Supporting Information

Pd-Catalyzed Asymmetric [5+2] Cycloaddition of Vinylethylene Carbonates and Cyclic Imines: Access to N-Fused 1,3-Oxazepines

Hye-In Ahn,^{a‡} Jong-Un Park,^{a‡} Zi Xuan*a, Ju Hyun Kim*a

^a Department of Chemistry (BK21), Research Institute of Natural Science, Gyeongsang National University, 52828, Jinju, Korea.

*E-mail: juhyun@gnu.ac.kr

Table of Contents

1.	General informations	S 2
2.	Reaction optimization	S 3
3.	General procedure	S5
	3.1 Procedure for the preparation of the racemic compounds 3	S 5
	3.2 General procedure for asymmetric synthesis of compounds 3	S 5
	3.3 Typical procedure for asymmetric synthesis of compounds 3d, 3i, 3k, 3l	S 6
4.	Procedure for the synthetic transformations of compounds 3	S 7
	4.1 Procedure for the gram-scale synthesis of 3a	S 7
	4.2 Procedure for the synthesis of compound 4	S 7
	4.3 Procedure for the synthesis of compounds 5 and 6	S 8
5.	Characterization data of all compounds	S9-22
6.	X-ray crystallographic data of 3f	S23-24
7.	References	S25
8.	HPLC chromatograms of all compounds	S26-52
9.	NMR spectra of all compounds	S53-82

1. General informations

All reactions and manipulations were carried out under an argon atmosphere using ovendried Schlenk techniques. The reaction flasks were flamed dried and solvents were transferred by oven-dried syringe. Dichloromethane were distilled over calcium hydride, toluene and THF were distilled over sodium. The 1,3-dioxolane was placed in the dry 4Å molecular sieve and was degassed under argon atmosphere. Commercially available chemical reagents and other anhydrous solvents from Acros Organics, Aldrich Chemical Co., Alfa Aesar, and TCI were directly used without further purification. All catalytic reactions were stirred in a pre-heated heating mantle. Thin-layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ aluminum plates (Merck). TLC plates were visualized by short-wave ultraviolet light (254 and 366 nm) and/or KMnO₄ solution. Flash chromatography was performed on Merck silica gel (40–63 mesh) by standard techniques. The $[\alpha]_D$ was recorded using KRUSS P8000-T Polarimeter. Infrared (IR) spectra were obtained using a Nicolet iS5 FT-IR spectrometer. The ¹H NMR spectra were recorded by 300 MHz or 500MHz, and ¹³C NMR spectra were recorded by 75.5 MHz or 126 MHz. The chemical shifts (δ) are given in ppm relative to TMS (CDCl₃: δ ¹H = 7.26 ppm, δ ¹³C = 77.16 ppm). The HRMS data (high resolution mass spectra) were obtained by electrospray ionization (ESI) from SYNAPT G2 (Waters, U.K.). Enantiomeric ratios (er) were determined by HPLC analysis (high performance liquid chromatography) (YL9100) using chiral column (Daicel Chiralpak, AD-H, 250X 4.6 mm ID). Diastereomeric ratio (dr) of **3x** was determined by ¹H NMR. The sulfamate-derived cyclic imines 1^1 , vinylethylene carbonates (VECs) 2^2 , CpPd(allyl)³ and CpPd(cinnamyl)³ were prepared according to the literature procedures.

2. Reaction optimization

Table S1.

Entry	Pd catalyst (mol%)	Ligand (mol%)	Solvent (M)	Temp. (°C)	Time (h)	Yield (%) (er)
1	PdCp(allyl) (5)	L1 (5.5)	tolune (0.1)	80	8	51 (80:20)
2	PdCp(allyl) (5)	L1 (5.5)	THF (0.2)	50	16	34 (80:20)
3	PdCp(cinnamyl) (5)	L1 (5.5)	THF (0.2)	50	16	60 (80:20)
4	Pd ₂ (dba) ₃ (2.5)	L1 (5.5)	THF (0.2)	50	16	21 (80:20)
5	PdCp(cinnamyl) (5)	L2 (5.5)	THF (0.2)	50	16	<5 (68:32)
6	PdCp(cinnamyl) (5)	L3 (5.5)	THF (0.2)	50	16	6 (58:42)
7	PdCp(cinnamyl) (5)	L4 (5.5)	THF (0.2)	50	16	54 (73:27)
8	PdCp(cinnamyl) (5)	L5 (11)	THF (0.2)	50	16	ND^{a}
9	PdCp(cinnamyl) (5)	L6 (5.5)	THF (0.2)	50	16	26 (70:30)
10	PdCp(cinnamyl) (5)	L7 (5.5)	THF (0.2)	50	16	0
11	PdCp(cinnamyl) (5)	L8 (5.5)	THF (0.2)	50	16	0
12	PdCp(cinnamyl) (5)	L9 (5.5)	THF (0.2)	50	16	<5 (70:30)
13	PdCp(cinnamyl) (5)	L10 (5.5)	THF (0.2)	50	16	21 (80:20)
14	PdCp(cinnamyl) (5)	L11 (5.5)	THF (0.2)	50	16	0
15	PdCp(cinnamyl) (5)	L1 (5.5)	toluene (0.2)	50	16	30 (79:21)
16	PdCp(cinnamyl) (5)	L1 (5.5)	DCM (0.2)	50	16	38 (70:30)
17	PdCp(cinnamyl) (5)	L1 (5.5)	THF/DCM = $1/1$, (v/v) (0.2)	50	16	36 (78:22)
18	PdCp(cinnamyl) (5)	L1 (5.5)	1,4-dixoane (0.2)	50	16	0
19	PdCp(cinnamyl) (5)	L1 (5.5)	diethyl ether (0.2)	50	16	21 (78:22)

20	PdCp(cinnamyl) (5)	L1 (5.5)	1,3-dioxolane (0.2)	50	16	78 (79:21)
21	PdCp(cinnamyl) (5)	L1 (5.5)	1,3-dioxolane (0.1)	50	16	92 (80:20)
22	PdCp(cinnamyl) (10)	L1 (11)	1,3-dioxolane (0.2)	50	16	84 (79:21)
23	PdCp(cinnamyl) (10)	L1 (11)	1,3-dioxolane (0.1)	50	16	98 (80:20)
24	PdCp(cinnamyl) (10)	L1 (11)	1,3-dioxolane (0.1)	30	16	79 (80:20)
25	PdCp(cinnamyl) (10)	L1 (11)	THF (0.2)	50	16	74 (81:19)
26	PdCp(cinnamyl) (10)	L1 (11)	THF (0.2)	30	24	55 (83:17)
27	PdCp(allyl) (10)	L1 (11)	THF (0.2)	30	16	21 (81:19)
28	$Pd(OAc)_2(10)$	L1 (11)	THF (0.2)	30	16	0
29	PdCl ₂ (10)	L1 (11)	THF (0.2)	30	16	0
30	[(cinnnamylPdCl] ₂ (5)	L1 (11)	THF (0.2)	30	16	70 (85:15)
31	[(cinnnamylPdCl] ₂ (5)	L1 (11)	THF (0.2)	30	24	76 (85:15)

^aND : No detection.

To a flame-dried Schlenk tube, palladium catalyst, chiral phosphine ligand and solvent were added under Ar atmosphere, and stirred for 15 minutes at room temperature. Then sulfamatederived cyclic imines **1a** (0.2 mmol, 1.0 equiv), then 4-phenyl-4-vinyl-1,3-dioxolan-2-one (**2a**) (0.5 mmol, 2.5 equiv) were added under Ar atmosphere. The reaction mixture was stirred at corresponding reaction temperature and reaction time. After the reaction completed as determined by TLC analysis, the reaction solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: acetone/*n*-hexane =1/15) to afford **3a**. The enantiomeric ratio (er) of **3a** was recorded by HPLC (Daicel Chiralpak AD-H), eluent: *n*-hexane/*i*-PrOH = 85/15.

