 19.5.

HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$192.1383, Found 192.1386.

3.7 (2R*,3S*)-N-methyl-2-(p-tolyl)tetrahydrofuran-3-amine (3d)

Following the general procedure, (E)-4-(p-tolyl)but-3-en-1-ol 1d (162.2 mg, 1 mmol), TsONHMe (2) (301.8 $\mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\text { esp })_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil ($145.3 \mathrm{mg}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.24(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}), 4.19-$ $4.13(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80$ (m, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.5,137.2,129.1,125.9,85.6,68.1,67.3,34.9,32.2,21.1$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$192.1383, Found 192.1382.

3.8 ($2 R^{*}, 3 S^{*}$)-N,2-dimethyl-2-phenyltetrahydrofuran-3-amine (3e)

Following the general procedure, (E)-4-phenylpent-3-en-1-ol 1e ($162.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) (301.8 $\mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil ($156.8 \mathrm{mg}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 7.46-7.43 (m, 2H), 7.34-7.31 (m, 2H), 7.25-7.20(m, 1H), 4.09-4.03 (m, 1H), $3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.46$ ($\mathrm{s}, 3 \mathrm{H}$).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 147.6,128.1,126.5,124.5,85.2,68.6,65.0,35.3,31.2,23.1$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$192.1383, Found 192.1386.

3.9 ($2 R^{*}, 3 S^{*}$)-2-(4-bromophenyl)-N-methyltetrahydrofuran-3-amine (3f)

Following the general procedure, (E)-4-(4-bromophenyl)but-3-en-1-ol $\mathbf{1 f}$ ($227.1 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil ($207.5 \mathrm{mg}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}), 4.18-4.12(\mathrm{~m}$, $1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 140.8,131.5,127.6,121.3,85.0,68.2,67.5,35.0,32.2$.
HRMS (ESI ${ }^{+}$) Calcd. for [$\left.\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}+\mathrm{H}\right]^{+}$256.0332, Found 256.0334.

3.10 (2R*, $3 S^{*}$)-2-(4-bromophenyl)-N-methyltetrahydrofuran-3-amine (3g)

Following the general procedure, (E)-4-(2-bromophenyl)but-3-en-1-ol 1 g ($227.1 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash ($\mathrm{DCM}: \mathrm{MeOH}=100: 1$ to $100: 15$) afforded the title product as a yellow oil ($147.6 \mathrm{mg}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.54-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H})$, $5.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 144.4,132.5,128.7,127.4,127.4,121.6,85.3,68.2,67.4,34.9,30.6$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}+\mathrm{H}\right]^{+}$256.0332, Found 256.0331.

3.11 (2R*, 3S*)-2-(4-fluorophenyl)-N-methyltetrahydrofuran-3-amine (3h)

Following the general procedure, (E)-4-(4-fluorophenyl)but-3-en-1-ol 1 h ($166.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM: $\mathrm{MeOH}=100: 1$ to $100: 15$) afforded the title product as a yellow oil ($152.3 \mathrm{mg}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}), 4.18-4.13(\mathrm{~m}$, $1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.2(\mathrm{~d}, \mathrm{~J}=243.9 \mathrm{~Hz}), 137.3(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 127.6(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 115.2$ ($d, J=21.3 \mathrm{~Hz}$), 85.1, 68.1, 67.4, 34.9, 32.2.

HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FNO}+\mathrm{H}\right]^{+}$196.1132, Found 196.1133.

3.12 4-((2R*, 3S*)-3-(methylamino)tetrahydrofuran-2-yl)benzonitrile (3i)

Following the general procedure, (E)-4-(4-hydroxybut-1-en-1-yl)benzonitrile 1 i ($173.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (5
mL) at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM: MeOH=100:1 to 100:15) afforded the title product as a yellow oil (153.5 mg , 76%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.19-4.14$ $(\mathrm{m}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 147.6,132.2,126.4,118.8,111.1,84.7,68.5,67.8,34.9,32.2$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$203.1179, Found 203.1177.

3.13 Methyl 4-((2R*,3S*)-3-(methylamino)tetrahydrofuran-2-yl)benzoate (3j)

Following the general procedure, methyl (E)-4-(4-hydroxybut-1-en-1-yl)benzoate $\mathbf{1 j}$ ($206.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (5 mL) at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM: $\mathrm{MeOH}=100: 1$ to 100:15) afforded the title product as a yellow oil ($193.3 \mathrm{mg}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 4.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2 \mathrm{~Hz}), 4.21-4.15$ $(\mathrm{m}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}$, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס: 166.9, 147.2, 129.7, 129.3, 125.7, 85.2, 68.5, 67.7, 52.0, 35.0, 32.2.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$236.1281, Found 236.1285.

