Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Hancockiamides: Phenylpropanoid Piperazines from Aspergillus hancockii

are Biosynthesised by a Versatile Dual Single-module NRPS Pathway

Hang Li, ^{†a} Alastair E. Lacey, ^{†b} Si Shu, ^a John A. Kalaitzis, ^c Daniel Vuong, ^b Andrew Crombie, ^b Jinyu

Hu,^a Cameron L. M. Gilchrist,^a Ernest Lacey,^{b,c} Andrew M. Piggott,^{*c} Yit-Heng Chooi^{*a}

^a School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia

^b Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia

^c Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia

Table of Contents

Supplementary Experimental Procedures	S7
1. Strains and culture conditions	S7
2. Cultivation and Compounds isolation	S7
3. Compound characterization	S12
4. Synthesis of xenocockiamide analogs	S15
5. Reconstruction hkm pathway and heterologous expression in A. nidulans	S15
6. Analytical methods	S16
7. Expression and purification of Hkm11 from yeast	S17
8. In vitro enzymatic assay of Hkm11	S17
9. Yeast feeding assay	S18
10. Bioassays	S18
Supplementary Tables	S21
Table S1. Primers used in this study	S21
Table S2. Putative functions of hkm genes.	S23
Table S3. Plasmids used in this study	S24
Table S4. Strains used in this study.	S25
Table S5. Orthologous gene clusters identified in other fungal species.	S26
Table S6. Cinnamic acid homologues used for yeast feeding experiments together with hancockiamide D	S27
Table S7. ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for hancockiamide A (1) in DMSO- d_6	S28
Table S8. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide A (1) TFA salt in DMSO- d_6	S29
Table S9. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide B (2) in DMSO- d_6	S30
Table S10. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide C (3) in DMSO- d_6	S31
Table S11. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide D (4) in DMSO- d_6	S32
Table S12. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide D (4) di-TFA salt in DMSO- d_6	S33
Table S13. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide E (5) TFA salt in DMSO- d_6	S34
Table S14 ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide F (6) in DMSO- d_6	S35
Table S15. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide G (7) in DMSO- d_6	S36
Table S16. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide H (8) in DMSO- d_6	S37
Table S17. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for hancockiamide I (9) in DMSO- d_6	S38
Table S18. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data xenocockiamide A (10) DMSO- d_6	S39
Table S19. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for xenocockiamide B (11) in DMSO- d_6	S40
Table S20. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for xenocockiamide C (12) in DMSO- d_6	S41
Table S21. ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for xenocockiamide D (13) in DMSO- d_6	S42
Table S22. In vitro bioassay results for 1-13 identified in this study.	S43
Supplementary Figures	S44
Figure S1. Detailed analysis of Hkm1. (A) protein sequence alignment of the revised Hkm1 with nonsense sto	р
codon and PENARI_c033G11888 from Penicillium arizonense. (B) the missing region in predicted Hkm1 due	to
frameshift mutation	S44
Figure S2. HPLC metabolite profile of Aspergillus nidulans expressing hkm3–12.	S45
Figure S3. LCMS metabolite profile of the extracts from small scale culture (50 mL) of <i>Aspergillus nidulans</i>	
expressing <i>hkm4–12</i> grown on GMM liquid media.	S46
Figure S4. LCMS metabolite profile of the extracts <i>Aspergillus nidulans</i> expressing <i>hkm4–12</i> grown on YES	

