Supplementary Information Text Additional CHARMm parameters for O-palmitoleylserine to facilitate preparation in CHARMM-GUI (not optimised for simulation).

```
* Force Field Parameter File.
*
BOND
OSL CT2 301.50 1.439
ANGLE
CT1 CT2 OSL 67.780 108.420
OSL CT2 HA2 50.840
                                108.820
CL OSL CT2 63.630
                                115.140
DIHEDRAL

      X CT2 OSL X
      0.383

      CT1 CT2 OSL CL
      0.383

      CT1 CT2 OSL CL
      0.800

                                          3
                                                    0.0
                                        3
                                                  0.0
                                               180.0
                                        1
```

CHARMm topology for O-palmitoleylserine to facilitate preparation in CHARMM-GUI (not optimised for simulation).

```
* Lipid-modified protein residues
   41 1
  DECL -CA
  DECL -C
  DECL -O
  DECL +N
 DECL +HN
  DECL +CA
  !DEFA FIRS NTER LAST CTER
 AUTO ANGLES DIHE PATCH
 RESI SERP 0.00 ! O-palmitoylserine GROUP !
 ATOM N NH1 -0.47 !

        ATOM HN
        H
        0.31
        !

        ATOM CA
        CT1
        0.07
        !

        ATOM HA
        HB1
        0.09
        !

      ATOM HA
      HB1
      0.09 !
      |

      GROUP
      !
      HN-N

      ATOM C
      C
      0.51 !
      |

      ATOM O
      0
      -0.51 !
      |
      |

      ATOM O
      0
      -0.51 !
      |
      |

      GROUP
      !
      HA-CA--CB--OG

      ATOM CB
      CT2
      -0.05 !
      |
      |

      ATOM HB1
      HA2
      0.09 !
      |
      HB2 |

      ATOM HB2
      HA2
      0.09 !
      O=C
      |

      ATOM OG
      OSL
      -0.34 !
      |
      |

      ATOM C1
      CL
      0.63 !
      01=C1
      |

      ATOM O1
      OBL
      -0.52 !
      |
      |

    ATOM C2
    CTL2
    -0.08 !
    H2A-C2-H2B

    ATOM H2A
    HAL2
    0.09 !
    |
```

GROUE	2			!			
ATOM	C3	CTL2	-0.18	!			НЗА-СЗ-НЗВ
ATOM	НЗА	HAL2	0.09	!			
ATOM	н3в	HAL2	0.09	!			
GROUE	2			!			
ATOM	C4	CTL2	-0.18	!			Н4А-С4-Н4В
ATOM	H4A	HAL2	0.09	!			1
АТОМ	H4B	HAL2	0.09	i.			i i
GROUE	>		0.00	· ·			
	C 5	CTT.2	-0 18				Ч5А-С5-Н5В
ATOM	00 Н5Д	HAT.2	0 09				
	н5в	нат.2	0.09				1
CDOIII	115D 2		0.05	•			1
ATOM	CG	CTT 2	_0 18	•			ибл_Сб_Ибр
ATOM			-0.10	:			NUA-CU-NUD
ATOM	ноа	HALZ	0.09	:			
ATOM	нов	HALZ	0.09	:			I
GROUE	~	0		!			
ATOM	C'7	CTL2	-0.18	!			Н/А-С/-Н/В
ATOM	H'/A	HAL2	0.09	!			
ATOM	H7B	HAL2	0.09	!			
GROUE	2			!			
ATOM	C8	CTL2	-0.18	!			Н8А-С8-Н8В
ATOM	H8A	HAL2	0.09	!			
MOTA	H8B	HAL2	0.09	!			
GROUE	2			!			
MOTA	С9	CEL1	-0.15	!			Н9А-С9-Н9В
ATOM	H9A	HEL1	0.15	!			
GROUE	2						
ATOM	C10	CEL1	-0.15	!			H10A-C10-H10B
ATOM	H10A	HEL1	0.15	!			
GROUE	2			!			
ATOM	C11	CTL2	-0.18	!			Н11А-С11-Н11В
ATOM	H11A	HAL2	0.09	!			1
ATOM	Н11В	HAL2	0.09	!			Í
GROUE	>			!			l
АТОМ	C12	CTL2	-0.18	1			H12A-C12-H12B
ATOM	012 Н12Д	HAT.2	0 09				
	H12R	нат.2	0.09				1
CROUL)))		0.05	·			1
	C13	CTT.2	-0 18	·			н13д-013-н13в
	С13л u13л	UNT 2	0.10	•			
ATOM		ПАЦИ ПАТО	0.09	:			
CDOUL	лтор	ΠΑLΖ	0.09	:			
GROUE	C1 4		0 1 0	:			
ATOM			-0.18	:			HI4A-CI4-HI4B
ATOM	HI4A	HALZ	0.09	!			l
A'I'OM	HI4B	HAL2	0.09	!			
GROUE		0		!			
ATOM	C15	CTL2	-0.18	!			Н15А-С15-Н15В
ATOM	H15A	HAL2	0.09	!			
ATOM	H15B	HAL2	0.09	!			
GROUE	2			!			
ATOM	C16	CTL3	-0.27	!			H16A-C16-H16B
ATOM	H16A	HAL3	0.09	!			
ATOM	H16B	HAL3	0.09	!			H16C
ATOM	H16C	HAL3	0.09	!			
BOND	CB CA	A OG	CB N	HN	Ν	CA	