3.14 ($2 R^{*}, 3 S^{*}$)-N-methyl-2-(4-(trifluoromethyl)phenyl)tetrahydrofuran-3-amine (3k)

Following the general procedure, (E)-4-(4-(trifluoromethyl)phenyl)but-3-en-1-ol $\mathbf{1 k}$ ($216.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (5 mL) at rt for 2 h , then at $65^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM: $\mathrm{MeOH}=100: 1$ to 100:15) afforded the title product as a yellow oil ($183.6 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}), 4.21-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}), 129.6(\mathrm{q}, \mathrm{J}=32.2 \mathrm{~Hz}), 126.3(\mathrm{q}, \mathrm{J}=248.9 \mathrm{~Hz}), 126.0$, 125.3 ($q, J=2.8 \mathrm{~Hz}$), 84.9, 68.4, 67.7, 34.9, 32.2.

HRMS (ESI ${ }^{+}$) Calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}+\mathrm{H}\right]^{+}$246.1100, Found 246.1102.

3.15 (2R*,3S*)-N-methyl-2-(4-(methylsulfinyl)phenyl)tetrahydrofuran-3-amine

 (3I)

Following the general procedure, (E)-4-(4-(methylsulfinyl)phenyl)but-3-en-1-ol $\mathbf{1 I}$ ($210.3 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (5 mL) at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil ($138.6 \mathrm{mg}, 58 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}), 4.20-$ $4.16(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88$ ($m, 1 \mathrm{H}$).
$\left\{{ }^{1}{ }^{113}{ }^{13} \mathrm{C}\right.$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 147.4,145.1,128.4,125.1,86.2,69.5,68.7,43.5,34.7$, 32.6.
HRMS (ESI ${ }^{+}$) Calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$240.1053, Found 240.1052.

$3.16\left(2 R^{*}, 3 S^{*}\right)$-N-methyl-2-phenyItetrahydro-2H-pyran-3-amine (3m)

Following the general procedure, (E)-5-phenylpent-4-en-1-ol 3m (206.2 mg, $1 \mathbf{m m o l}$), TsONHMe (2) (301.8 $\mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil ($145.1 \mathrm{mg}, 76 \%$).
${ }^{1}{ }^{1}$ N NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 3.57-3.51(\mathrm{~m}$, 1H), 2.59-2.52 (m, 1H), 2.28-2.22 (m, 1H), 2.20 (s, 3H), 1.91-1.71 (m, 2H), 1.42-1.35 (m, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 140.0,128.6,128.3,127.6,85.2,68.6,60.9,33.3,29.4,25.5$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$192.1383, Found 192.1386.

3.17 (2S*, $3 R^{*}$)-N-methyl-2-phenylchroman-3-amine (3n)

Following the general procedure, 2-cinnamylphenol 1 n ($210.3 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) ($301.8 \mathrm{mg}, 1.5$ $\mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65^{\circ} \mathrm{C}$ for 4 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a yellow oil (140.2 mg, 73\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2$ $\mathrm{Hz}), 3.13-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13}{ }^{\mathbf{C}}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 154.3,139.0,129.9,128.7,128.4,127.5,127.0,120.7,120.4,116.4,81.2$, 57.1, 33.5, 30.5.

HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$240.1383, Found 240.1386.

3.18 ($2 R^{*}, 3 S^{*}$)-2-benzyl- N-methyltetrahydrofuran-3-amine (30)

Following the general procedure, (E)-5-phenylpent-3-en-1-ol 4 ($162.2 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) (301.8 mg , 1.5 mmol$)$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 64 h . Chromatographic purification of the crude product by using CombiFlash (DCM: $\mathrm{MeOH}=100: 1$ to $100: 15$) afforded the title product as a yellow oil ($116.5 \mathrm{mg}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta: 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 1 \mathrm{H})$, 2.88-2.77 (m, 2 H$), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (100 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta: 139.7,130.5,129.3,127.4,85.9,67.5,65.4,41.3,34.4,32.8$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$192.1383, Found 192.1385.