media.	S47
Figure S5. SDS-PAGE analysis of the C-terminal His-tagged recombinant Hkm11	S48
Figure S6. In vivo verification of the function of Hkm5 by Aspergillus nidulans feeding experiments	S49
Figure S7. Homologous gene clusters identified in public genome databases using hkm cluster as query sec	juence
via cblaster (<u>https://zenodo.org/record/3660769</u>) tool	S50
Figure S8. Phenylpropanoid piperazines isolated from fungi	S51
Figure S9. HPLC chromatograms of synthetic and natural xenocockiamide A (10).	S52
Figure S10. HPLC chromatograms of synthetic and natural xenocockiamide B (11).	S52
Figure S11. HPLC chromatograms of synthetic and natural xenocockiamide C (12).	S53
Figure S12. HPLC chromatograms of synthetic and natural xenocockiamide D (13)	S53
Figure S13. ¹ H NMR spectrum (500 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1)	S54
Figure S14. ¹³ C NMR spectrum (125 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1)	S55
Figure S15. ¹ H- ¹³ C HSQC spectrum (500 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1)	S56
Figure S16. ¹ H- ¹³ C HMBC NMR spectrum (500 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1)	S57
Figure S17. COSY NMR spectrum (500 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1)	S58
Figure S18. ROESY NMR spectrum (500 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1)	S59
Figure S19. ¹ H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide A (1) TFA salt	S60
Figure S20. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1) TFA salt	S61
Figure S21. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1) TFA salt	S62
Figure S22. ¹ H- ¹³ C HMBC NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide A (1) TFA salt	S63
Figure S23. COSY NMR spectrum (600 MHz, DMSO-d ₆) of hancockiamide A (1) TFA salt	S64
Figure S24. NOESY NMR spectrum (600 MHz, DMSO-d ₆) of hancockiamide A (1) TFA salt	S65
Figure S25. ¹ H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide B (2)	S66
Figure S26. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide B (2)	S67
Figure S27. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide B (2)	S68
Figure S28. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide B (2)	S69
Figure S29. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide B (2)	S70
Figure S30. NOESY spectrum (600 MHz, DMSO-d ₆) of hancockiamide B (2)	S71
Figure S31. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide C (3)	S72
Figure S32. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide C (3)	S73
Figure S33. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide C (3)	S74
Figure S34. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide C (3)	S75
Figure S35. COSY spectrum (600 MHz, DMSO-d ₆) of hancockiamide C (3)	S76
Figure S36. NOESY spectrum (600 MHz, DMSO-d ₆) of hancockiamide C (3)	S77
Figure S37. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D (4)	S78
Figure S38. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide D (4)	S79
Figure S39. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D (4)	S80
Figure S40. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D (4)	S81
Figure S41. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D (4)	S82
Figure S42. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D (4)	S83
Figure S43. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D di-TFA salt (4)	S 84
Figure S44. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide D di-TFA salt (4)	S85
Figure S45. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D di-TFA salt (4)	S86
Figure S46. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D di-TFA salt (4)	S87

Figure S47. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D di-TFA salt (4)	S88
Figure S48. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide D di-TFA salt (4)	S89
Figure S49. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide E TFA salt (5)	S 90
Figure S50. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide E TFA salt (5)	S 91
Figure S51. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide E TFA salt (5)	S92
Figure S52. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide E TFA salt (5)	S93
Figure S53. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide E TFA salt (5)	S94
Figure S54. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide E TFA salt (5)	S95
Figure S55. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide F (6)	S96
Figure S56. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of hancockiamide F (6)	S97
Figure S57. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide F (6)	S98
Figure S58. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide F (6)	S99
Figure S59. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide F (6)	S100
Figure S60. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide F (6)	S101
Figure S61. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide G (7)	S102
Figure S62. ¹³ C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide G (7)	S103
Figure S63. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide G (7)	S104
Figure S64. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide G (7)	S105
Figure S65. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide G (7)	S106
Figure S66. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide G (7)	S107
Figure S67. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide H (8)	S108
Figure S69. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide H (8)	S110
Figure S70. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide H (8)	S111
Figure S71. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide H (8)	S112
Figure S72. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide H (8)	S113
Figure S73. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide I (9)	S114
Figure S74. ¹³ C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide I (9)	S115
Figure S75. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of hancockiamide I (9)	S116
Figure S76. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide A (10)	S117
Figure S77. ¹³ C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide A (10)	S118
Figure S78. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide A (10)	S119
Figure S79. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide A (10)	S120
Figure S80. COSY spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide A (10)	S121
Figure S81. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide A (10)	
Figure S82. Comparison of ¹ H NMR spectra (600 MHz, DMSO- d_6) of natural and synthetic xenocock	iamide A
(10)	S123
Figure S83. Comparison of 13 C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenococ	kiamide A
(10)	S124
Figure S84. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide B (11)	S125
Figure S85. ¹³ C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide B (11)	S126
Figure S86. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- d_6) of xenocockiamide B (11)	S127
Figure S87. ¹ H- ¹³ C HMBC spectrum (600 MHz, DMSO- d_6) of xenocockiamide B (11)	S128
Figure S88. COSY spectrum (600 MHz, DMSO- d_6) of xenocockiamide B (11)	S129
Figure S89. ROESY spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide B (11)	S130