3. General procedure

3.1 Procedure for the preparation of the racemic compounds 3

To a flame-dried Schlenk tube, sulfamate-derived cyclic imines **1** (0.2 mmol, 1.0 equiv), PdCp(allyl) (2.13 mg, 5 mol%), 1,1'-Bis(diphenylphosphino)ferrocene (6.10 mg, 5.5 mol%) were added under Ar atmosphere, then vinyl ethylene carbonate **2** (0.5 mmol, 2.5 equiv) and toluene (2.0 mL) were added under Ar atmosphere. The reaction mixture was stirred at 80 °C for 8 h. After the reaction completed as determined by TLC analysis, the reaction solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford racemic **3**. The racemic spectra of compounds **3** were recorded by HPLC (Daicel Chiralpak AD-H).

3.2 General procedure for asymmetric synthesis of compounds 3

To a flame-dried Schlenk tube, $[(cinnamyl)PdCl]_2$ (5.18 mg, 5 mol%), (*S*)-SEGPHOS (13.40 mg, 11 mol%) and THF (1.0 mL) were added under Ar atmosphere, and stirred for 15 minutes at room temperature. Then sulfamate-derived cyclic imines **1** (0.2 mmol, 1.0 equiv), vinyl ethylene carbonate **2** (0.5 mmol, 2.5 equiv) were added under Ar atmosphere. The reaction mixture was stirred at 30 °C for 24 h. After the reaction completed as determined by TLC analysis, the reaction solvent was evaporated under reduced pressure. The residue

was purified by silica gel column chromatography to afford **3**. The enantiomeric ratios of compunds **3** were recorded by HPLC (Daicel Chiralpak AD-H).

The compounds **3d**, **3i**, **3k** and **3l** were synthesized through the typical procedure (Table S1, entry 23) since the reaction efficiencies were higher than the general reaction conditions.

To a flame-dried Schlenk tube, CpPd(cinnamyl) (5.59 mg, 10 mol%), (*S*)-SEGPHOS (13.40 mg, 11 mol%) and 1,3-dioxolane (2.0 mL) were added under Ar atmosphere, and stirred for 15 minutes at room temperature. Then sulfamate-derived cyclic imines **1** (0.2 mmol, 1.0 equiv), vinyl ethylene carbonate **2** (0.5 mmol, 2.5 equiv) were added under Ar atmosphere. The reaction mixture was stirred at 50 °C for 16 h. After the reaction completed as determined by TLC analysis, the reaction solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography affording **3d**, **3i**, **3k** and **3l**. The enantiomeric ratios were recorded by HPLC (Daicel Chiralpak AD-H).

4. Procedure for the synthetic transformations of compounds 3

4.1 Procedure for the gram-scale synthesis of 3a

To a flame-dried Schlenk tube, [(cinnamyl)PdCl]₂ (116.6 mg, 5 mol%), (*S*)-SEGPHOS (302.2 mg, 11 mol%) and THF (22.5 mL) were added under Ar atmosphere, and stirred for 15 minutes at room temperature. Then sulfamate-derived cyclic imine **1a** (4.5 mmol, 1.0 equiv) and vinyl ethylene carbonate **2a** (11.25 mmol, 2.5 equiv) were added under Ar atmosphere and stirred at 30 °C for 24 h. After the reaction completed, the solvent was evaporated, and **3a** was isolated by silica gel column chromatography (eluent: acetone/*n*-hexane =1/15). The desired product **3a** was formed in 77% isolated yield as a white solid, 84:16 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm).

4.2 Procedure for the synthesis of 4

Compound **3a** (0.2 mmol, 65.8mg) was added into flame-dried tube, Pd/C (10 wt%, 21.2 mg, 10 mol% based on Pd contents) and etheyl acetate (2.0 mL) wcere added at Ar atmosphere. The reaction mixture was degassed followed by hydrogen gas was charged and stirred under room temperature for 24 h. After reaction completed, the reaction mixture was filtered through a pad of Celite and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent: acetone/*n*-hexane = 1/20), affording **4** in 70 % combined yield with 3.3:1 dr (82:18 er for the major diastereomer of **4**, 82:18 er for

the minor diastereomer of 4). (Note: Diastereomers of 4 were separated by column chromatography)

4.3 Procedure for the synthesis of 5 and 6

To a flame-dried Schlenk tube, CpPd(cinnamyl) (5.59 mg, 10 mol%), (*S*)-SEGPHOS (13.40 mg, 11 mol%) and 1,3-dioxolane (2.0 mL) were added under Ar atmosphere, and stirred for 15 minutes at room temperature. Then sulfamate-derived cyclic imines **1** (0.2 mmol, 1.0 equiv), vinyl ethylene carbonates **2x** (0.5 mmol, 2.5 equiv) were added under Ar atmesphere. The reaction mixture was stirred at 50 °C for 16 h. After the reaction completed as determined by TLC analysis, the reaction solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography to afford compound **5** in 60% isolated yield (eluent: acetone/*n*-hexane = 1/20) with 77:23 er.

Compound **5** (0.1 mmol, 29.7mg) was added in a round flask followed by the addition of *N*-methylmaleimide (0.11 mmol, 12.2mg) with toluene (0.5 mL), and stirred at room temperature for 24 h. After the reaction completed as determined by TLC analysis, the reaction solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: ethyl acetate/*n*-hexane = 1/1), affording compound **6** in 57% yield.

5. Characterization data of all compounds

3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7dioxide (3a) (CAS: 2153466-34-1).

white solid (50.1 mg, yield: 76%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 85:15 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{maior} =

10.21 min, $t_{minor} = 15.06$ min; $[\alpha]_D^{25} = +38.1$ (c = 0.46, CHCl₃); mp: 112-114 °C; ¹H NMR (**300 MHz, Chloroform-***d*) δ 7.62 (dd, J = 7.8, 1.7 Hz, 1H), 7.47 – 7.27 (m, 7H), 7.06 (dd, J = 8.3, 1.2 Hz, 1H), 6.28 (s, 1H), 5.94 (m, 1H), 5.06 – 4.88 (m, 2H), 4.18 (dd, J = 16.3, 7.3 Hz, 1H), 3.92 (dq, J = 16.5, 2.9 Hz, 1H) ppm; ¹³C NMR (**126 MHz, Chloroform-***d*) δ 149.8, 142.0, 138.7, 131.2, 128.7, 128.5, 128.2, 126.2, 125.7, 122.9, 118.7, 118.0, 90.3, 71.5, 43.4 ppm. These data were similar to those reported in the literature.^[4]

12-methoxy-3-phenyl-5,12b,-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3b)

white solid (61.8 mg, yield: 86%); purification by silica gel chromatography (ethyl acetate:*n*-hexane = 1:8, R_f: 0.3); 82:18 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 9.80

min, t_{minor} = 13.77 min; $[\alpha]_D^{25}$ = -29.7 (c = 0.12, CHCl₃); mp: 126-128 °C; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.41 – 7.27 (m, 6H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 6.28 (s, 1H), 6.02 (t, *J* = 5.4 Hz, 1H), 4.95 – 4.72 (m, 2H), 4.38 (m, 1H), 4.23 (dd, *J* = 16.4, 5.9 Hz, 1H), 3.91 (s, 3H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.9, 151.3, 142.9, 138.9, 131.7, 128.7, 128.1, 126.3, 123.2, 110.8, 109.2, 108.5, 88.8, 71.2, 56.5, 44.7 ppm; IR (ATR) v_{max} 2922, 2857, 1440, 1380, 1272, 1184, 1131, 1012, 836; HRMS (ESI-MS) calcd for C₁₈H₁₇NO₅SNa (M + Na)⁺: 359.0827, Found: 359.0813.