3.19 (2R*,3S*)-2-cyclohexyl-N-methyltetrahydrofuran-3-amine (3p)

Following the general procedure, (E)-4-cyclohexylbut-3-en-1-ol 5 ($154.3 \mathrm{mg}, 1 \mathrm{mmol}$), TsONHMe (2) (301.8 mg , 1.5 mmol), and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(7.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(5 \mathrm{~mL})$ at rt for 2 h , then at $65{ }^{\circ} \mathrm{C}$ for 72 h . Chromatographic purification of the crude product by using CombiFlash ($\mathrm{DCM}: \mathrm{MeOH}=100: 1$ to $100: 15$) afforded the title product as a yellow oil ($95.2 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta: 3.86-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.09-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.01(\mathrm{~m}, 6 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (100 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta: 89.8,67.5,63.6,42.4,34.3,33.0,30.9,29.5,27.6,27.3,27.1$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}+\mathrm{H}\right]^{+}$184.1696, Found 184.1695.

$3.20\left(R^{*}\right)$-N-methyl-1-phenyl-1-(($\left.R^{*}\right)$-tetrahydro-2H-pyran-2-yl)methanamine (3q)

Following the general procedure, (Z)-6-phenylhex-5-en-1-ol 1q ($53 \mathrm{mg}, 0.3 \mathrm{mmol}$), TsONHMe (2) (90 mg, $0.45 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(4.5 \mathrm{mg}, 6 \mu \mathrm{~mol})$ were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(3 \mathrm{~mL})$ at rt for 2 h , then at $50^{\circ} \mathrm{C}$ for 21 h . Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:5) afforded the title product as a faint yellow oil ($29 \mathrm{mg}, 48 \%$).
$\boldsymbol{R}_{\mathrm{f}}: 0.4$ ($10 \% \mathrm{MeOH} / \mathrm{DCM}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.20-7.44(\mathrm{~m}, 5 \mathrm{H}), 4.01-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{td}, \mathrm{J}=11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-$ $3.38(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.09-$ $1.23(\mathrm{~m}, 2 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 140.3,128.5,128.2,127.4,81.6,71.0,68.6,34.3,28.6,26.0,23.2$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}+\mathrm{H}\right]^{+}$206.1539, Found 206.1532.

3.21 ($2 R^{*}, 3 S^{*}$)-2-phenyltetrahydrofuran-3-amine (5)

Following the general procedure, (E)-4-(phenyl)but-3-en-1-ol 1 a ($50 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0$ equiv.) and NbzONH_{2} (4) ($1 / 2$ of $122.9 \mathrm{mg}, 0.67 \mathrm{mmol}, 2.0$ equiv.) were stirred in dry $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(3.4 \mathrm{~mL})$ for 15 min to achieve a homogenous suspension. To the vigorously stirred solution $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(1 / 2$ of $5.1 \mathrm{mg}, 6.8 \mu \mathrm{~mol}$, 0.02 equiv.) was added in one portion and stirring continued for 30 min . After 30 min the rest of aminating agent and $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$ were added and the reaction mixture stirred at rt for 2 h (consumption of olefin by TLC 95:5 DCM/MeOH), and then at $65^{\circ} \mathrm{C}$ for 74 h . The reaction mixture was quenched with 5 mL aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, extracted with EtOAc $(3 \times 10 \mathrm{~mL})$ and the combined organic layers dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated in vacuo. Chromatographic purification of the crude product by using CombiFlash (DCM:MeOH=100:1 to 100:15) afforded the title product as a brown oil ($30.2 \mathrm{mg}, 55 \%$).
$\boldsymbol{R}_{\mathrm{f}}: 0.47$ ($15 \% \mathrm{MeOH} / \mathrm{DCM}$, Ninhydrin stain: red).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.36-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dt}, J=8.2$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{td}, J=8.4,6.0 \mathrm{~Hz}), 3.41-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.3(\mathrm{dtd}, J=13.1,7.5,6.1 \mathrm{~Hz}), 1.83(\mathrm{ddt}, J=12.4$, 8.2, 6.7 Hz), 1.72 (br. s, 2H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 141.2,128.6,127.8,125.9,88.6,67.2,60.2,35.3$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}+\mathrm{H}\right]^{+}$164.1075, Found 164.1075.

4 Determination of relative configurations of 3a and 3q

4.1 NOESY study on 3a

The protons and carbons signals were assigned based on ${ }^{1} \mathrm{H}$ coupling data, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ and DEPT-135. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY data was used to establish the solution-state major conformer as well as the relative 2,3 -trans stereochemistry of the system.

Figure S1. NOESY cross peaks observed for 3a.

Table S2. ${ }^{1} \mathrm{H}$ signal assignment of 3a.