Figure S90. Comparison of ¹ H NMR spectra (600 MHz, DMSO- <i>d</i> ₆) of natural and synthetic xenococl	ciamide B
(11)	S131
Figure S91. Comparison of ¹³ C NMR spectra (150 MHz, DMSO- <i>d</i> ₆) of natural and synthetic xenococ	kiamide B
(11)	S132
Figure S92. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide C (12)	S133
Figure S93. ¹³ C NMR spectrum (150 MHz, DMSO- <i>d</i> ₆) of xenocockiamide C (12)	
Figure S94. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide C (12)	S135
Figure S95. Comparison of ¹ H NMR spectra (600 MHz, DMSO- <i>d</i> ₆) of natural and synthetic xenococl	ciamide C
(12)	S136
Figure S96. Comparison of 13 C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenococ	kiamide C
(12)	S137
Figure S97. ¹ H NMR spectrum (600 MHz, DMSO- <i>d</i> ₆) of xenocockiamide D (13)	S138
Figure S98. ¹³ C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide D (13)	S139
Figure S99. ¹ H- ¹³ C HSQC spectrum (600 MHz, DMSO- d_6) of xenocockiamide D (13)	
Figure S100. Comparison of ¹ H NMR spectra (600 MHz, DMSO- d_6) of natural and synthetic xenocod	ckiamide D
(13)	S141
Figure S101. Comparison of 13 C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenoco	ckiamide D
(13)	
Figure S102. HRESI(+)MS spectrum of hancockiamide A (1)	S143
Figure S103. HRESI(+)MS spectrum of hancockiamide B (2)	
Figure S104. HRESI(+)MS spectrum of hancockiamide C (3)	
Figure S105. HRESI(+)MS spectrum of hancockiamide D (4)	S146
Figure S106. HRESI(+)MS spectrum of hancockiamide E (5)	
Figure S107. HRESI(+)MS spectrum of hancockiamide F (6)	
Figure S108. HRESI(+)MS spectrum of hancockiamide G (7)	S149
Figure S109. HRESI(+)MS spectrum of hancockiamide H (8)	S150
Figure S110. HRESI(+)MS spectrum of hancockiamide I (9)	S151
Figure S111. HRESI(+)MS spectrum of natural xenocockiamide A (10)	S152
Figure S112. HRESI(+)MS spectrum of synthetic xenocockiamide A (10)	S153
Figure S113. HRESI(+)MS spectrum of natural xenocockiamide B (11)	S154
Figure S114. HRESI(+)MS spectrum of synthetic xenocockiamide B (11)	S155
Figure S115. HRESI(+)MS spectrum of natural xenocockiamide C (12)	S156
Figure S116. HRESI(+)MS spectrum of synthetic xenocockiamide C (12)	S157
Figure S117. HRESI(+)MS spectrum of natural xenocockiamide D (13)	S158
Figure S118. HRESI(+)MS spectrum of synthetic xenocockiamide D (13)	S159
Figure S119. UV-vis spectrum of hancockiamide A (1)	S160
Figure S120. UV-vis spectrum of hancockiamide B (2)	
Figure S121. UV-vis spectrum of hancockiamide C (3)	S160
Figure S122. UV-vis spectrum of hancockiamide D (4)	S161
Figure S123. UV-vis spectrum of hancockiamide E (5)	
Figure S124. UV-vis spectrum of hancockiamide F (6)	
Figure S125. UV-vis spectrum of hancockiamide G (7)	
Figure S126. UV-vis spectrum of hancockiamide H (8)	
Figure S127. UV-vis spectrum of hancockiamide I (9)	