BOND C CA C +N CA HA CB HB1 BOND CB HB2 OG C1 DOUBLE O C DOUBLE C1 O1 BOND C1 C2 C2 H2A C2 H2B BOND C2 C3 C3 НЗА C3 H3B BOND C3 C4 C4 H4A C4 H4B BOND C4 C5 C5 H5A C5 H5B BOND C5 С6 С6 H6A C6 H6B BOND C6 C7 С7 H7A C7 H7B BOND C7 C8 C8 H8A C8 H8B BOND C8 C9 C9 H9A BOND C9 C10 C10 H10A BOND C10 C11 C11 H11A C11 H11B BOND C11 C12 C12 H12A C12 H12B BOND C12 C13 C13 H13A C13 H13B BOND C13 C14 C14 H14A C14 H14B BOND C14 C15 C15 H15A C15 H15B BOND C15 C16 C16 H16A C16 H16B C16 H16C IMPR C1 O1 OG C2 IMPR N -C CA HN C CA +N O DONOR HN N ACCEPTOR O C ACCEPTOR 01 C1 IC -C CA *N ΗN 1.3479 123.93 180.00 114.77 0.9982 IC -C CA С 1.3479 123.93 180.00 105.89 1.5202 Ν 1.4533 105.89 180.00 118.30 1.3498 IC N С CA +NIC +N CA *C 0 1.3498 118.30 180.00 120.59 1.2306 IC CA +N+CA 1.5202 118.30 180.00 124.50 1.4548 С CA СВ 0.9674 117.70 -36.00 110.95 1.5003 IC HN Ν IC CB *CA C 1.5003 110.95 128.76 106.38 1.5291 Ν IC CB *CA HA 1.5003 110.95 -121.31 107.62 1.1060 Ν 1.3945 110.95 -174.62 111.79 1.8692 IC N OG CA СВ 1.8692 111.79 114.87 107.79 1.1406 IC OG CA *CB HB1 IC OG *CB HB2 1.8692 111.79 -128.20 109.45 1.0949 CA IC N CA 1.3945 106.38 5.30 121.98 1.2956 С 0 C1 1.5003 111.79 -178.37 107.64 1.8012 IC CA CB OG IC CB C1 C2 1.8692 107.64 158.80 115.77 1.5434 OG IC C2 *C1 01 1.5434 115.77 -174.68 119.62 1.2281 OG 1.5614 1.8012 115.77 152.55 111.56 IC OG C2 C3 С1 *C2 H2A 1.5614 111.56 -126.88 116.60 1.0567 IC C3 С1 IC H2A C1 1.0567 116.60 -120.46 107.56 *C2 H2B 1.0927 1.5543 IC Cl C2 C3 C4 1.5434 111.56 178.17 112.38 С2 *СЗ НЗА 1.5543 112.38 -115.58 110.36 IC C4 1.0691 IC H3A C2 *СЗ НЗВ 1.0691 110.36 -116.74 109.97 1.1344 IC C2 C3 C4 C5 1.5614 112.38 174.26 114.93 1.5290 1.5290 114.93 -117.82 107.19 1.0636 IC C5 CЗ *C4 H4A 1.1180 IC H4A C3 *C4 H4B 1.0636 107.19 -118.11 109.41 1.5437 IC C3 C4 C5 C6 1.5543 114.93 139.45 116.26 *C5 H5A 1.5437 116.26 -115.47 116.05 1.1088 IC C6 C4 IC H5A C4 *C5 H5B 1.1088 116.05 -122.13 108.08 1.1320 IC C4 C5 С6 C7 1.5290 116.26 159.28 113.90 1.5449 IC C7 C5 *C6 H6A 1.5449 113.90 -120.21 112.43 1.0817 *С6 Н6В 1.0817 112.43 -112.42 110.24 1.0503 IC H6A C5