11-methoxy-3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3c) (CAS:2153466-38-5).

white solid (51.8 mg, yield: 72%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); 85:15 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 14.49

min, $t_{minor} = 23.00 \text{ min}; [\alpha]_D^{25} = +23.7 (c = 0.22, CHCl_3); mp: 116-118 °C; ¹H NMR (300 MHz, Chloroform-$ *d* $) <math>\delta$ 7.39 – 7.27 (m, 5H), 7.10 (d, J = 2.6 Hz, 1H), 7.02 – 6.92 (m, 2H), 6.22 (s, 1H), 5.93 (dt, J = 7.3, 2.5 Hz, 1H), 5.07 – 4.85 (m, 2H), 4.17 (dd, J = 16.4, 7.3 Hz, 1H), 3.97 – 3.86 (m, 1H), 3.83 (s, 3H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 157.1, 143.5, 141.9, 138.7, 128.7, 128.1, 126.2, 123.0, 119.3, 119.0, 117.5, 112.1, 90.3, 71.4, 55.9, 43.4 ppm. These data were similar to those reported in the literature.^[4]

10-methoxy-3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3d) (CAS:2153466-39-6)

3d was synthesized through the typical procedure (Table S1, entry 23). white solid (47.4 mg, yield: 66%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_{f} : 0.3); 82:18 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-

hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, $\lambda = 220$ nm, t_{major} = 13.34 min, t_{minor} = 18.16 min; [α]_D²⁵ = +66.9 (c = 0.42, CHCl₃); mp: 191-193 °C; ¹H NMR (**300 MHz, Chloroform**-*d*) δ 7.49 (d, J = 8.7 Hz, 1H), 7.39 – 7.26 (m, 5H), 6.83 (dd, J = 8.7, 2.5 Hz, 1H), 6.56 (d, J = 2.5 Hz, 1H), 6.21 (s, 1H), 5.93 (dt, J = 7.2, 2.5 Hz, 1H), 5.05 – 4.85 (m, 2H), 4.15 (dd, J = 16.3, 7.3 Hz, 1H), 3.91 (m, 1H), 3.82 (s, 3H) ppm; ¹³C NMR (**126 MHz, Chloroform**-*d*) δ 161.7, 150.7, 142.1, 138.8, 129.2, 128.7, 128.2, 126.3, 123.0, 112.6, 110.6, 102.8, 90.3, 71.3, 55.8, 43.4 ppm. These data were similar to those reported in the literature.^[4]

9-methoxy-3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide) (3e) (CAS:2153466-40-9).

white solid (64.0 mg, yield: 89%); purification by silica gel chromatography (ethyl acetate:*n*-hexane = 1:8, R_{f} : 0.3); 80:20 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{maio}

= 16.58 min, t_{minor} = 22.37 min; [α] $_D^{25}$ = +20.7 (c = 0.80, CHCl₃); mp: 136-138 °C; ¹H NMR (**300 MHz, Chloroform-***d*) δ 7.39 – 7.27 (m, 5H), 7.25 – 7.15 (m, 2H), 7.00 (dd, *J* = 7.4, 2.3 Hz, 1H), 6.27 (s, 1H), 5.98 – 5.89 (m, 1H), 5.04 – 4.87 (m, 2H), 4.19 (dd, *J* = 16.4, 7.3 Hz, 1H), 3.98 (m, 1H), 3.90 (s, 3H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 148.2, 142.0, 139.6, 138.8, 128.7, 128.2, 126.3, 125.3, 123.0, 119.6, 119.3, 113.4, 90.4, 71.5, 56.4, 43.5 ppm. These data were similar to those reported in the literature.^[4]

11-methyl-3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3f) (CAS:2153466-35-2).

white solid (55.6 mg, yield: 81%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 83:17 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 9.47 min, t_{minor} = 17.79 min; $[\alpha]_D^{25}$ = +40.2 (c = 0.76, CHCl₃); mp: 126-

128 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 7.44 – 7.27 (m, 6H), 7.21 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.24 (s, 1H), 5.98 – 5.89 (m, 1H), 5.05 – 4.87 (m, 2H), 4.17 (dd, *J* = 16.3, 7.3 Hz, 1H), 3.91 (m, 1H), 2.38 (s, 3H) ppm; ¹³C NMR (**126** MHz, Chloroform-*d*) δ 147.8, 142.0, 138.8, 135.6, 131.8, 128.7, 128.5, 128.1, 126.2, 123.0, 118.2, 117.8, 90.4, 71.4, 43.4, 20.9 ppm. These data were similar to those reported in the literature.^[4]

11-(tert-butyl)-3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3g) (CAS:2153466-42-1).

white solid (47.8 mg, yield: 62%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 82:18 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 5.96 min, t_{minor} = 8.19 min; [α]_D²⁵ = -1.1 (c = 0.25, CHCl₃); mp: 191-

193 °C; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.59 (d, J = 2.5 Hz, 1H), 7.47 – 7.27 (m, 7H), 6.98 (d, J = 8.7 Hz, 1H), 6.26 (s, 1H), 5.94 (dt, J = 7.3, 2.5 Hz, 1H), 5.09 – 4.87 (m, 2H), 4.18 (dd, J = 16.3, 7.4 Hz, 1H), 3.93 (m, 1H), 1.34 (s, 9H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 148.9, 147.6, 142.1, 138.9, 128.8, 128.4, 128.2, 126.3, 125.0, 123.1, 117.8, 117.5, 90.6, 71.5, 43.4, 34.8, 31.5 ppm. These data were similar to those reported in the literature.^[4]

10-methyl-3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3h) (CAS:2153466-36-3).

white solid (44.0 mg, yield: 64%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); 85:15 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} =

10.54 min, $t_{minor} = 12.60$ min; $[\alpha]_D^{25} = -15.8$ (c = 0.50, CHCl₃); mp: 178-180 °C; ¹H NMR (**300 MHz, Chloroform-***d*) δ 7.48 (d, *J* = 7.9 Hz, 1H), 7.31 (m, 6H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 6.23 (s, 1H), 5.93 (m, 1H), 4.97 (m, 2H), 4.16 (dd, *J* = 16.3, 7.3 Hz, 1H), 3.98 – 3.83 (m, 1H), 2.38 (s, 3H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 149.7, 142.1, 142.0, 138.8, 128.7, 128.1, 126.6, 126.2, 123.0, 118.2, 115.7, 90.3, 71.4, 43.4, 21.3 ppm. These data were similar to those reported in the literature.^[4]

9-chloro-3-phenyl-2,5,8,12b-tetrahydrobenzo[4,5][1,2]thiazino[3,2-b][1,3]oxazepine 7,7-dioxide (3i) (CAS:2153466-51-2).

3i was synthesized through the typical procedure (Table S1, entry 23). white solid (9.5 mg, yield: 13%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); 71:29 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-

hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} =9.81min, t_{minor} =16.72 min; [α]_D²⁵ = -22.0 (c = 0.18, CHCl₃); mp: 121-123 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 7.52 (m, 2H), 7.33 (m, 5H), 7.21 (t, *J* = 7.9 Hz, 1H), 6.28 (s, 1H), 5.99 – 5.91 (m, 1H), 5.07 – 4.88 (m, 2H), 4.20 (dd, *J* = 16.3, 7.3 Hz, 1H), 3.98 – 3.85 (m, 1H) ppm; ¹³C NMR (**75** MHz, Chloroform-*d*) δ 145.9, 142.0, 138.6, 132.0, 128.8, 128.3, 126.8, 126.2, 125.6, 123.1, 122.7, 120.4, 90.2, 71.7, 43.5 ppm. These data were similar to those reported in the literature.^[4]

3-phenyl-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3j) (CAS:2153466-53-4).

white solid (68.0 mg, yield: 89%); purification by silica gel chromatography (acetone:*n*-hexane = 1:6, R_f: 0.3); 87:13 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 15.57 min, t_{minor} = 33.22 min; $[\alpha]_D^{25}$ = -72.6 (c = 0.37, CHCl₃); mp:

112-114 °C; ¹H NMR (300 MHz, Chloroform-d) δ 8.14 (d, J = 8.5 Hz, 1H), 7.83 – 7.72 (m, 2H), 7.54 – 7.37 (m, 2H), 7.18 (m, 6H), 7.05 (d, J = 9.0 Hz, 1H), 6.58 (s, 1H), 5.91 (t, J = 5.3 Hz, 1H), 4.86 (m, 2H), 4.17 (dd, J = 5.1, 2.1 Hz, 2H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 148.7, 142.1, 138.6, 132.6, 131.8, 131.3, 129.0, 128.7, 128.2, 127.8, 126.2, 126.0, 124.9, 123.4, 117.9, 112.7, 91.1, 71.1, 44.5 ppm. These data were similar to those reported in the literature.^[4]

3-(4-methoxyphenyl)-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3-

b][1,3]oxazepine 7,7-dioxide (3k).