Supplementary references	
Sumplementary references	S167
Figure S131. UV-vis spectrum of xenocockiamide D (13)	S166
Figure S130. UV-vis spectrum of xenocockiamide C (12)	S165
Figure S129. UV-vis spectrum of xenocockiamide B (11)	S164
Figure S128. UV-vis spectrum of xenocockiamide A (10)	S163

Supplementary Experimental Procedures

1. Strains and culture conditions

The wild-type *A. hancockii* was maintained in PDA (potato dextrose agar) at 24°C. High molecular weight genomic DNA of *A. hancockii* was prepared according to the protocol described previously.¹ Saccharomyces cerevisiae BJ5464-NpgA (*MATa ura3-52 his3-\Delta200 leu2-\Delta1trp1 pep4::HIS3 prb1 \Delta1.6R can1 GAL) was used for plasmid construction and protein expression. Aspergillus nidulans LO7890² (a gift from Prof. Berl Oakley, University of Kansas) was used for heterologous expression of <i>hkm* genes. Escherichia coli 5 α and 10 β were used for standard DNA manipulation.

2. Cultivation and Compounds isolation

The fungus (A. hancockii MST FP2241) was inoculated onto jasmine rice (sterilized at 120 °C for 40 min) in 60 × 250 mL Erlenmeyer flasks, each containing 50 g of rice, and the flasks were incubated at 24 °C for 14 days. The grains were pooled and extracted with acetone (2 × 4.5 L), and the combined extract was concentrated under reduced pressure to give a crude extract (57 g in 1250 mL). The slurry was partitioned against AcOEt (2 × 2 L) and organic layer was reduced *in vacuo* forming an oily residue (15.3 g). The residue was dissolved in MeOH (900 mL), defatted with hexane (2 × 1 L) and evaporated *in vacuo* to give an enriched methanolic extract (7 g).

The methanolic extract was dissolved in $CHCl_3$ (300 mL) and absorbed onto silica gel (30 g) then dried *in vacuo* and loaded onto a silica gel column (100 g, 5 × 30 cm). The column was eluted with hexane, then 50% hexane/CHCl₃ and CHCl₃, followed by incremental steps of 1, 2, 4, 8, 16, 32, 64 and 100% MeOH/CHCl₃ (500 mL each fraction), to yield 11 fractions (Fr A1 to A11).

Fraction A4 (1.5 g) was purified by preparative HPLC (Hypersil C₁₈, incremental steps 58-75-100% MeCN/H₂O containing 0.01% TFA, 60 mL min⁻¹) for 16.5, 14 and 10 min, respectively, to yield hancockiamide B (**2**; $t_{\rm R}$ 14.20 min; 28.3 mg), hancockiamide C (**3**; $t_{\rm R}$ 22.00 min; 160 mg) and an enriched fraction (Fr D7/8; 110 mg). Fr D7/8 was further purified by preparative HPLC (Alltima C₁₈, isocratic 35% MeCN/H₂O, 20 mL min⁻¹) to yield hancockiamide F (**6**; $t_{\rm R}$ 25.10 min; 1.7 mg).

Fraction A6 (700 mg) was enriched by preparative HPLC (Hypersil C₁₈, incremental steps 40-60-80-100% MeCN/H₂O containing 0.01% TFA, 60 mL min⁻¹) for 12, 11, 9 and 12 min, respectively, to give hancockiamide A TFA salt (**1**; $t_{\rm R}$ 10.30 min; 216 mg) and an enriched fraction

(Fr C2; 51 mg). Fr C2 was further purified by preparative HPLC (Alltima C₁₈, isocratic 35% MeCN/H₂O containing 0.01% TFA, 20 mL min⁻¹) to yield hancockiamide E TFA salt (**5**; $t_{\rm R}$ 19.00 min; 2.0 mg).

