Supporting Information for

Carbazole-modified thiazolo[3,2-*c*][1,3,5,2]oxadiazaborinines exhibiting aggregation-induced emission and mechanofluorochromism

Mykhaylo A. Potopnyk,* Mykola Kravets, Roman Luboradzki, Dmytro Volyniuk, Volodymyr Sashuk, and Juozas V. Grazulevicius*

Contents

Figure S1. ORTEP diagram of complex 2	S2
Table S1. Crystal data of complex 2	S3
Table S2. Selected geometrical parameters of compound 2 obtained from crystallography	S4
Figure S2. DSC thermograms of complexes 2 and 3	S5
Figure S3. TGA curves of complexes 2 and 3	S5
Figure S4. DFT-optimised structures of compounds 2 and 3.	S5
Figure S5. Experimental and TD-DFT-predicted absorption spectra of complex 2 in DCM	S6
Figure S6. Experimental and TD-DFT-predicted absorption spectra of complex 3 in DCM	S6
Table S3. Calculated properties of the 12 lowest singlet excited states for complexes 2 and 3	S7
Optimized geometry for compound 2	S8
Optimized geometry for compound 3	S9
Figure S7. (a) Normalized emission spectra of dye 2 in different solid states. (b) Reversible swift of solid-state emission of dyes 2 and 3 by repeated grinding/DCM-fuming cycles	itching S11
Table S4. Fluorescence properties of complex 2 in the solid states.	S11
Figure S8. Fluorescence decay of complexes 2 and 3 in toluene solutions	S12
Figure S9. Fluorescence decay of complex 2 in the solid states	S12
Figure S10. Fluorescence decay of complex 3 in the solid states	S13
Figure S11–S36. NMR spectraS	14–S26

Figure S1. ORTEP diagram of complex 2. The ellipsoid contour of probability level is 50%.

Compound	2		
Empirical formula	$C_{22}H_{14}BF_2N_3OS$		
Moiety formula	$C_{22}H_{14}BF_2N_3OS$		
Formula weight	417.2389		
CCDC No.	CCDC 20139	16	
Wavelength	1.54184		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
	<i>a</i> = 13.71398(13) Å		
Unit cell dimensions	b = 15.00188(15) Å	$\beta = 93.2060(9)^{\circ}$	
	c = 9.01525(8) Å		
Volume	1851.86(3) Å ³		
Z	4		
Density Calc.	1.4965 g/cm ³		
Absorption coefficient	1.905 mm ⁻¹		
F(000)	856		
Crystal	Yellow bloc	k	
Crystal size	$0.3 \times 0.2 \times 0.06 \text{ mm}$		
Index ranges	$-16 \le h \le 16, -18 \le k \le 1$	8, $-8 \le 1 \le 10$	
Reflections collected (all / independent)	$17802 / 3517 [R_{int} = 0.0658]$		
Absorption correction	multi-scan		
Refinement method	Full-matrix least-squares on F^2		
Restraints / parameters	0 / 271		
Goodness-of-fit on F^2	1.0537		
Final R indices $[F^2 > 2\sigma(F^2)]$	$R_1 = 0.0367, \omega R_2 = 0.0994$		
<i>R</i> indices (all data)	$R_1 = 0.0370, \omega R_2 = 0.0998$		

Table S1. Crystal data of complex 2.

Table S2. Selected geometrical parameters of compound 2 obtained fromcrystallography.

The B-N bond distance (Å)	1.559(2)
The B-O bond distance (Å)	1.483(2)
The B-F bond distances (Å)	1.371(2)
	1.379(2)
The O-B-N angle (deg)	106.6(1)
The N-B-F angles (deg)	109.4(1)
	111.2(1)
The angles O-B-F (deg)	109.3(1)
	109.4(1)
The F-B-F angle (deg)	110.8(1)
The C1-N1-C13-C14 torsion angle (deg)	46.8(2)
The C12-N1-C13-C18 torsion angle (deg)	43.8(2)
The C15-C16-C19-N2 torsion angle (deg)	-1.0(2)
The C17-C16-C19-O1 torsion angle (deg)	0.4(2)

Figure S2. DSC thermograms of complexes 2 and 3.

Figure S3. TGA curves of complexes 2 and 3.

Figure S4. DFT-optimised structures of compounds 2 and 3.

Figure S5. Experimental (top) and TD-DFT-predicted (bottom) absorption spectra of complex 2 in DCM.