3k was synthesized through the typical procedure (Table S1, entry 23). white solid (44.6 mg, yield: 62%); purification by silica gel chromatography (ethyl acetate:*n*-hexane = 1:10, R_f : 0.3); 83:17 er (determined by HPLC analysis Daicel Chiralpak AD-H,

eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, $\lambda = 220$ nm, t_{major} = 15.49 min, t_{minor} = 23.44 min; $[\alpha]_D^{25} = +4.4$ (c = 0.38, CHCl₃); mp: 119-121 °C; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.65 – 7.58 (m, 1H), 7.42 (td, *J* = 7.8, 1.7 Hz, 1H), 7.29 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.26 – 7.19 (m, 2H), 7.05 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.93 – 6.84 (m, 2H), 6.26 (s, 1H), 5.86 (dt, *J* = 7.5, 2.7 Hz, 1H), 5.05 – 4.83 (m, 2H), 4.15 (dd, *J* = 16.3, 7.4 Hz, 1H), 3.90 (m, 1H), 3.82 (s, 3H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.6, 149.8, 141.4, 131.2, 131.1, 128.5, 127.4, 125.7, 121.5, 118.7, 118.0, 114.1, 90.3, 71.5, 55.4, 43.4 ppm; IR

(ATR) v_{max} 2922, 2844, 1435, 1400, 1265, 1168, 1142, 1014, 832; **HRMS (ESI-MS)** calcd for C₁₈H₁₇NO₅SNa (M + Na)⁺: 359.0827, Found: 359.0823.

3-(2-methoxyphenyl)-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3l).

31 was synthesized through the typical procedure (Table S1, entry 23). white solid (43.1 mg, yield: 60%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); 78:22 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-

hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 21.93 min, t_{minor} = 39.29 min; [α]_D²⁵ = +13.0 (c = 0.58, CHCl₃); mp: 108-110 °C; ¹H NMR (**300 MHz, Chloroform**-*d*) δ 7.67 – 7.59 (m, 1H), 7.46 – 7.37 (m, 1H), 7.30 (m, 2H), 7.17 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.05 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.00 – 6.85 (m, 2H), 6.28 (s, 1H), 5.77 (dt, *J* = 7.2, 2.6 Hz, 1H), 5.04 – 4.77 (m, 2H), 4.17 (dd, *J* = 16.2, 7.2 Hz, 1H), 3.91 (m, 1H), 3.85 (s, 3H) ppm; ¹³C NMR (**126 MHz, Chloroform**-*d*) δ 156.7, 149.8, 142.1, 131.1, 130.0, 129.5, 128.8, 128.5, 125.6, 124.1, 120.9, 118.8, 117.9, 110.8, 90.4, 71.7, 55.5, 43.6 ppm; IR (ATR) v_{max} 2921, 2844, 1435, 1391, 1251, 1156, 1144, 1013, 833; **HRMS (ESI-MS)** calcd for C₁₈H₁₇NO₅SNa (M + Na)⁺: 359.0827, Found: 359.0827.

3-(p-tolyl)-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3m).

white solid (48.8 mg, yield: 71%); purification by silica gel chromatography (acetone:*n*-hexane=1:10, R_f : 0.3); 85:15 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm,

t_{major} = 10.21 min, t_{minor} = 12.47 min; $[\alpha]_D^{25}$ = +57.3 (c = 0.63, CHCl₃); mp: 99-101 °C; ¹H **NMR (300 MHz, Chloroform-d)** δ 7.62 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.42 (td, *J* = 7.8, 1.8 Hz, 1H), 7.30 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.23 – 7.13 (m, 4H), 7.05 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.27 (s, 1H), 5.91 (dt, *J* = 7.4, 2.5 Hz, 1H), 5.06 – 4.85 (m, 2H), 4.17 (dd, *J* = 16.3, 7.3 Hz, 1H), 3.91 (m, 1H), 2.36 (s, 3H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.8, 141.8, 138.0, 135.8, 131.2, 129.4, 128.5, 126.1, 125.7, 122.1, 118.7, 118.0, 90.3, 71.5, 43.4, 21.2 ppm; IR (ATR) v_{max} 2921, 2850, 1399, 1283, 1120, 1143, 1014, 831; **HRMS** (**ESI-MS**) calcd for $C_{18}H_{17}NO_4SNa (M + Na)^+$: 343.0878, Found: 343.0878.

3-(4-fluorophenyl)-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3n) (CAS: 2153466-57-8).

white solid (49.3 mg, yield: 71%); purification by silica gel chromatography (acetone:*n*-hexane = 1:15, R_f : 0.3); 82:18 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm,

t_{major} = 14.77 min, t_{minor} = 19.35 min; $[α]_D^{25}$ = +42.2 (c = 0.23, CHCl₃); mp: 130-132 °C; ¹H **NMR (300 MHz, Chloroform-d)** δ 7.61 (m, 1H), 7.43 (m, 1H), 7.31 (m, 3H), 7.25 – 7.18 (m, 2H), 7.05 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.26 (s, 1H), 5.98 – 5.89 (m, 1H), 5.00 – 4.84 (m, 2H), 4.17 (dd, *J* = 16.4, 7.3 Hz, 1H), 3.90 (m, 1H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 162.7 (d, *J* = 252.0 Hz), 149.8, 141.1, 134.8 (d, *J* = 3.8 Hz), 131.3, 128.4, 128.0, 127.9, 125.8, 123.1, 118.6, 118.1, 115.7 (d, *J* = 21.4 Hz), 90.3, 71.4, 43.4 ppm; ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -113.8 ppm. These data were similar to those reported in the literature.^[4]

3-(4-chlorophenyl)-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (30) (CAS: 2153466-59-0).

white solid (50.2 mg, yield: 69%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 84:16 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm,

t_{major} = 12.45 min, t_{minor} = 18.68 min; $[\alpha]_D^{25}$ = +57.2 (c = 0.42, CHCl₃); mp: 124-126 °C; ¹H **NMR (300 MHz, Chloroform-d)** δ 7.61 (m, 1H), 7.42 (m, 1H), 7.31 (m, 3H), 7.25 – 7.15 (m, 2H), 7.05 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.26 (s, 1H), 5.99 – 5.88 (m, 1H), 5.01 – 4.84 (m, 2H), 4.17 (dd, *J* = 16.4, 7.3 Hz, 1H), 3.90 (m, 1H) ppm; ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.8, 141.0, 137.1, 134.1, 131.3, 128.9, 128.4, 127.5, 125.8, 123.6, 118.6, 118.1, 90.3, 71.1, 43.4 ppm. These data were similar to those reported in the literature.^[4]

3-phenyl-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7dioxide (3p) (CAS: 2153466-60-3).