Fraction A10 (310 mg) was further fractionated using Sephadex LH-20 size-exclusion chromatography with MeOH as the eluent (3×28 cm, 2 mL min⁻¹) and resolved into six fractions (Fr B1 to B6).. Fr B2 (75 mg) was further purified by preparative HPLC (Alltima C₁₈, isocratic 15% MeCN/H₂O containing 0.01% TFA, 20 mL min⁻¹) to give hancockiamide D di-TFA salt (**4**; *t*_R 10.15 min; 3.0 mg). (see isolation scheme below)

The fungus (A. hancockii MST FP2241) was inoculated onto jasmine rice (sterilized at 120 °C

for 40 min) in 60 × 250 mL Erlenmeyer flasks, each containing 50 g of rice, and the flasks were incubated at 24 °C for 14 days. The grains were pooled and extracted with acetone (1 × 5 L), and the extract was evaporated under reduced pressure to give a crude extract (90 g in 1500 mL). The slurry was partitioned against AcOEt (2 × 2 L) and the organic layer reduced *in vacuo* to an oily residue (13.5 g). The non-polar extract was dissolved in AcOEt (1 L) and partitioned against aqueous HCl (2 × 500 mL; 1% v/v) to extract the amines. The aqueous layer was then basified to pH 8.9 with NaOH (10 M) solution and partitioned against AcOEt (2 × 500 mL). The combined organic layer was then evaporated *in vacuo* to yield an enriched amine fraction (1.3 g). The amines were further purified by preparative HPLC (Zorbax Si, stepwise in 10% increments from 60% to 100% AcOEt/hexane, 80 mL min⁻¹) for 10 min at each increment to yield hancockiamide A (1; t_R 18.65 min; 226 mg) and hancockiamide D (4; t_R 44.87 min; 100 mg).

The fungus (A. nidulans MST FP2506) was inoculated onto sterile YES agar [yeast extract (40

g), sucrose (300 g), agar (40 g) in distilled water to 2 L autoclaved 120 °C for 40 min], and incubated at 24 °C for 14 days, after which the agars were pooled and extracted with acetone (2 × 4 L). The combined extract was evaporated *in vacuo* to produce a crude extract (43 g in 1600 mL). The slurry was partition against AcOEt (2 × 2 L) and organic layer was reduced *in vacuo* to an oily residue (10 g). The residue was dissolved in MeOH (400 mL), defatted with hexane (2 × 500 mL) and evaporated *in vacuo* to give an enriched methanolic extract (4.8 g).

The methanolic extract was dissolved in $CHCl_3$ (300 mL) and absorbed onto silica gel (30 g) then dried *in vacuo* and loaded onto a silica gel column (100 g, 5 × 30 cm). The column was eluted with hexane, then 50% hexane/CHCl₃ and CHCl₃, followed by incremental steps of 1, 2, 4, 8, 16, 32, 64 and 100% MeOH/CHCl₃ (500 mL each fraction), to yield 11 fractions (Fr A1 to A11).

Fraction A4 (630 mg) was further fractionated by preparative HPLC (Zorbax Si, stepwise in 5% increments from 5% to 25% EtOH/hexane, 80 mL min⁻¹) for 5 min at each increment to give B1 to 22 fractions.

