Supporting Information

Novel Aryltriazole Acyclic C-Azanucleosides as Anticancer Candidates

Yanhua Zhang^{a#}, Yun Lin^{a#}, Qianqian Hou^a, Xi Liu^a, Sabrina Pricl^{b,c}, Ling Peng^d, Yi

Xia^a*

^a Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

^b Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy

^c Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland

^d Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisé par La Ligue, 13288 Marseille, France.

*Corresponding Author

Dr. Yi XIA, Email: <u>yixia@cqu.edu.cn</u>

[#] These authors contribute equally to this work

Table of Contents

Figure S1	
Figure S2	
Figure S3	
Figure S4	
Figure S5	
Table S1	
Table S2	S10
Table S3	
¹ H NMR, ¹³ C NMR spectra	
HPLC sepctra	S39

Figure S1. The UV-Visible spectrum of Ia, If, Ig, Ii, Ij, Ik, Il and II in MeOH (50 μ M) was recorded on Agilent Cary 60 UV-Vis Spectrophotometer within the spectral region of 200-400 nm.

Figure S2. 1D NOESY spectra of **Ia**, **If**, **Ig**, **Ij** and **Ik** dissolved in CDCl₃ (20mg/mL) using a 800 ms NOESY mixing time was recorded on Agilent DD2 600-MR. The proton (H*) in triazole ring was selectively irradiated and the strong NOE at 7.6 ppm (H_A) and 4.0 ppm (H_B) was observed.

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

Figure S3. Compound **Ig** predominantly induced apoptosis in cancer cells with negligible necrosis. (A) Panc-1 cells were treated with different doses of **Ig** for 48 h and the percentage of cells undergoing apoptosis (Annexin V-positive cells) and necrosis (PI-positive cells) was determined with flow cytometry. Untreated cells were used as the reference control. (B) Compound **Ig** efficiently induced the cleavage of PARP and downregulation of BCL-2 in Panc-1 cells. BCL-2 and PARP protein levels after treatment with different concentrations of compound **Ig** were analyzed by use of western blotting, with β -actin as the reference. (C) Necrosis induced by different concentrations of **Ig** in Panc-1 cells was assessed by LDH assays.

Figure S4. Compound **Ic** and **Ik** could not induce apoptosis or inhibit the expression of HSF1, HSP27, HSP70, HSP90α and eIF4E in Panc-1 cells. (A) Panc-1 cells were treated with **Ic** and **Ik** (15µM) for 48 h and the percentage of cells undergoing apoptosis (Annexin V-positive cells) and necrosis (PI-positive cells) was determined with flow cytometry. Untreated cells were used as the reference control. (B) Panc-1 cells were treated with **Ic** and **Ik**. Then the BCL-2 and PARP protein levels after treatment were analyzed by western blotting, with β-actin as the reference. (C) Necrosis induced by different concentrations of **Ic** and **Ik** in Panc-1 cells was assessed by LDH assays. (D) Panc-1 cells were treated with **Ic** and **Ik**. Then the **p**rotein levels of HSF1, HSP27, HSP70, HSP90α and eIF4E were analyzed by western blotting, with β-actin as the reference.

Figure S5. Compound **Ig** efficiently inhibited the expression of HSF1, HSP27, HSP70, HSP90 α and eIF4E in Panc-1 cells (B). Panc-1 cells were treated with **If** at indicated concentrations. Protein levels of HSF1, HSP27, HSP70, HSP90 α and eIF4E were then analyzed by western blotting, with β -actin as the reference.

Table S1. Optimized structures and the corresponding values of the geometrical parameters for compounds **Ia-II** as obtained from Density Functional (DFT) calculations performed at the B3LYP/6-311++G(d,p) level. Molecular structures are shown as atom-colored sticks-and-balls (C, gray; O, red; N, blue; H, white; F, light cyan; Cl, light green; Br, dark red).

Compound	Structure	Dihedral angle 1 (°) ^a	Dihedral angle 2 (°) ^b	H-H distance (Å) ^c
Ia	froge	178.1	-178.2	2.21
Ib	Stoppe	178.7	-178.9	2.22
Ic	ero de	177.8	-177.6	2.21
Id	<i>څډې</i> کې	178.3	-178.1	2.21
Ie	States.	177.4	-177.9	2.23
If	States.	177.4	-177.2	2.23
Ig	Suppress	177.3	-177.1	2.23
Ih	50000	177.2	-177.3	2.23
Ii	statte	178.4	-178.9	2.27
Ij	sops.	179.0	-178.6	2.24
Ik	erop.	178.6	-178.6	2.33

п	state	178.9	-178.4	2.27
^a Atoms involve example	frogt			
^b Atoms involv an example	5000			
°Atoms involv	Froge			

Table S2. Comparison between experimental (X-ray) and calculated (B3LYP/6-311++G(d,p)) values of the main structural parameters for compound **Ik**. The first row shows the X-ray derived (left) and DFT-optimized (right) molecular structure of **I**k (atom color code: C, gray; O, red; N, blue; Cl, light green; H, white).