Shift (ppm)	Integral	Multiplicity
$7.37-7.33$	4 H	m
$7.30-7.26$	1 H	m
4.65	1 H	$\mathrm{d}, J=5.0 \mathrm{~Hz}$
4.18	1 H	$\mathrm{td}, J=8.3,5.3 \mathrm{~Hz}$
4.09	1 H	$\mathrm{app} . \mathrm{q}, J=7.7 \mathrm{~Hz}$
3.15	1 H	$\mathrm{dt}, J=7.0,5.2 \mathrm{~Hz}$
2.46	3 H	s
2.23	1 H	$\mathrm{dq}, J=12.6,7.4 \mathrm{~Hz}$
1.88	1 H	$\mathrm{ddt}, J=12.6,7.7,5.2 \mathrm{~Hz}$
1.84	1 H	br. s

Table S3. ${ }^{13} \mathrm{C}$ signal assignment of $\mathbf{3 a}$.
Shift (ppm)

4.2 N,4-dimethyl-N-(($\left.R^{*}\right)$-phenyl(($\left.R^{*}\right)$-tetrahydro-2H-pyran-2-yl)methyl) benzenesulfonamide (S2)

To a stirred solution of amine $\mathbf{3 q}(30 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt was added pyridine ($15 \mu \mathrm{~L}$) and p-toluenesulfonyl chloride ($34 \mathrm{mg}, 0.18 \mathrm{mmol}$). After 24 h , the volatiles were evaporated and the crude product was purified by preparative TLC using 20% EtOAc/hexanes as eluent to isolate the title compound as white solid ($28 \mathrm{mg}, 52 \%$).

Note: For details on scXRD, see section 6.
MP: $123.6^{\circ} \mathrm{C}$.
$\boldsymbol{R}_{\mathrm{f}}: 0.4$ (20\% EtOAc/Hexane).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{td}, \mathrm{J}=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.18-$ $1.55(\mathrm{~m}, 5 \mathrm{H})$.
$\left\{{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}\right.$ NMR (100 MHz, CDCl_{3}) $\delta: 142.4,137.3,137.2,128.9,128.5,128.4,127.7,127.7,75.9,68.2,64.2$, 30.0, 29.4, 25.7, 23.2, 21.4.

HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}$382.1447, Found 382.1455.

5 Cis-Aminoetherification

5.1 (2-((2S*, $\left.3 R^{*}\right)$-1-methyl-3-phenylaziridin-2-yl)ethan-1-ol (6)

$\mathrm{Rh}_{2}(\mathrm{esp})_{2}(15.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{TsONHMe}(2)(0.301 \mathrm{~g}, 1.5 \mathrm{mmol})$ were added to a stirred solution of olefin cis-1b ($0.148 \mathrm{~g}, 1.0 \mathrm{mmol}$) in TFE (10.0 mL) at rt. After 2 h (when TLC analysis showed the completion of reaction), the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and aqueous sodium bicarbonate solution (2 mL) was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine (5 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo. The crude product was purified by preparative TLC using EtOAc as eluent to furnish the title compound as colorless oil (0.125 g , 71\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (ddd, J=10.5, 8.8, 4.2 Hz, 1H), $3.65(\mathrm{dt}, \mathrm{J}=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~d}$, overlapping with 2.54 methyl signal, 1 H$), 1.84(\mathrm{dd}, \mathrm{J}=$ $13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.50 (ddd, J=14.9, 9.7, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.40-1.32$ (m, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 136.8,128.1,127.6,126.8,61.7,47.5,46.6,45.9,28.9$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}+\mathrm{H}\right]^{+}$178.1226, Found 178.1229.

5.2 ($2 R^{*}, 3 R^{*}$)- N-methyl-2-phenyltetrahydrofuran-3-amine and ($2 R^{*}, 3 S^{*}$)- N -methyl-2-phenyltetrahydrofuran-3-amine (cis-3a)

$\mathrm{Rh}_{2}(\mathrm{esp})_{2}(3.8 \mathrm{mg}, 0.5 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and $\mathrm{TsONHMe}(2)(0.151 \mathrm{~g}, 0.75 \mathrm{mmol}$ were added to a stirred solution of (Z)-4-phenylbut-3-en-1-ol (Z-1a) ($74 \mathrm{mg}, 0.5 \mathrm{mmol}$) in TFE (5 mL) at rt. After 30 min (when TLC analysis showed the completion of reaction), the reaction mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 18 h. The reaction mixture was diluted with EtOAc (10 mL) and aqueous sodium bicarbonate solution (2 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc ($10 \mathrm{~mL} \times 2$). The combined organic layers were washed with brine (5 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated in vacuo. The crude product was purified by Combi Flash column chromatography using 2-5\% $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by preparative TLC using $5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to furnish the two inseparable diastereomers as faint yellow oil ($48 \mathrm{mg}, 67 \%$, combined yield).

cis-(\pm)-N-methyl-2-phenyltetrahydrofuran-3-amine:

Characterized after further purification with a second prep-TLC ($5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish an enriched ~1:1 mixture of diastereomers).

