Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

Pt-catalyzed selective oxidation of alcohols to aldehydes by hydrogen peroxide using continuous flow reactors

Yoshihiro Kon,^{*,a} Takuya Nakashima,^a Akira Yada,^a Tadahiro Fujitani,^a Shun-ya Onozawa,^a Shū Kobayashi,^{*,a,b} Kazuhiko Sato^{*,a}

^aInterdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial

Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

^bDepartment of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

E-mail: *y-kon@aist.go.jp, *shu_kobayashi@chem.s.u-tokyo.ac.jp, *k.sato@aist.go.jp

Contents

1.	Optimization of the reaction conditions	S2
2.	Continuous flow oxidation for 120 hours	S6
3.	Oxidation of (E)-cinnamyl alcohol in the presence of 1-octene	S7
4.	NMR Spectra	S8

1. Optimization of the reaction conditions

Table S1. Screening of reaction temperature.^a

Pump 0.3 ml/min. $6\% H_2O_2$ aq. $6\% H_2O_2$ aq. 0H D = 5 mm L = 100 mm C C C C C C C C														
Temp (°C)		60			70			80			90			
Time (min.)	15	30	60	15	30	60	15	30	60	15	30	60		
Conv. of 1 (%) ^b	79	79	79	91	90	89	97	99	99	100	100	100		
Yield of 2 (%) ^b	78	78	78	91	90	89	96	97	97	97	97	97		
Yield of 3 (%) ^b	0	0	0	0	0	0	1	2	2	2	2	2		

^{*a*}The base reaction conditions are as follows: 40 mg of Pt black, 960 mg of SiO₂, 0.4 mol/L of **1** in *t*-amylOH solution, 6wt% H₂O₂ aq., flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on **1**.

Table S2. Optimization about the concentration of 1.^{*a*}

^aThe base reaction conditions are as follows: 40 mg of Pt black, 960 mg of SiO₂, **1** in *t*-amylOH solution, 6wt% H₂O₂

aq., 90 °C, flow rate: each 0.3 ml/min. ^bDetermined by GC analysis based on 1.

Table S3. Optimization about the concentration of H₂O₂ aq.^{*a*}

^{*a*}The base reaction conditions are as follows: 40 mg of Pt black, 960 mg of SiO₂, 0.4 mol/L of **1** in *t*-amylOH solution, H₂O₂ aq., 90 °C, flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on **1**.

Table S4. Screening of flow rate.^{*a*}

^{*a*}The base reaction conditions are as follows: 40 mg of Pt black, 960 mg of SiO₂, 0.4 mol/L of **1** in *t*-amylOH solution, 6wt% H₂O₂ aq., 90 °C. ^{*b*}Determined by GC analysis based on **1**.

Table S5. Optimization about catalyst amounts.^a

$\begin{array}{c} & \begin{array}{c} & Purrip \\ 0.3 \text{ ml/min.} \\ & 6\% \text{ H}_2\text{O}_2 \text{ aq.} \end{array} \xrightarrow{Pt+SiO_2} \\ & \begin{array}{c} & Pt+SiO_2 \\ & (X \text{ mg} + (1000-X) \text{ mg}) \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} \\ & \begin{array}{c} & Pt+SiO_2 \\ & \end{array} \xrightarrow{Pt} $														
Amounts of Pt black (mg)		20			40			60						
Time (min.)	15	30	60	15	30	60	15	30	60					
Conv. of 1 (%) ^b	75	71	68	100	100	100	99	100	100					
Yield of 2 (%) ^b	73	69	67	97	97	97	93	93	94					
Yield of 3 (%) ^b	2	1	0	2	2	2	6	6	6					

^{*a*}The base reaction conditions are as follows: 0.4 mol/L of **1** in *t*-amylOH solution, 6wt% H₂O₂ aq., 90 °C, flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on **1**.

Table S6. Screening of column length.^a

^{*a*}The base reaction conditions are as follows: 0.4 mol/L of **1** in *t*-amylOH solution, 6wt% H₂O₂ aq., 90 °C, flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on **1**.

Table S7. Oxidation of **1** without air trap during 50-100 h.^{*a*}

	Pump 0.3 ml/min.															γ	~	0								
	$6\% H_2O_2$ aq. -900 Pt+SiO_2 2																									
	(-) (-																									
	/ t - AmyIOH L = 100 mm 1 (0.4 mol/l) Pump = 90 °C																									
								(0.4		-' o	.3 m	l/min.						\leq	3							
Time (h)	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96	98	100
Conv.	07	07		00	00	0.5		07		74		07	07	~		07	07		00			00			0.5	
(%) ^b	97	97	99	99	98	95	98	97	88	71	98	97	97	98	98	97	97	96	96	93	92	93	/5	11	95	93
Yield		~	0.5		0.5		0.5	0.5	07		~				0.5			~		~						
of 2 (%) ^b	94	94	95	96	95	93	95	95	87	69	94	94	95	95	95	95	95	94	94	91	91	92	74	75	93	91
Yield														_			_			_						
of 3 (%) ^b	3	3	4	3	3	2	3	2	1	0	4	3	2	3	3	2	2	2	2	2	1	1	0	0	2	2

^{*a*}Reaction conditions: 40 mg of Pt black, 960 mg of SiO₂, 0.4 mol/L of **1** in *t*-amylOH solution, 6wt% H₂O₂ aq., 90 °C, flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on **1**.