			Sold of the			
Atoms	Experimental	Calculated	Atoms	Experimental	Calculated	
Bond length (Å)			Bond length (Å)			
Cl1-C9	1.742(5)	1.76(0)	C6-C7	1.378(6)	1.39(0)	
N2-N3	1.347(5)	1.35(1)	N4-C4	1.363(6)	1.36(1)	
N2-C6	1.426(5)	1.44(2)	C5-C4	1.356(6)	1.36(0)	
N2-N5	1.352(6)	1.35(8)	C3-C4	1.483(6)	1.49(0)	
O1-C1	1.408(6)	1.41(0)	C10-C9	1.377(6)	1.37(3)	
N1-C3	1.465(5)	1.48(4)	C10-C11	1.386(7)	1.38(2)	
N1-C2	1.460(5)	1.48(3)	C9-C8	1.362(7)	1.37(3)	
N3-N4	1.315(6)	1.33(0)	C2-C1	1.512(6)	1.52(3)	
C6-C11	1.385(6)	1.39(2)	C7-C8	1.372(7)	1.38(1)	
Bond angle (°)			Bond angle (°)			
N3-N2-C6	120.6(4)	120.5(1)	C5-C4-N4	107.5(4)	108.8(2)	
N3-N2-C5	109.7(4)	108.5(7)	C5-C4-C3	130.3(4)	129.6(9)	
C5-N2-C6	129.7(4)	130.8(9)	C9-C10-Cl1	118.7(5)	119.9(7)	
C2-N1-C3	111.5(4)	111.8(6)	C10-C9-Cl21	118.7(4)	119.9(6)	
N4-N3-N2	107.3(4)	107.9(3)	C8-C9-C11	120.3(4)	120.0(3)	
C11-C6-N2	119.4(4)	119.8(1)	C8-C9-C10	121.1(4)	120.0(1)	
C7-C6-N2	120.3(4)	120.1(4)	N1-C2-C1	110.1(4)	112.3(4)	
C7-C6-C11	120.3(4)	120.0(4)	C6-C11-C10	120.0(4)	119.9(8)	
N3-N4-C4	109.4(4)	107.4(4)	C8-C7-C6	119.2(5)	119.9(9)	
N2-C5-C4	106.2(4)	107.2(0)	C9-C8-C7	120.6(4)	120.0(0)	
N1-C3-C4	111.5(4)	111.7(3)	O1-C1-C2	111.6(4)	112.3(2)	
N4-C4-C3	122.1(4)	121.3(1)				
<i>Torsion angle</i> (°)	-		Torsion angle (°)			
Cl1-C9-C8-C7	-177.5(4)	-179.3(9)	C6-N2-N3-N4	178.2(3)	178.8(1)	
N2-N3-N4-C4	-0.5(6)	-0.4(8)	C6-N2-C5-C4	-177.9(4)	-178.0(9)	
N2-C6-C11-C10	-178.3(4)	-178.6(1)	C6-C7-C8-C9	0.5(7)	0.08(9)	
N2-C6-C7-C8	177.4(4)	178.6(7)	C5-N2-N3-N4	1.0(6)	0.5(1)	
N2-C5-C4-N4	0.7(5)	0.8(4)	C5-N2-C6-C11	164.2(5)	165.1(0)	
N2-C5-C4-C3	177.7(4)	176.3(2)	C5-N2-C6-C7	-15.1(6)	-15.6(8)	
N1-C3-C4-N4	-21.6(6)	-23.2(5)	C3-N1-C2-C1	-167.2(4)	-168.1(3)	
N1-C3-C4-C5	161.8(4)	161.5(3)	C10-C9-C8-C7	1.7(7)	0.6(4)	
N1-C2-C1-O1	58.5(5)	58.7(5)	C9-C10-C11-C6	1.2(7)	0.7(4)	

N3-N2-C6-C11	-12.4(6)	-13.2(0)	C2-N1-C3-C4	172.4(3)	171.4(4)
N3-N2-C6-C7	168.4(5)	166.0(2)	C11-C6-C7- C8	-1.8(7)	-0.5(5)
N3-N2-C5-C4	-1.1(5)	-0.9(8)	C11-C10-C9-Cl1	176.7(4)	179.4(6)
N3-N4-C4-C5	-0.1(6)	-0.094(4)	С11-С10-С 9-С8	-2.5(7)	-0.5(8)
N3-N4-C4-C3	-177.4(4)	-176.7(0)	C7-C6-C11-C10	1.0(7)	0.6(1)

Cpd.	MW ^a	HBA ^b	HBD ^c	logP ^d	logS ^e	PSA ^f	BBB score ^g	Rule of 5 violation	Drug likeness
Rule of 5	<500	≤10	≤5	≤5	≤5	_	-	≤1	-
Ia	232.13	4	2	0.83	-0.94	55.63	4.44	0	-0.53
Ib	260.16	4	2	1.81	-1.41	55.63	4.59	0	-0.47
Ic	288.20	4	2	2.86	-2.99	55.63	4.69	0	-0.37
Id	316.23	4	2	3.87	-3.85	55.63	4.76	0	-0.37
Ie	358.27	4	2	5.39	-5.32	55.63	4.79	1	-0.37
If	386.30	4	2	6.40	-6.04	55.63	4.78	1	-0.37
Ig	414.34	4	2	7.41	-6.12	55.63	4.74	1	-0.37
Ih	442.37	4	2	8.43	-6.23	55.63	4.70	1	-0.37
Ii	286.10	4	2	1.33	-1.13	55.63	4.69	0	-0.82
Ij	284.13	5	2	0.35	-1.44	63.18	4.06	0	-0.42
Ik	252.08	4	2	0.98	-1.60	55.63	4.54	0	-0.20
Il	286.03	4	2	1.23	-0.91	55.63	4.71	0	-0.62

Table S3. In silico predicted main pharmacokinetic parameters of compounds Ia-II.

^aMolecular weight; ^bnumber of hydrogen bond acceptors; ^cnumber of hydrogen bond donors; ^dlogarithm of n-octanol/water partition coefficient; ^elogarithm of water solubility (in log(mol/L)); ^fpolar surface area; ^gBlood-brain barrier score: 6 = High; 0 = low.

S14

S19

S22