white solid (53.9 mg, yield: 66%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 83:17 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm,

t_{major} = 17.36 min, t_{minor} = 23.48 min; $[\alpha]_D^{25}$ = +51.2 (c = 0.60, CHCl₃); mp: 151-153 °C; ¹H **NMR (300 MHz, Chloroform-***d*) δ 7.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.51 – 7.38 (m, 3H), 7.30 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.20 – 7.12 (m, 2H), 7.05 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.26 (s, 1H), 5.93 (m, 1H), 5.00 – 4.84 (m, 2H), 4.17 (dd, *J* = 16.4, 7.3 Hz, 1H), 3.89 (m, 1H) ppm; ¹³C **NMR (126 MHz, Chloroform-***d*) δ 149.8, 141.0, 137.6, 131.9, 131.3, 128.4, 127.8, 125.8, 123.6, 122.2, 118.5, 118.0, 90.3, 71.0, 43.4 ppm. These data were similar to those reported in the literature.^[4]

3-(naphthalen-1-yl)-5,12b-dihydro-2H-benzo[5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3q).

white solid (56.2 mg, yield: 74%); purification by silica gel chromatography (ethyl acetate:*n*-hexane = 1:10, R_f: 0.3); 81:19 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} =

18.28 min, $t_{minor} = 31.29$ min; $[\alpha]_D^{25} = +62.2$ (c = 0.98, CHCl₃); mp: 129-131 °C; ¹H NMR (**300 MHz, Chloroform-***d*) δ 7.83 (dd, J = 9.0, 3.2 Hz, 3H), 7.73 – 7.62 (m, 2H), 7.55 – 7.39 (m, 4H), 7.30 (td, J = 7.6, 1.3 Hz, 1H), 7.07 (dd, J = 8.3, 1.2 Hz, 1H), 6.31 (s, 1H), 6.07 (dt, J = 7.3, 2.6 Hz, 1H), 5.19 – 4.95 (m, 2H), 4.23 (dd, J = 16.4, 7.3 Hz, 1H), 3.96 (m, 1H) ppm; ¹³C NMR (**126 MHz, Chloroform-***d*) δ 149.8, 141.8, 135.9, 133.3, 133.0, 131.2, 128.5, 128.4, 128.2, 127.7, 126.6, 126.4, 125.7, 124.9, 124.3, 123.4, 118.7, 118.0, 90.3, 71.4, 43.5 ppm; IR (ATR) v_{max} 2922, 2843, 1453, 1398, 1279, 1170, 1144, 1013, 839; **HRMS (ESI-MS)** calcd for C₂₁H₁₇NO₄SNa (M + Na)⁺: 379.0878, Found: 379.0873.

3-(4-methoxyphenyl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3r).

white solid (60.0 mg, yield: 73%); purification by silica gel chromatography (ethyl acetate:*n*-hexane = 1:10, R_f: 0.3); 90:10 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 12.87 min, t_{minor} = 20.31 min;

[α]_D²⁵ = -88.1 (c = 0.89, CHCl₃); mp: 136-138 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 8.26 (dd, J = 8.5, 1.2 Hz, 1H), 7.89 (m, 2H), 7.58 (m, 2H), 7.32 (m, 1H), 7.22 – 7.11 (m, 4H), 6.70 (s, 1H), 6.08 – 5.96 (m, 1H), 5.12 – 4.86 (m, 2H), 4.37 – 4.21 (m, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 148.6, 141.8, 138.0, 135.6, 132.5, 131.7, 131.3, 129.4, 128.9, 128.7, 127.8, 126.1, 126.0, 124.8, 122.5, 117.8, 112.6, 91.1, 71.2, 44.5, 21.2 ppm; IR (ATR) v_{max} 2919, 2850, 1440, 1402, 1339, 1281, 1175, 1138, 1070, 817; HRMS (ESI-MS) calcd for C₂₂H₁₉NO₅SNa (M + Na)⁺: 409.0984, Found: 409.0981.

3-(p-tolyl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3s).

white solid (51.1 mg, yield: 65%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 83:17 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 19.92 min, t_{minor} = 60.53 min; [α]_D²⁵ = -69.0 (c = 0.26,

CHCl₃); mp: 98-100 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 8.26 (d, *J* = 8.5 Hz, 1H), 7.89 (dd, *J* = 12.2, 8.5 Hz, 2H), 7.57 (m, 2H), 7.25 – 7.15 (m, 3H), 6.91 – 6.83 (m, 2H), 6.69 (s, 1H), 5.96 (t, *J* = 5.4 Hz, 1H), 5.08 – 4.86 (m, 2H), 4.28 (d, *J* = 5.3 Hz, 2H), 3.81 (s, 3H) ppm; ¹³C NMR (**75** MHz, Chloroform-*d*) δ 148.7, 141.9, 138.1, 135.6, 132.5, 131.8, 131.3, 129.4, 129.0, 127.8, 126.0, 124.9, 122.5, 117.9, 112.7, 91.1, 71.2, 44.5, 21.2 ppm; IR (ATR) v_{max} 2921, 2864, 1454, 1379, 1279, 1176, 1137, 1013, 812; HRMS (ESI-MS) calcd for C₂₂H₁₉NO₄SNa (M + Na)⁺: 393.1035, Found: 393.1037.

3-(4-fluorophenyl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3t).

white solid (56.4 mg, yield: 71%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 88:12 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 14.69 min, t_{minor} = 27.57 min; [α]_D²⁵ = -66.9 (c = 0.37,

CHCl₃); mp: 91-93 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 8.25 (dd, J = 8.5, 1.2 Hz, 1H), 7.94 – 7.83 (m, 2H), 7.57 (m, 2H), 7.25 – 7.21 (m, 2H), 7.17 (d, J = 9.0 Hz, 1H), 7.07 – 6.98 (m, 2H), 6.69 (s, 1H), 5.98 (m, 1H), 4.94 (m, 2H), 4.28 (m, 2H) ppm; ¹³C NMR (**75** MHz, Chloroform-*d*) δ 162.7 (d, J = 247.5 Hz), 148.7, 141.2, 134.6 (d, J = 3.0 Hz), 132.6, 131.8, 131.2, 129.0, 127.9, 127.8, 126.1, 124.8, 123.5, 117.8, 115.6 (d, J = 21.8 Hz), 112.6, 91.0, 71.0, 44.5 ppm; ¹⁹F NMR (**471** MHz, Chloroform-*d*) δ -113.8 ppm; IR (ATR) v_{max} 2922, 2864, 1454, 1379, 1279, 1177, 1136, 1012, 811; HRMS (ESI-MS) calcd for C₂₁H₁₆FNO₄SNa (M + Na)⁺: 397.0784, Found: 397.0786.

3-(4-chlorophenyl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3u).

white solid (56.3 mg, yield: 68%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 89:11 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 16.39 min, t_{minor} = 29.57 min; [α]_D²⁵ = -65.9 (c = 0.04,

CHCl₃); mp: 78-80 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 8.25 (m, 1H), 7.95 – 7.84 (m, 2H), 7.58 (m, 2H), 7.33 – 7.27 (m, 3H), 7.23 – 7.15 (m, 3H), 6.69 (s, 1H), 6.03 (m, 1H), 5.05 – 4.83 (m, 2H), 4.34 – 4.24 (m, 2H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 148.7, 141.1, 137.0, 134.1, 132.7, 131.8, 131.3, 129.0, 128.9, 128.7, 127.9, 127.5, 126.2, 126.1, 124.8, 124.0, 117.9, 112.6, 91.1, 70.7, 44.5 ppm; IR (ATR) v_{max} 2922, 2843, 1399, 1331, 1176, 1158, 1032, 812; HRMS (ESI-MS) calcd for C₂₁H₁₆ClNO₄SNa (M + Na)⁺: 413.0489, Found: 413.0486.