Fraction B9 (6.2 mg) was purified by Sephadex LH-20 size-exclusion chromatography with MeOH as the eluent (3×28 cm, 2 mL min⁻¹) to yield xenocockiamide D (**13**; 4 mg). Fraction B11 (14 mg) was further enriched by Sephadex LH-20 size-exclusion chromatography with MeOH as the eluent (3×28 cm, 2 mL min⁻¹) to give an enriched fraction (9 mg) which was purified preparative HPLC (Grace Si, incremental steps of 2.5% from 17.5% to 40% AcOEt/hexane, 7 mL min⁻¹) for 5 min at each increment to yield xenocockiamide B (**11**; *t*_R 32.55 min; 3.3 mg). Fraction B14 (6.7 mg) was enriched by Sephadex LH-20 size-exclusion chromatography with MeOH as the eluent (3×28 cm, 2 mL min⁻¹) to yield (6.0 mg) which was purified by preparative HPLC (Grace Silica, stepwise in 2.5% increments from 17.5% to 40% AcOEt/hexane, 7 mL min⁻¹) to yield hancockiamide I (**9**; *t*_R 35.80 min; 2.3 mg). Fraction B16 (65 mg) was purified by Sephadex LH-20 size-exclusion chromatography with MeOH as the eluent (2×55 cm, at 4 mL min⁻¹) to yield xenocockiamide C (**12**; 41 mg). Fraction B19 (25 mg) was purified by Sephadex LH-20 size-exclusion chromatography with MeOH as the eluent (2×55 cm, at 4 mL min⁻¹) to yield hancockiamide G (**7**; 8 mg).

Fraction A9 (1 g) was dissolved in AcOEt (200 mL) and partitioned against aqueous HCl (2×100 mL; 1% v/v) to extract the amines. The aqueous layer was then basified to pH 8.7 with NaOH (10 M) solution and partitioned against AcOEt (2×200 mL). The combined organic layer was

evaporated *in vacuo* to yield an enriched amine fraction (123 mg). The amines were further purified by preparative HPLC (Grace Si, stepwise in 5% increments from 5% to 50% EtOH/hexane, 7 mL min⁻¹) for 3 min up until 25% and 6 min increments to 100% to yield xenocockiamide A (**10**; t_R 11.50 min; 47 mg) and hancockiamide H (**8**; t_R 16.75 min; 10.4 mg). (see isolation scheme below)

3. Compound characterization

HRESI(+)MS analysis of hancockiamide B (2) revealed an adduct ion $[M + Na]^+ m/z 537.2359$, indicative of a molecular formula C₃₁H₃₄N₂O₅ (Δ mmu –0.1) corresponding to an increase of C₂H₂O compared to **1**. The ¹H (Figure S19) and ¹³C (Figure S20) NMR spectra of **2** in DMSO-*d*₆ were considerably more complex than those of **1**, with four closely matched sets of signals in a 46:25:16:13 ratio and significant peak broadening observed for many of the resonances. The NMR data for the major conformer (Table S9) were generally consistent with those for **1**, with the main differences being the absence of a signal corresponding to 1-NH and presence of additional resonances for an acetyl group (C-1^{*'''*}, $\delta_{\rm C}$ 169.5; C-2^{*'''*}, $\delta_{\rm H}$ 2.03, s, 3H; $\delta_{\rm C}$ 21.9). Detailed analysis of the remaining 2D NMR correlations (Figure S22) confirmed the structure of **2** to be the *N*¹-acetyl analogue of **1**, as shown in Figure 1.

HRESI(+)MS analysis of hancockiamide C (**3**) revealed an adduct ion $[M + Na]^+ m/z 535.2204$, indicative of a molecular formula $C_{31}H_{32}N_2O_5$ (Δ mmu 0.1) corresponding to an decrease of H_2 compared to **2**. The ¹H (Figure S25) and ¹³C (Figure S26) NMR spectra of **3** in DMSO- d_6 were very similar to those of **2**, again with four closely matched sets of signals in a 49:30:12:9 ratio and significant peak broadening. The NMR data for the major conformer (Table S10) were generally consistent with those for **2**, with the only significant differences being the absence of resonances for 7-OH and 8-OMe, a break in symmetry for Ring A, and the presence of an additional deshielded methylene group (δ_H 5.79, br s and 5.58, br s; δ_C 100.9). Diagnostic HMBC correlations (Figure S28) from this methylene group to C-7 and C-8 suggested cyclization between 7-OH and 8-OMe to give a 7,8-methylenedioxy ring. Detailed analysis of the remaining 2D NMR correlations (Figure S28) confirmed the structure of **3** as shown in Figure 1.