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.34-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=$ $14.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{td}, \mathrm{J}=8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 1.18$ (broad s, 1H).
$\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.5,128.6,127.7,126.8,83.6,67.1,63.5,34.9,31.9$.
HRMS (ESI ${ }^{+}$) Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}+\mathrm{H}\right]^{+}$178.1226, Found 178.1227.

6 Crystallographic data for S2

Diffraction data were collected on a Bruker APEX II with graphite-monochromated Mo Karadiation ($\lambda=$ $0.71073 \AA$ A). The cell parameters were obtained from the least-squares refinement of the spots (from 60 collected frames) using the Apex 2 program. Data collection, data processing, and structure solution were performed using the Apex 2 program. Initial atomic positions were located using intrinsic phasing and the structures were refined by least-squares methods using SHELXL-2017. Calculated hydrogen positions were input and refined in a riding manner along with the attached carbons.

Table S4: Crystal data and structure refinement for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}(\mathbf{S 2})$

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
falck4_0m_a
C20 H25 N O3 S
359.47

299(2) K
0.71073 Å

Monoclinic
P2 ${ }_{1} / \mathrm{c}$
$a=9.3481(14) \AA \quad \alpha=90^{\circ}$.
$b=11.8624(17) \AA \quad \beta=100.756(4)^{\circ}$.
$c=17.695(3) \AA \gamma=90^{\circ}$.
1927.7(5) \AA^{3}

4

Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma(I]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$1.239 \mathrm{Mg} / \mathrm{m}^{3}$
$0.186 \mathrm{~mm}^{-1}$
768
$0.662 \times 0.367 \times 0.186 \mathrm{~mm}^{3}$
3.196 to 30.507°.
$-13<=h<=13,-16<=k<=16,-25<=\mid<=25$
28839
5885 [R (int) $=0.0305$]
99.7 \%

Numerical
1.000 and 0.941

Full-matrix least-squares on F^{2}
5885/0/228
1.248

R1 $=0.0491, w R 2=0.1623$
$R 1=0.0716, w R 2=0.1804$
n/a
0.251 and -0.244 e. \AA^{-3}

8 Spectral data

CDCl_{3}, DEPT-135, 151 MHz

ํㅜํ	\% \%	!		앙읐	毕筑		
	¢ ¢ ¢ ¢	¢	Nico	¢¢	¢ ¢		
11	\|		\|	4	V	\|	

3d
${ }^{13} \mathrm{C}, 100 \mathrm{MHz}$
CDCl_{3}

1	1		1			1	1	1	1				1	T			1			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Supporting Information

1		¢0000			-	®	$\stackrel{10}{\sim}$

$3 e$
${ }^{13} \mathrm{C}, 100 \mathrm{MHz}$
CDCl_{3}

3 g
${ }^{13} \mathrm{C}, 100 \mathrm{MHz}$ CDCl_{3}

SI-50

Paudyal, Wang et. al.

Paudyal, Wang et. al.
Supporting Information

Paudyal, Wang et. al.
Supporting Information

C, 100 MHz
$\mathrm{CD}_{3} \mathrm{OD}$

M

$\mathrm{CDCl}_{3},{ }^{1} \mathrm{H} 600 \mathrm{MHz}$

Paudyal, Wang et. al.

Paudyal, Wang et. al.

Supporting Information

[^0]: ${ }^{1}$ John, O. R. S.; Killeen, N. M.; Knowles, D. A.; Yau, S. C.; Bagley, M. C.; Tomkinson, N. C. O. Direct α-Oxytosylation of Carbonyl Compounds: One-Pot Synthesis of Heterocycles. Org. Lett. 2007, 9, 4009-4012.

[^1]: ${ }^{\text {a }}$ Yields of isolated product. ${ }^{\text {b }}$ Yields determined by LC-MS

[^2]: ${ }^{2}$ Jat, J. L.; Paudyal, M. P.; Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Devarajan, D.; Ess, D. H.; Kürti, L.; Falck, J. R. Direct Stereospecific Synthesis of Unprotected $N-H$ and N-Me Aziridines from Olefins. Science, 2014, 343, 61-65.