IC	C5	C6	С7	C8	1.5437	113.90	167.68	115.30	1.5615
IC	C8	C6	*C7	H7A	1.5615	115.30	-116.36	108.50	1.1480
IC	H7A	C6	*C7	H7B	1.1480	108.50	-115.94	110.56	1.1231
IC	C6	C7	C8	С9	1.5449	115.30	165.37	111.83	1.5514
IC	С9	C7	*C8	H8A	1.5514	111.83	-113.43	111.91	1.1377
IC	H8A	C7	*C8	H8B	1.1377	111.91	-118.34	108.18	1.0480
IC	C7	C8	С9	C10	1.5615	111.83	176.59	110.57	1.5526
IC	C10	C8	*C9	H9A	1.5526	110.57	-129.97	113.53	1.1310
IC	C8	С9	C10	C11	1.5514	110.57	-177.26	112.26	1.5783
IC	C11	С9	*C10	H10A	1.5783	112.26	-123.45	106.63	1.1533
IC	С9	C10	C11	C12	1.5526	112.26	-163.15	112.58	1.5528
IC	C12	C10	*C11	H11A	1.5528	112.58	-121.90	102.65	1.0764
IC	H11A	C10	*C11	H11B	1.0764	102.65	-122.46	109.95	1.1248
IC	C10	C11	C12	C13	1.5783	112.58	-179.16	115.34	1.5375
IC	C13	C11	*C12	H12A	1.5375	115.34	-129.55	111.80	1.0856
IC	H12A	C11	*C12	H12B	1.0856	111.80	-109.80	105.66	1.0741
IC	C11	C12	C13	C14	1.5528	115.34	-178.59	114.71	1.5546
IC	C14	C12	*C13	H13A	1.5546	114.71	-121.77	106.42	1.0758
IC	H13A	C12	*C13	H13B	1.0758	106.42	-114.53	102.53	1.0909
IC	C12	C13	C14	C15	1.5375	114.71	179.82	117.78	1.5331
IC	C15	C13	*C14	H14A	1.5331	117.78	-126.75	106.30	1.1072
IC	H14A	C13	*C14	H14B	1.1072	106.30	-108.90	106.38	1.0834
IC	C13	C14	C15	C16	1.5546	117.78	169.53	109.01	1.4928
IC	C16	C14	*C15	H15A	1.4928	109.01	-121.10	100.35	1.1439
IC	H15A	C14	*C15	H15B	1.1439	100.35	-117.57	115.28	1.1080
IC	C14	C15	C16	H16A	1.5331	109.01	-61.78	119.36	1.0834
IC	H16A	C15	*C16	H16B	1.0834	119.36	138.24	116.61	1.0932
IC	H16A	C15	*C16	H16C	1.0834	119.36	-107.69	109.08	1.1555

Fig. S1. Histograms for the umbrella sampling simulations. Histograms were prepared with bin width of 0.0025, and smoothed without integration or differentiation to a second order polynomial, with two neighbours on each size.