2. Continuous flow oxidation for 120 hours

Table S8. Oxidation of 1 to 2 for over $120 h^a$

	Pump 0.3 ml/min.														\checkmark	>>>	C			
	$\begin{array}{c} 6\% \text{ H}_2\text{O}_2 \text{ aq.} \\ & & & \\ $																			
Time (h)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Conv. of 1 (%) ^b	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Yield of 2 (%) ^b	95	96	97	97	98	97	98	98	98	98	98	98	98	98	98	98	98	98	98	98
Yield of 3 (%) ^b	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Time (h)	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80
Conv. of 1 (%) ^b	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Yield of 2 (%) ^b	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98
Yield of 3 (%) ^b	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Time (h)	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110	112	114	116	118	120
Conv. of 1 (%) ^b	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Yield of 2 (%) ^b	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98
Yield of 3 (%) ^b	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

^{*a*}Reaction conditions: 40 mg of Pt black, 960 mg of SiO₂, 0.4 mol/L of **1** in *t*-amylOH solution, 6wt% H₂O₂ aq., 90 °C, flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on **1**.

3. Oxidation of (E)-cinnamyl alcohol in the presence of 1-octene

Table S9. Oxidation of **1** in the presence of 1-octene a

^{*a*}Reaction conditions: 40 mg of Pt black, 960 mg of SiO₂, 0.4 mol/L of 1-octene and 0.4 mol/L of 1 in *t*-amylOH solution, 6wt% H₂O₂ aq., 90 °C, flow rate: each 0.3 ml/min. ^{*b*}Determined by GC analysis based on 1.

4. NMR Spectra

The NMR spectroscopic data of the synthesized compounds 2-14 agreed well with the NMR data reported by the production through another methods.^{ref}

(*E*)-Cinnamaldehyde (2):^{(a) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.71 (d, *J* = 8.0 Hz, 1H), 7.59-7.56 (m, 2H), 7.50-7.43 (m, 4H), 6.73 (dd, *J* = 16.0, 7.6 Hz, 1H).

(*E*)-Cinnamic acid (**3**):^{(a) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.80 (d, *J* =16.0 Hz, 1H), 7.60-7.52 (m, 2H), 7.45-7.38 (m, 3H), 6.46 (d, *J* =16.0 Hz, 1H).

(*E*)-α-Methylcinnamaldehyde (**4**):^(a) ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.59 (s, 1H), 7.54-7.38 (m, 5H), 7.27 (s, 1H), 2.08 (s, 3H).

(*E*)-4-Nitrocinnamaldehyde (**5**):^{(b) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.79 (d, *J* = 8.0 Hz, 1 H), 8.30 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 16.0 Hz, 1H), 6.82 (dd, *J* = 16.0, 8.0 Hz, 1H).

(E)-2-Octenal (6):^{(a) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.51 (d, J = 8.0 Hz, 1H), 6.86 (m, 1H), 6.12 (m, 1H), 2.37-2.31 (m, 2H), 1.55-1.48 (m, 2H), 1.35-1.31 (m, 4H), 0.91(t, J = 6.6 Hz, 3H).

(*E*)-2-Nonenal (**7**):^{(a) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.51 (d, *J* = 8.0 Hz, 1H), 6.86 (m, 1H), 6.13 (m, 1H), 2.37-2.31 (m, 2H), 1.53-1.47 (m, 2H), 1.36-1.31 (m, 6H), 0.89(t, *J* = 6.0 Hz, 3H).

Citral (8):^{(c) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.99 (d, J = 8.4 Hz, 1H), 5.88 (d, J = 8.4 Hz, 1H), 5.08-5.06 (m, 1H), 2.24-2.17 (m, 4H), 2.17 (s, 3H), 1.69 (s, 3H), 1.61(s, 3H).

Benzaldehyde (**9**):^{(a) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 10.03 (s, 1H), 7.90-7.88 (m, 2H), 7.66-7.62 (m, 1H), 7.56-7.52 (m, 2H).

Benzoic acid (**10**):^{(a) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 8.15-8.12 (m, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H).

4-Methoxybenzaldehyde (11):^(a) ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.89 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 3.89 (s, 3H).

4-Bromobenzaldehyde (**12**):^{(d) 1}H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.98 (s, 1H), 7.76 (d, *J* = 12.0 Hz, 2H), 7.69 (d, *J* = 12.0 Hz, 2H).

1-Octanal (**13**):^(a) ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 9.77 (t, *J* = 1.8 Hz, 1H), 2.42 (m, 2H), 1.65-1.61 (m, 2H), 1.30-1.28 (m, 8H), 0.88 (m, 3H).

1-Octanoic acid (**14**):^(a) ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 2.35 (t, *J* = 7.6 Hz, 2H), 1.65-1.62 (m, 2H), 1.39-1.25 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H).

Ref). (a) SDBSWeb: https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, Dec. 8, 2020); (b) C. J. Pouchert and J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 2, Aldrich Chemical, Milwaukee, 1993, 930-C; (c) C. J. Pouchert and J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 1, Aldrich Chemical, Milwaukee, 1993, 743-A; (d) C. J. Pouchert and J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 2, Aldrich Chemical, Milwaukee, 1993, 743-A; (d) C. J. Pouchert and J. Behnke, *The Aldrich Library of* ¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 2, Aldrich Chemical, Milwaukee, 1993, 940-C.

(E)-cinnamaldehyde

(E)-cinnamic acid

(E)- α -Methylcinnamaldehyde

(E)-4-Nitrocinnamaldehyde

(E)-2-Octenal ¹H NMR (400MHz, CDCl₃, 25 °C)

(E)-2-Nonenal

Citral ¹H NMR (400MHz, CDCl₃, 25 °C)

Benzaldehyde

Benzoic acid

4-Methoxybenzaldehyde ¹H NMR (400MHz, CDCl₃, 25 °C)

4-Bromobenzaldehyde

1-Octanal

1-Octanoic acid