3-(4-bromophenyl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3v).

white solid (67.8 mg, yield: 74%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f: 0.3); 85:15 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 17.83 min, t_{minor} = 32.13 min; [α]_D²⁵ = -55.5 (c = 0.65,

CHCl₃); mp: 147-149 °C; ¹H NMR (**300** MHz, Chloroform-*d*) δ 8.24 (d, J = 8.5 Hz, 1H), 7.95 – 7.82 (m, 2H), 7.57 (m, 2H), 7.49 – 7.42 (m, 2H), 7.22 – 7.10 (m, 3H), 6.69 (s, 1H), 6.03 (t, J = 5.3 Hz, 1H), 5.04 – 4.82 (m, 2H), 4.35 – 4.22 (m, 2H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 148.7, 141.1, 137.4, 132.7, 131.8, 131.2, 129.0, 127.9, 127.8, 126.1, 124.8, 124.1, 122.2, 117.8, 112.5, 91.0, 70.6, 44.5 ppm; IR (ATR) v_{max} 2922, 2864, 1451, 1379, 1278, 1175, 1137, 1007, 813; HRMS (ESI-MS) calcd for C₂₁H₁₆BrNO₄SNa (M + Na)⁺: 456.9983, Found: 456.9980.

3-(naphthalen-1-yl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (3w).

white solid (75.6 mg, yield: 88%); purification by silica gel chromatography (ethyl acetate:*n*-hexane= 1:10, R_f: 0.3); 85:15 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 18.07 min, t_{minor} = 36.01 min; $\lceil \alpha \rceil_D^{25} = -66.1$ (c = 1.00, CHCl₃);

mp: 142-143 °C; ¹**H** NMR (300 MHz, Chloroform-*d*) δ 8.29 (d, J = 8.6 Hz, 1H), 7.93 – 7.76 (m, 5H), 7.72 – 7.60 (m, 2H), 7.60 – 7.47 (m, 3H), 7.43 (dd, J = 8.6, 1.9 Hz, 1H), 7.18 (d, J = 9.0 Hz, 1H), 6.73 (s, 1H), 6.16 (t, J = 5.4 Hz, 1H), 5.23 – 4.91 (m, 2H), 4.39 – 4.25 (m, 2H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 148.6, 141.8, 135.7, 133.3, 133.0, 132.5, 131.7, 131.2, 128.9, 128.4, 128.2, 127.8, 127.7, 126.6, 126.4, 126.0, 124.9, 124.8, 124.2, 123.8, 117.8, 112.6, 91.1, 71.0, 44.5 ppm; IR (ATR) v_{max} 2921, 2864, 1463, 1377, 1273, 1179, 1134, 1012, 832; **HRMS (ESI-MS)** calcd for C₂₅H₁₉NO₄SNa (M + Na)⁺: 429.1035, Found: 429.1038.

5-propyl-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3x).

white solid (40.8 mg, yield: 59%); purification by silica gel chromatography (acetone:*n*-hexane = 1:15, R_f : 0.3); dr = 9.1:1; **major diastereomer**: 55:45 er, **minor diastereomer**: 72:28 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, **major diastereomer**: t_{major} = 7.54 min, t_{minor} = 14.41 min; **minor diastereomer**: t_{major} = 6.75 min, t_{minor} = 4.69 min;

[α]_D²⁵ = -45.0 (c = 0.01, CHCl₃); mp: 83-85 °C; mixture of diastereomers 3x and 3x', ¹H NMR (500 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.6 Hz, 1H), 7.88 (dd, J = 17.4, 8.6 Hz, 2H), 7.57 (dt, J = 42.6, 7.5 Hz, 2H), 7.17 (d, J = 8.9 Hz, 1H), 6.87 (s, 1H), 6.70 (s, 1H), 5.88 (dt, J = 14.3, 6.8 Hz, 1H), 5.71 (dt, J = 11.2, 7.5 Hz, 1H), 5.65 – 5.55 (m, 1H), 5.47 (dd, J = 15.3, 9.6 Hz, 1H), 4.87 (dt, J = 8.9, 6.0 Hz, 1H), 4.52 (td, J = 7.2, 4.6 Hz, 1H), 4.34 (dd, J = 8.3, 4.9 Hz, 1H), 4.15 – 4.06 (m, 1H), 3.92 (dd, J = 9.0, 4.6 Hz, 1H), 3.87 (dd, J = 8.8, 5.3 Hz, 1H), 2.21 (dd, J = 14.4, 7.2 Hz, 1H), 2.09 (q, J = 7.2 Hz, 2H), 1.98 (q, J = 7.3 Hz, 2H), 1.46 (m, 2H), 1.36 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H); mixture of diastereomers 3x and 3x', ¹³C NMR (126 MHz, Chloroform-*d*) δ 149.1, 138.8, 136.1, 135.1, 132.4, 132.1, 131.7, 131.5, 130.9, 128.9, 128.8, 128.0, 128.0, 127.9, 126.6, 126.2, 126.2, 126.1, 124.5, 124.2, 118.2, 118.0, 117.9, 114.6, 113.3, 113.1, 90.8, 90.7, 89.2, 73.2, 71.4, 71.2, 63.9, 62.6, 57.8, 34.3, 29.9, 29.8, 22.7, 22.1, 22.0, 13.8 ppm; IR (ATR) v_{max} 2922, 2844, 1411, 1322, 1186, 1159, 1017, 863; HRMS (ESI-MS) calcd for C₁₈H₁₉NO4SNa (M + Na)⁺: 345.1035, Found: 345.1032.

5-propyl-3,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3-b][1,3]oxazepine 7,7-dioxide (3x').

white solid (2.8 mg, yield: 4%); purification by silica gel chromatography (acetone:*n*-hexane = 1:15, R_f: 0.3); 74:26 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, λ = 220 nm, **isomer**: t_{major} = 5.16 min, t_{minor} = 12.79 min; [α]_D²⁵ = -45.0 (c = 0.01, CHCl₃); mp: 83-85 °C; **mixture of diastereomers 3x and 3x'**, ¹H NMR (500 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 8.6 Hz, 1H), 7.88

(dd, *J* = 17.4, 8.6 Hz, 2H), 7.57 (dt, *J* = 42.6, 7.5 Hz, 2H), 7.17 (d, *J* = 8.9 Hz, 1H), 6.87 (s, 1H), 6.70 (s, 1H), 5.88 (dt, *J* = 14.3, 6.8 Hz, 1H), 5.71 (dt, *J* = 11.2, 7.5 Hz, 1H), 5.65 – 5.55

(m, 1H), 5.47 (dd, J = 15.3, 9.6 Hz, 1H), 4.87 (dt, J = 8.9, 6.0 Hz, 1H), 4.52 (td, J = 7.2, 4.6 Hz, 1H), 4.34 (dd, J = 8.3, 4.9 Hz, 1H), 4.15 – 4.06 (m, 1H), 3.92 (dd, J = 9.0, 4.6 Hz, 1H), 3.87 (dd, J = 8.8, 5.3 Hz, 1H), 2.21 (dd, J = 14.4, 7.2 Hz, 1H), 2.09 (q, J = 7.2 Hz, 2H), 1.98 (q, J = 7.3 Hz, 2H), 1.46 (m, 2H), 1.36 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H); **mixture of diastereomers 3x and 3x'**, ¹³**C NMR (126 MHz, Chloroform-***d***) \delta 149.1, 138.8, 136.1, 135.1, 132.4, 132.1, 131.7, 131.5, 130.9, 128.9, 128.8, 128.0, 128.0, 127.9, 126.6, 126.2, 126.2, 126.1, 124.5, 124.2, 118.2, 118.0, 117.9, 114.6, 113.3, 113.1, 90.8, 90.7, 89.2, 73.2, 71.4, 71.2, 63.9, 62.6, 57.8, 34.3, 29.9, 29.8, 22.7, 22.1, 22.0, 13.8 ppm; IR (ATR) v_{max} 2922, 2844, 1411, 1322, 1186, 1159, 1017, 863; HRMS (ESI-MS)** calcd for C₁₈H₁₉NO₄SNa (M + Na)⁺: 345.1035, Found: 345.1032.