Figure S6. Experimental (top) and TD-DFT-predicted (bottom) absorption spectra of complex 3 in DCM.

0	—	Energy	Wavelength	Oscillator	
Comp.	Transition	(eV)	(nm)	strength	Expansion coefficients for single-electron
	0 0	2.0572	405.54	0 (111	excitations*
	$S_0 \rightarrow S_1$	3.0572	405.54	0.6111	$0.69443 \text{ H} \rightarrow \text{L}$
	$S_0 \rightarrow S_2$	3.5238	351.84	0.0004	$0.70149 \text{ H-}1 \rightarrow \text{L}$
	$S_0 \rightarrow S_3$	3.8500	322.04	0.5292	$0.09353 \text{ H-}2 \rightarrow \text{L}$
	$S_0 \rightarrow S_4$	3.9/13	312.20	0.0273	$-0.16514 \text{ H}-1 \rightarrow L+4 / 0.6/5/9 \text{ H}-1 \rightarrow L+1$
	$S_0 \rightarrow S_5$	4.2903	288.98	0.0114	-0.42420 H-4→L / -0.13168 H-3→L / 0.42610 H→L+2 / 0.30000 H→L+3
2	$S_0 \rightarrow S_6$	4.3514	284.93	0.2045	-0.12580 H-3→L / 0.62966 H-1→L+1 / 0.24231 H→L+4
	$S_0 \rightarrow S_7$	4.5648	271.61	0.0184	0.28679 H-4→L / 0.48698 H-3→L / 0.38867 H→L+2
	$S_0 \rightarrow S_8$	4.6136	268.74	0.0379	-0.39828 H-4→L / 0.46634 H-3→L / -0.29601 H→L+2 / 0.11428 H→L+4
	$S_0 \rightarrow S_9$	4.7004	263.77	0.0061	0.60298 H-7→L / 0.11457 H→L+2 / -0.30321 H→L+3
	$S_0 \rightarrow S_{10}$	4.7112	263.17	0.0105	$0.34658 \text{ H-7} \rightarrow L / 0.16048 \text{ H-4} \rightarrow L / -0.20179 \text{ H} \rightarrow L+2 / 0.52547 \text{ H} \rightarrow L+3 / -0.10902 \text{ H} \rightarrow L+5$
	$S_0 \rightarrow S_{11}$	4.8783	254.15	0.1575	0.68039 H-5→L
					$0.15092 \text{ H}-3 \rightarrow \text{L}+1 / 0.56387 \text{ H}-1 \rightarrow \text{L}+2 / 0.10475$
	$S_0 \rightarrow S_{12}$	4.9281	251.59	0.1091	$H-1 \rightarrow L+5 / 0.13297 H-1 \rightarrow L+7 /$
					-0.31095 H→L+4
	$S_0 \rightarrow S_1$	2.9549	419.58	0.5850	0.69692 H→L
	$S_0 \rightarrow S_2$	3.3697	367.94	0.0001	0.70231 H-1→L
	$S_0 \rightarrow S_3$	3.8970	318.15	0.6714	0.69001 H-2→L / 0.10825 H→L+1
	$S_0 \rightarrow S_4$	4 0044	309.62	0.0146	-0 10647 H-2→L / 0 16595 H-1→L+4 /
	50 754	7.0077	507.02	0.0140	-0.10047 H^{-2} -2.7007 H^{-1} -1.12747
3a	$S_0 \rightarrow S_5$	4.2970	288.53	0.0179	$0.6/08/H \rightarrow L+1$ -0.38441 H-4 \rightarrow L / -0.25852 H-3 \rightarrow L / 0.14454 H- 1 \rightarrow L+1 / 0.38523 H \rightarrow L+2 / -0.30035 H \rightarrow L+3
	$S_0 \rightarrow S_6$	4.3460	285.28	0.0963	0.16959 H-4→L / -0.40894 H-3→L / 0.46259 H-1→L+1 / -0.18103 H→L+2 / 0.13145 H→L+3 / -0.14605 H→L+4
	$S_0 \rightarrow S_7$	4.4358	279.51	0.1864	0.50503 H-3→L / 0.43721 H-1→L+1 / -0.17908 H→L+4
					0.48858 H-4→L / 0.47951 H→L+2
	$S_0 \rightarrow S_8$	4.5851	270.41	0.0385	
	$S_0 \rightarrow S_9$	4.6830	264.75	0.0267	-0.21343 H-4→L / 0.24046 H→L+2 / 0.60252 H→L+3 / -0.11382 H→L+5
		1 70 40	262.22	0.0000	0.69340 H-7→L
	$S_0 \rightarrow S_{10}$	4.7262	262.33	0.0000	
					0.65223 H-5→L / -0.180/6 H-1→L+2
	$S_0 \rightarrow S_{11}$	4.8840	253.86	0.1310	
	$S_0 \rightarrow S_{12}$	4.8974	253.16	0.0277	0.19508 H-5→L / -0.11108 H-3→L+1 / 0.61448 H-1→L+2 / -0.19157 H-1→L+3 / 0.12131 H→L+4