Consensus Conser vat i on		q <mark>C</mark> p r	q L k	rрр	ур	kyr	уе	e d	e r	d (C G	a q	Cc	q p	р~	~	~ ~	~	~ у	Fŀ	Ea	a E	h	q	d a	h	s y
FZD7_TM	209	SCPR	QLK	VPP	ΥL	GYF	τ <mark>Γ</mark> Ι	G	ER	DO	G	A P	CE	Ρ	GR	Α	N G	L	ΜY	Fł	ΚEΕ	E E	R	R	F A	R	L W
Smo_inactive	192	QCEV	PLV	RTD	ΝP	KSΝ	VY	ΞD	VE	G(G	IQ	СС	ΩN	P ~	~	~ ~	~	~ L	FΙ	ΓE Α	A E	Н	Q	DN	Н	SY
Consensus Conser vat i on		a w s a	Сс	a s T	LF	Tla	i Ty	/ 1	a D	m F	R r	S S	~)	ΥP	a r	i	i i	у	l s	a (C y F	r	n g	а	i a	h	A
FZD7_TM	259	VWSV	LCC	AST	L F	TVL	. т `	ΥL	V D	MF	R R	F S	~)	ΥP	ΕR	Р	I = I	F	L S	G(C Y F	= N	/ V	A	V A	H	V A
Smo_inactive	236	AFGA	VТG	LCT	L F	TLA	A T F	= V	A D	W F	RN	S N	R	ΥP	ΑV	I	L F	Y	V N	A (CFF	= \	/ G	S	I G	W	LA
Consensus Conservation		m ~ ~ a	rrr	a <mark>V C</mark>	r a	rgs	s m r	· ~	<mark>G</mark> y	р	r ~	~ ~	s t	k	k e	s	C t	1	i F	m i		/	a	I	MA	S	s i
FZD7 TM	308	L ~ ~ L	EDR	AVC	VΕ	RFS	DI) ~ [–]	G Y	R	ΓV	A Q	GI	ГК	ΚE	G	ст	· —	LF	۳W	/ L \	 / F	F	G	MA	s	s i ¯
Smo_inactive	286	MDGA	r r e	IVC	RΑ	DGT	M	₹L	G E	ΡI	Γ~	~ ~	SI	ΝE	ΤL	S	Cν	/ I	I F	VI	V	()	Υ A	L	M A	G	VV
Consensus Conser vat i on		ViLs	y a <mark>W</mark>	hla	a k	~ m k	t t	у	q a	i s	s a	k s	q \	/ F	ΗL	а	a V	<mark>V</mark> a	I P	a \	/ k 1	r i	a	1	LA	m	a <mark>Q</mark>
FZD7_TM	355	VILS	LTW	FLA	A G	~ M ł	< W (GΗ	ΕA	I E	A	N S	Q	ΥF	H L	Α	AV	V A	V P	A١	/ K 1	ГІ	Т	1	L A	M	GQ
Smo_inactive	333	VVLT	YAW	нтѕ	FΚ	AL (G T -	ГΥ	Q P	LS	S G	КТ	SI	/ F	ΗL	L	τV	VS	L P	F١	/ L 1	Г \	Α	. 1	LA	V	AQ
Consensus Conservation		G D s I	SGi	СуV	<mark>G</mark> y	ssy	r a	a r	a <mark>G</mark>	F۱	V L	A P	ίÇ	g I	y L	i	i C	t	y F	Li	a (G V	'n	ı s	LF	s	l k
FZD7 TM	404	GDLL	SGV	CYV	GL	S S V		A L	RG	F \	V L	A P	LF	= v	YL	F	1 0	т б	SF	LI	A	G F	: v	' S	LE	R	I R
Smo_inactive	383	GDSV	SGI	CFV	GΥ	KN	(R)	Y R	A G	F١	V L	A P	(GL	V L	T	VG	G G	ΥF	LΙ	R(G N	/ N	1 Т	L F	S	K
Consensus Conser vat i on		h ~ ~ k	h s e	k a a	s K	i e k		M I	R i	G i	F	s f	Ly	/ t	g p	а	t I	t	l a	C)	(F)	ί ε	e q	а	n q	а	h W
FZD7 TM	454	M ~ ~ K	HDG	ткт	ΕK	LEK	< L T	м v Т	B I	G	V F	ˈs v		(т	V P	Α	тТ	v	LA	C \	(F)	F	- C	A	FR	E	нw
Smo_inactive	433	HPGL	LSE	КАА	SK	INE	ETI	ИL	R L	GΙ	F	G F	L A	A F	GF	V	LI	т	FS	CH	H F Y	([) F	F	N C	A	EW
Consensus Conser vat i on		swr I	~qt	<mark>C</mark> qa	уа	~ ~ ~	~~~	~ ~	~ ~	~ ~	~ p	p <mark>C</mark>	рi	k	~ ~	р	рр	S	~ ~	Ιt	Ve	e k	1	k	уl	а	m m
FZD7_TM	502	TWLL	~ Q Т	скѕ	ΥA	~ ~ ~	- ~ -	~ ~	~ ~	~ ~	~ V	PC	ΡF	G	ΗF	Р	ΡN	1 S	P D	F 1	r v f	= N	A	Κ	Y L	M	ТΜ
Smo_inactive	483	SFRD	YVL	CQA	NV	TIC	G L F	- Т	ΚQ	ΡI	Ρ	DC	ΕI	К	~ ~	Ν	RP	s s	~ ~	LL	. V E	E ł		Ν	L F	Α	ΜF

Fig. S2. Sequence alignments between TM regions of Fzd7 and Smo, used to prepare Fzd7 structures.