3-(naphthalen-1-yl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (4).

white oil (46.4 mg, yield: 70%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); dr = 3.3:1; **major diastereomer**: 82:18 er, **minor diastereomer**: 82:18 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-hexane/*i*-PrOH = 99/1,

flow rate: 1.0 mL/min, $\lambda = 220$ nm, **major diastereomer**: $t_{major} = 21.02$ min, $t_{minor} = 22.47$ min, **minor diastereomer**: $t_{major} = 20.05$ min, $t_{minor} = 24.81$ min; **major 4**, $[\alpha]_D^{25} = -55.5$ (c = 0.27, CHCl₃); **major 4**, ¹H NMR (**300** MHz, Chloroform-*d*) δ 7.5 (dd, J = 7.7, 1.7 Hz, 1H), 7.4 (td, J = 7.8, 1.7 Hz, 1H), 7.3 – 7.3 (m, 2H), 7.3 – 7.2 (m, 4H), 7.1 (dd, J = 8.3, 1.1 Hz, 1H), 6.1 (s, 1H), 4.0 (dd, J = 12.1, 8.3 Hz, 1H), 4.0 – 3.9 (m, 2H), 3.6 (ddd, J = 14.2, 8.2, 3.9 Hz, 1H), 3.2 (qd, J = 4.9, 2.1 Hz, 1H), 2.2 – 2.1 (m, 2H) ppm; **major 4**, ¹³C NMR (**75** MHz, Chloroform-*d*) δ 149.8, 141.8, 131.1, 128.8, 128.1, 127.7, 127.0, 125.9, 121.1, 118.1, 88.1, 70.7, 45.0, 44.1, 35.6 ppm; **major 4**, **IR** (ATR) ν_{max} 2922, 2844, 1391, 1249, 1169, 1137, 1022, 906, 762; HRMS (ESI-MS) calcd for C₁₇H₁₇NO₄SNa (M + Na)⁺: 331.0878, Found: 331.0882.

3-(naphthalen-1-yl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (5).

5 was synthesized through the typical procedure (Table S1, entry 23). white oil (33.5 mg, yield: 60%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); 77:23 er (determined by HPLC analysis Daicel Chiralpak AD-H, eluent: *n*-

hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, λ = 220 nm, t_{major} = 7.52 min, t_{minor} = 9.14 min; [α]_D²⁵ = -22.5 (c = 0.02, CHCl₃); ¹H NMR (**300** MHz, Chloroform-*d*) δ 7.6 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.4 (td, *J* = 7.8, 1.7 Hz, 1H), 7.3 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.0 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.3 (dd, *J* = 17.8, 11.2 Hz, 1H), 6.2 (s, 1H), 5.8 (dd, *J* = 6.7, 3.3 Hz, 1H), 5.1 – 5.0 (m, 2H), 4.9 (dd, *J* = 15.7, 1.6 Hz, 1H), 4.7 – 4.6 (m, 1H), 4.1 (dd, *J* = 16.6, 7.3 Hz, 1H), 3.8 (dd, *J* = 17.0, 3.7 Hz, 1H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 149.8, 139.6, 136.1, 131.2, 128.5, 126.2, 125.7, 118.7, 118.0, 113.6, 90.2, 68.6, 43.2 ppm; IR (ATR) v_{max} 2921, 2851, 1454, 1398, 1264, 1202, 1170, 1033, 757, 562; HRMS (ESI-MS) calcd for C₁₃H₁₃NO₄SNa (M + Na)⁺: 279.0565, Found: 279.0566.

3-(naphthalen-1-yl)-5,14c-dihydro-2H-naphtho[1',2':5,6][1,2,3]oxathiazino[4,3b][1,3]oxazepine 7,7-dioxide (6).

light yellow solid (22.1 mg, yield: 57%); purification by silica gel chromatography (acetone:*n*-hexane = 1:10, R_f : 0.3); mp: 233-235 °C; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.5 – 7.4 (m, 2H), 7.3 – 7.3 (m, 1H), 7.1 (dd, J = 8.2, 1.2 Hz, 1H), 6.0 – 5.9 (m, 1H), 5.7 (s, 1H), 4.5 – 4.4 (m, 4H), 3.3 – 3.2 (m, 2H), 3.1 – 3.0 (m, 1H),

2.9 (s, 3H), 2.8 – 2.7 (m, 1H), 2.4 – 2.2 (m, 1H) ppm; ¹³C NMR (75 MHz, Chloroform-*d*) δ 179.2, 178.0, 149.0, 139.3, 131.2, 129.4, 127.2, 125.9, 120.6, 118.4, 92.4, 74.3, 49.9, 43.3, 40.4, 39.9, 25.1, 25.0 ppm; IR (ATR) v_{max} 2922, 2843, 1691, 1436, 1372, 1168, 1052, 1032, 1011, 855, 762; **HRMS (ESI-MS)** calcd for C₁₈H₁₈N₂O₆SNa (M + Na)⁺: 390.0886, Found: 390.0886.

6. X-ray crystallographic data of 3f

Crystallographic data for **3f** have been deposited with the Cambridge Crystallographic Data Centre as deposition numbers CCDC 2045193 respectively.

Empirical formula	C18 H17 N O4 S		
Formula weight	343.38		
Temperature	223(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	Cc		
Unit cell dimensions	a = 13.738(13) Å	$\alpha = 90^{\circ}$.	
	b = 15.885(13) Å	$\beta = 111.13(4)^{\circ}.$	
	c = 7.706(6) Å	$\gamma = 90^{\circ}$.	
Volume	1569(2) Å ³		
Z	4		
Density (calculated)	1.454 Mg/m ³		
Absorption coefficient	0.229 mm ⁻¹		
F(000)	720		
Crystal size	0.182 x 0.175 x 0.103 mm ³		
Theta range for data collection	2.564 to 28.409°.		

Index ranges	-18<=h<=18, -21<=k<=21, -9<=l<=10
Reflections collected	10297
Independent reflections	3782 [R(int) = 0.0245]
Completeness to theta = 25.242°	99.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6691
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3782 / 2 / 218
Goodness-of-fit on F ²	1.044
Final R indices [I>2sigma(I)]	R1 = 0.0317, $wR2 = 0.0732$
R indices (all data)	R1 = 0.0361, $wR2 = 0.0761$
Absolute structure parameter	0.07(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.179 and -0.319 e.Å ⁻³

7. References

[1] B. Mao, W. Shi, J. Liao, H. Liu, C. Zhang, H. Guo, Org. Lett., 2017, 19, 6340-6343.

[2] A. Khan, R. Zheng, Y. Kan, J. Ye, J. Xing, Y. J. Zhang, *Angew. Chem. Int. Ed.*, 2014, **53**, 6439–6442.

[3] Y. Tatsuno, T. Yoshida, Seiotsuka, N. Al-Salem, B. L. Shaw, *Inorganic Synthesis*, 1979, **19**, 220–223.

[4] Y. Wu, C. Yuan, C. Wang, B. Mao, H. Jia, X. Gao, J. Liao, F. Jiang, L. Zhou, Q. Wang, H. Guo, *Org. Lett.*, 2017, **19**, 6268–6271.