Table S3. Calculated properties of the 12 lowest singlet excited states for complexes **2** and **3** determined through TD-DFT.

*H – HOMO, L – LUMO.

Optimized geometry for compound 2 obtained using the M06 method and def2tzvp basis set with the inclusion of DCM solvent effect through the conductor-like polarizable continuum model (CPCM).

Symbolic Z-matrix:

С	1.00004 -1.05748 0.69617
C	-0.38657 -1.09531 0.70556
С	-1.12816 -0.10358 0.04957
С	-0.45331 0.92322 -0.62583
С	0.9311 0.95654 -0.64918
С	1.66946 -0.03147 0.01701
Н	1.57584 -1.81409 1.23532
Н	-0.90924 -1.89103 1.2411
Н	-1.03558 1.68724 -1.14584
Н	1.45573 1.7431 -1.19789
С	-2.59464 -0.13129 0.06719
С	-4.59303 0.75652 -0.49935
0	-3.14071 -1.12919 0.69381
Ν	-3.261 0.82589 -0.53562
Ν	-5.31304 -0.19137 0.1059
S	-5.60443 1.93448 -1.26934
В	-4.59436 -1.3624 0.8782
F	-4.91488 -1.29811 2.20723
F	-4.95124 -2.56081 0.3228
С	3.92912 -1.04944 -0.30264
С	3.85515 1.14073 0.27183
С	3.62382 -2.35993 -0.67604
С	5.26764 -0.59643 -0.23593
С	3.46187 2.41825 0.67534
С	5.22072 0.80008 0.13302
С	4.68358 -3.21696 -0.95764
Н	2.59018 -2.70722 -0.75276
С	6.3151 -1.47604 -0.52322
С	4.45979 3.35918 0.90955
Н	2.40829 2.67546 0.81178
С	6.20541 1.76341 0.37145
С	6.01666 -2.78634 -0.87817
Н	4.46797 -4.24927 -1.24829
Н	7.35345 -1.13396 -0.47316
С	5.81792 3.04234 0.75352
Н	4.17535 4.36756 1.22399
Н	7.26464 1.50951 0.26508
Н	6.82452 -3.48804 -1.10307
Н	6.57585 3.80775 0.94164
Ν	3.07486 0.01317 0.00422
С	-7.01798 1.07901 -0.73106
Н	-8.01767 1.43703 -0.97188
С	-6.67131 -0.01998 -0.01938
Н	-7.34597 -0.74402 0.43964

Imaginary Frequency = 0

E(RM06) = -1708.84329592 a.u. E(TD-HF/TD-DFT) = -1708.73094456 a.u.

Optimized geometry for compound 3 obtained using the M06 method and def2tzvp basis set with the inclusion of DCM solvent effect through the conductor-like polarizable continuum model (CPCM).

Symbolic Z-matrix:

С	-0.70799 -0.90475 0.87174
С	-2.09395 -0.9361 0.89468
С	-2.83752 -0.09151 0.05883
С	-2.16255 0.78194 -0.8059
С	-0.77776 0.80781 -0.84038
С	-0.03753 -0.03469 0.00134
Н	-0.13264 -1.54203 1.54811
Н	-2.61461 -1.60967 1.57893
Н	-2.74583 1.43039 -1.46358
Н	-0.25626 1.46849 -1.53767
С	-4.30334 -0.11644 0.08518
С	-6.30584 0.63374 -0.64191
0	-4.84513 -0.9621 0.9082
Ν	-4.97437 0.69358 -0.70158
Ν	-7.02046 -0.17285 0.14735
S	-7.32629 1.63717 -1.62039
В	-6.29696 -1.17394 1.12474
F	-6.6269 -0.86966 2.41761
F	-6.63664 -2.45873 0.79787
С	2.20964 -1.11879 -0.08927
С	2.16602 1.13936 0.03856
С	1.90636 -2.47587 -0.21411
С	3.5509 -0.68481 -0.06975
С	1.81203 2.48438 0.16007
С	3.52295 0.75687 0.01937
С	2.963 -3.37427 -0.29166
Н	0.87373 -2.83208 -0.25848
С	4.59462 -1.61291 -0.14995
C	2.83421 3.4221 0.23752
Н	0.76677 2.8023 0.20193
С	4.53073 1.72357 0.09933
С	4.31836 -2.97554 -0.25679
Н	2.71892 -4.43725 -0.38722
Н	5.62419 -1.24498 -0.13259
C	4.20388 3.07493 0.20485
Н	2.54969 4.47525 0.33168
Н	5.5734 1.3943 0.08276
Ν	1.36637 -0.00564 -0.02501
С	5.26102 4.17576 0.29366
С	5.10698 4.92456 1.62155
Н	4.11806 5.40169 1.71843

Н	5.23498	4.23808	2.4758
Н	5.86856	5.71893	1.70698
С	5.08159	5.15535	-0.87043
Н	5.84686	5.94923	-0.82342
Н	5.1866	4.63952	-1.84012
Н	4.09498	5.64633	-0.85479
С	6.67778	3.61352	0.22666
Η	7.40834	4.43712	0.28424
Η	6.88933	2.926	1.06267
Η	6.86152	3.07258	-0.71688
С	5.4148	-4.03768	-0.34499
С	5.28821	-4.79281	-1.67225
Н	5.38976	-4.10289	-2.52728
Н	6.07905	-5.55807	-1.75724
Н	4.31812	-5.30723	-1.7683
С	6.81031	-3.42462	-0.2781
Н	6.97616	-2.88282	0.66826
Η	7.57037	-4.22066	-0.34174
Н	6.99438	-2.72457	-1.11026
С	5.27092	-5.02202	0.81996
Н	5.35792	-4.50192	1.78915
Н	4.30257	-5.54807	0.80536
Н	6.0641	-5.78801	0.77326
С	-8.73411	0.90951	-0.90712
Н	-9.73631	1.21481	-1.20374
С	-8.37986	-0.02581	0.00584
Н	-9.0484	-0.6419	0.60889

Imaginary Frequency = 0

E(RM06) = -2021.31501870 a.u.

E(TD-HF/TD-DFT) = -2021.20642669 a.u.

Figure S7. (a) Normalized emission spectra of dye 2 in different solid states ($\lambda_{ex} = 374$ nm). (b) Reversible switching of solid-state emission of dyes 2 and 3 by repeated grinding/DCM-fuming cycles.

State	λ _{em} , nm	PLQY _{solid}	τ, ns	α_1/α_2
pristine crystalline	514	0.26	0.99, 4.28	57.65/42.35
ground	500	0.24	0.94, 3.07	75.46/24.54
DCM-fumed	500	0.23	0.84, 3.07	74.57/25.43
film	514	0.24	2.30, 7.42	33.83/66.17

Table S4. Fluorescence properties of complex 2 in the solid states.

Figure S8. Fluorescence decay of complexes 2 and 3 in toluene solutions.

Figure S9. Fluorescence decay of complex **2** in the solid states: (a) pristine crystalline; (b) ground sample; (c) DCM-fumed sample; (d) film.

Figure S10. Fluorescence decay of complex **3** in the solid states: (a) pristine crystalline; (b) ground sample; (c) DCM-fumed sample; (d) film.

Figure S12. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5.

Figure S14. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 7.

Figure S15. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 8.

Figure S16. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 8.

Figure S18. ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound 9.

Figure S20. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound 10.

Figure S22. DEPT135 NMR (150 MHz, DMSO-*d*₆) spectrum of compound 10.

Figure S24. ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound 12.

Figure S26. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 13.

60 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) Figure S27 ¹³C NIMD (125 MILE CDC1) separateum of compound 13

Figure S30. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2.

60 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

Figure S32. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of compound 2.

Figure S34. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3.

60 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -4 f1 (ppm)

Figure S36. ¹⁹F NMR (470 MHz, CDCl₃) spectrum of compound 3.