Fig. S3. Difference in distance contact maps between states before and after Barrier (i). Positive changes in distance indicate residue pairs moving apart upon crossing the barrier; negative changes in distance indicate residue pairs closer together upon crossing the barrier.

Fig. S4. Larger depiction of states before (first column) and after (second column) Barrier (i) (Figs 4A, 4B, 4G, 4H, 4M, and 4N).

Fig. S5. Larger depiction of states before (first column) and after (second column) Barrier (ii) (Figs 4C, 4D, 4I, and 4J).

Fig. S6. Larger depiction of states before (first column) and after (second column) Barrier (iii) (Figs 4E, 4F, 4K, and 4L).

Fig. S7. Larger depiction of states before (first column) and after (second column) Barrier (iv) (Figs 5A, 5B, 5G, 5H, 5Q, and 5R).

Fig. S8. Larger depiction of states before (first column) and after (second column) Barrier (v) (Figs 5C, 5D, 5I, 5J, 5S, and 5T).

Fig. S9. Larger depiction of states before (first column) and after (second column) Barrier (vi) (Figs 5E, 5F, 5K, and 5L).

System	State	MolProbity Score	TM-Score ^a	Cα deviation (Å) ^a
Unbound Smo	Inactive	1.79	0.98	0.85
	Active	2.23	0.98	0.04
Smo-cholesterol	Inactive	1.16	0.97	0.87
	Active ^b	N/A	N/A	N/A
Smo-vismodegib	Inactive	1.91	0.92	2.26
	Active ^b	N/A	N/A	N/A
Unbound Fzd7	Inactive	2.24	0.81	2.83
	Active	2.34	0.84	2.31
Fzd7-Wnt3a	Inactive ^b	N/A	N/A	N/A
	Active (Wnt3a only) ^c	2.22	0.95	0.62

Table S1. Quality statistics for initially built and refined models.

^aCalculated for Smo or Fzd7 with respect to PDB 5L7D for inactive structures and PDB 6O3C for active structures (with the exception of Wnt3a in the Wnt3a-Fzd7 complex; see note c). Calculated using TM-Align server (<u>https://zhanglab.ccmb.med.umich.edu/TM-align/</u>). ^bThese states were achieved via steered MD starting from the state of the system for which quality statistics are reported; thus, quality statistics are not reported for these states. ^cTM-Score and Cα deviation in this instance are reported with respect to xWnt8a in PDB 4F0A. MolProbity Score indicated is for the entire complex.

Table S2. Variations identified in Smo in cancer patients in the MSK-IMPACT ClinicalSequencing Cohort, PanCancer Studies at residues identified as mediating energetic barriers toactivation by the distance contact analysis.

Mutation	Cancer
L112I	Uterine endometrioid carcinoma
R161Q	Rectal adenocarcinoma
R161W	Breast invasive cancer
A492G	Breast invasive cancer
1496V	Non-small cell lung cancer

Table S3. Variations identified in Fzd7 in cancer patients in the MSK-IMPACT Clinical Sequencing Cohort, PanCancer Studies at residues identified as mediating energetic barriers to activation by the distance contact analysis.

Mutation	Cancer
G237A	Mucinous adenocarcinoma of the colon and rectum
M468T	Colon adenocarcinoma

Movie S1 (separate file). Representative ABMD simulation for Smo activation.

Movie S2 (separate file). Representative ABMD simulation for Fzd7 activation.

Movie S3 (separate file). SMD simulation for activation of Smo-cholesterol complex.

Movie S4 (separate file). SMD simulation for activation of Smo-vismodegib complex.

Movie S5 (separate file). SMD simulation for deactivation of Fzd7-Wnt3a complex.

Legends for all movies: brown transparent volume – lipid head groups; grey transparent volume – lipid tails; yellow cartoon – cysteine-rich domain; purple cartoon – linker; blue cartoon – transmembrane regions; red cartoon – intracellular regions; green cartoon – intracellular regions; spheres (grey carbons, CPK-coloured heteroatoms) – ligand (cholesterol [CRD-binding] or vismodegib [TM region-binding]) or post-translational modification (*O*-palmitoleylserine [CRD-binding]).