8. HPLC chromatograms of all compounds

For racemic **3a**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	10.205	2502.025	215.606	50.0	61.2
2	15.060	2500.220	136.942	50.0	38.8
	All Signals	5002.245	352.548	100.0	100.0

For chiral **3a**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	10,278	2535,610	212,153	85,0	88,0
2	15,230	448,833	28,976	15,0	12,0
	Total	2984,444	241,129	100,0	100,0

For racemic **3b**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	9,788	84,477	7,504	50,0	61,5
2	13,502	84,429	4,693	50,0	38,5
	Total	168,907	12,197	100,0	100,0

For chiral **3b**

For chiral **3c**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	14,150	1201,842	69,238	85,1	89,7
2	24,048	209,909	7,976	14,9	10,3
	Total	1411,751	77,213	100,0	100,0

For racemic **3d**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	13,360	7,327	0,546	50,0	65,9
2	18,138	7,315	0,283	50,0	34,1
	Total	14,642	0,829	100,0	100,0

For chiral **3d**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	13,343	377,643	24,687	82,0	84,5
2	18,157	82,709	4,545	18,0	15,5
	Total	460,352	29,232	100,0	100,0

For racemic **3e**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	16,108	675,363	31,863	50,0	57,1
2	22,360	674,827	23,910	50,0	42,9
	Total	1350,190	55,773	100,0	100,0

For chiral **3e**

For racemic **3f**

For chiral **3f**

For racemic **3g**

For chiral **3g**

For racemic **3h**

For chiral **3h**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	10,538	766,921	66,160	84,9	85,1
2	12,602	136,885	11,582	15,1	14,9
	Total	903,806	77,742	100,0	100,0

For racemic **3i**

	lmini	[mv.s]	[mv]	[~0]	[70]
1	9,448	4385,768	390,696	50,0	64,5
2	16,317	4389,104	215,117	50,0	35,5
	Total	8774,872	605,813	100,0	100,0

For chiral **3i**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	9,583	10145,920	897,011	71,0	80,7
2	16,555	4153,955	214,421	29,0	19,3
	Total	14299,875	1111,432	100,0	100,0

For racemic **3**j

100,0

100,0

10710,295

394,189

For chiral 3j

Total

For racemic 3k

For chiral **3k**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	15,488	737,507	39,436	83,2	86,1
2	23,440	149,032	6,362	16,8	13,9
	Total	886,540	45,798	100,0	100,0
For racemic 31

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	8,763	3537,662	316,327	49,9	64,4
2	16,105	3680,515	175,010	50,1	35,6
	Total	7218,177	491,337	100,0	100,0

For chiral **3**

For racemic **3m**

For chiral **3m**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	10,207	1293,958	114,966	84,7	87,0
2	12,460	233,934	17,220	15,3	13,0
	Total	1527,892	132,186	100,0	100,0

For racemic 3n

For chiral **3n**

For racemic **30**

1	13,252	2351,829	147,146	50,0	57,1
2	17,403	2353,284	110,401	50,0	42,9
	Total	4705,112	257,547	100,0	100,0

For chiral **30**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	13,310	2337,382	145,703	84,0	86,6
2	17,487	443,976	22,541	16,0	13,4
	Total	2781,358	168,243	100,0	100,0

For racemic **3p**

For chiral **3p**

For racemic **3q**

For chiral 3q

Total

6768,475

339,653

100,0

100,0

C	Λ	2
J	4	2

For racemic **3r**

	Reten. Time [min]	Reten. Time Area [min] [mV.s]		Area [%]	Height [%]
1	12,873	51135,011	2600,880	50,0	60,3
2	20,392	5829,040	216,221	50,0	39,7
	Total	56965,051	2817,101	100,0	100,0

For chiral **3r**

For racemic 3s

For chiral **3s**

For racemic 3t

For chiral **3t**

For racemic **3u**

	F	[5	L reg	L reg
1	16,348	2403,584	121,012	49,9	65,1
2	29,478	2413,449	64,833	50,1	34,9
	Total	4817,034	185,845	100,0	100,0

For chiral **3u**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	16,387	16290,086	743,675	88,7	93,1
2	29,570	2078,006	55,267	11,3	6,9
	Total	18368,092	798,942	100,0	100,0

For racemic 3v

For chiral **3v**

For racemic **3w**

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	18,185	9497,011	384,155	50,0	67,5
2	36,463	9513,040	185,346	50,0	32,5
	Total	19010,051	569,501	100,0	100,0

For chiral 3w

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	
1	18,073	27410,431	1102,803	85,3	92,2	
2	36,012	4712,242	93,658	14,7	7,8	
	Total	32122,672	1196,461	100,0	100,0	

For racemic compounds of diastereomers 3x and 3x'

	Minor Diastereomer of 3x	Major Diastereomer of 3x		
M				[%]
	-		R_nap+pro_2020-10-20 오전 6_09_02_002 - Channel 1	
2.3	s			-80
2.0-	R A			-60
90 1.5-	l K I	3x'	9 2	
3			2	-40
1.0-		v.	\wedge	
0.5-	516	8		-20
0.0	M. A. L.			
0	Ś	10 Time	15 2 [e	20 min]

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	4,692	15018,582	2050,299	21,6	29,2
2	5,160	1604,222	274,839	2,3	3,9
3	6,743	14130,288	1573,378	20,3	22,4
4	7,540	18558,222	1976,641	26,7	28,2
5	12,797	1600,760	100,661	2,3	1,4
6	14,422	18651,451	1044,708	26,8	14,9
	Total	69563,526	7020,527	100.0	100,0

For chiral compounds of diastereomers 3x and 3x'

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	4,692	600,599	111,273	1,7	3,4
2	5,162	2003,345	339,267	5,6	10,5
3	6,745	1455,019	171,592	4,1	5,3
4	7,540	16732,054	1792,040	47,1	55,5
5	12,785	715,142	48,721	2,0	1,5
6	14,412	14034,165	768,908	39,5	23,8
	Total	35540,324	3231,800	100,0	100,0

For racemic compound of major diastereomer 4

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]
1	20,707	2965,733	116,738	49,9	53,0
2	22,275	2977,650	103,463	50,1	47,0
	Total	5943,383	220,201	100,0	100,0

For racemic compound of minor diastereomer 4

For chiral compound of minor diastereomer 4

For racemic 5

	Name	[min]	[mv.s]	[mv]	[%]	[%]
1	Channel 1	7.513	184.820	22.683	49.9	55.1
2	Channel 1	9.123	185.506	18.462	50.1	44.9
		All Signals	370.327	41.145	100.0	100.0

For chiral 5

9. NMR spectra of all compounds

¹H NMR spectrum of **3a**

¹H NMR spectrum of **3b**

¹³C NMR spectrum of **3b**

¹H NMR spectrum of 3c

Ó f1 (ppm)

¹H NMR spectrum of **3d**

¹³C NMR spectrum of **3d**

¹H NMR spectrum of **3e**

¹³C NMR spectrum of **3e**

¹H NMR spectrum of **3**f

^{13}C NMR spectrum of 3f

¹H NMR spectrum of **3**g

¹³C NMR spectrum of **3g**

1 H NMR spectrum of **3h**

¹³C NMR spectrum of **3h**

¹H NMR spectrum of **3i**

¹H NMR spectrum of **3**j

¹³C NMR spectrum of **3j**

¹H NMR spectrum of **3**k

¹³C NMR spectrum of **3k**

¹H NMR spectrum of **3**I

¹³C NMR spectrum of **3**l

¹H NMR spectrum of 3m

¹H NMR spectrum of **3n**

¹³C NMR spectrum of **3n**

¹⁹F NMR spectrum of **3n**

¹H NMR spectrum of **30**

100 90 f1 (ppm)

S68

¹H NMR spectrum of **3p**

¹³C NMR spectrum of **3p**

¹H NMR spectrum of **3**q

¹³C NMR spectrum of **3**q

¹H NMR spectrum of **3r**

¹³C NMR spectrum of 3r

¹H NMR spectrum of **3s**

¹H NMR spectrum of **3**t

¹³C NMR spectrum of **3t**

¹⁹F NMR spectrum of **3t**

¹H NMR spectrum of **3u**

¹³C NMR spectrum of **3u**

¹H NMR spectrum of 3v

13 C NMR spectrum of 3v

¹H NMR spectrum of 3w

¹³C NMR spectrum of 3w

¹H NMR spectrum of 3x and 3x'

¹³C NMR spectrum of **3x** and **3x'**

¹H NMR spectrum for major diasteromer of **4**

¹H NMR spectrum for minor diasteromer of 4

¹H NMR spectrum of **5**

¹³C NMR spectrum of **5**

¹H NMR spectrum of **6**