HRESI(+)MS analysis of hancockiamide D (4) revealed a protonated molecule $[M + H]^+ m/z$ 343.2017, indicative of a molecular formula C₂₀H₂₆N₂O₃ (Δ mmu 0.1) corresponding to a decrease of C₉H₆O compared to 1. The ¹H (Figure S31) and ¹³C (Figure S32) NMR spectra of 4 in DMSO-*d*₆ were much simpler than those of 1–3, with no evidence of peak doubling or broadening. The NMR data for 4 (Table S11) revealed signals corresponding to Rings A and B and the central piperazine ring of 1, but no signals corresponding to the cinnamoyl group. Detailed analysis of the remaining 2D NMR correlations (Figure S34) confirmed the structure of 4 to be the *N*^{1'}-descinnamoyl analogue of 1, as shown in Figure 1.

HRESI(+)MS analysis of hancockiamide E (5) revealed a protonated molecule $[M + H]^+ m/z$ 547.2432, indicative of a molecular formula $C_{31}H_{34}N_2O_7$ (Δ mmu –0.7) corresponding to an increase of $C_2H_2O_3$ compared to **1**. The ¹H (Figure S43) and ¹³C (Figure S44) NMR spectra of **5** in DMSO- d_6 were similar to those of **1**, with two closely paired sets of signals in an 80:20 ratio and significant peak broadening. The NMR data for the major conformer (Table S13) were consistent with Rings A, and C, and central piperazine ring of **1**. However, examination of the resonances for Ring B suggested the presence of an asymmetrically 1,3,4,5-tetrasubstituted aromatic ring rather than the monosubstituted aromatic ring in **1**. Additional resonances for a single methoxy group (6'-OMe, δ_H 3.84, s; δ_C 56.3) and a methylenedioxy group (δ_H 5.99, br s, 2H; δ_C 101.2) suggested the same substitution pattern as Ring A in **3**. Detailed analysis of the remaining 2D NMR correlations (Figure S46) confirmed the structure of **5** as shown.

HRESI(+)MS analysis of hancockiamide F (6) revealed an adduct ion $[M + Na]^+ m/z$ 551.2148, indicative of a molecular formula $C_{31}H_{32}N_2O_6$ (Δ mmu –0.5) containing one additional oxygen atom compared to **3**. The ¹H (Figure S49) and ¹³C (Figure S50) NMR spectra of **6** in DMSO-*d*₆ contained two sets of closely paired signals in a 79:21 ratio, although there was no evidence of the peak

broadening observed in 1–3 and 5. The NMR data for the major conformer (Table S14) were consistent with Rings A, B and C, the *N*-acetyl group and central piperazine ring of 3. The main differences were the absence of signal for H-2 and the significant deshielding of C-2 (δ_C 204.1), consistent with the presence of a ketone carbonyl group. The presence of HMBC correlations from H₂-1 to C-2'and the absence of corresponding correlations from H₂-1' to C-2 suggested cleavage of the central piperazine ring between 1'-N and C-2. Detailed analysis of the remaining 2D NMR correlations (Figure S52) confirmed the structure of 6 to be a ring-opened analogue of 3, as shown in Figure 1. The compound was tentatively assigned a 2'S configuration on biosynthetic grounds.

HRESI(+)MS analysis of **7** revealed a protonated molecule $[M + H]^+ m/z 471.2273$, indicative of a molecular formula C₂₉H₃₀N₂O₄ (Δ mmu –0.5) corresponding to a decrease of C₂H₂O compared to **3**. Indeed, the NMR data for **7** (Table S15) were very similar to those for **3**, with the main differences being the absence of signals for the N¹-acetyl group and the presence of an additional exchangeable proton ($\delta_{\rm H}$ 2.20, br s). Detailed analysis of the remaining 2D NMR correlations (Figure S58) confirmed the structure of **7** as the N¹-desacetyl analogue of **1**.

HRESI(+)MS analysis of **8** revealed a protonated molecule $[M + H]^+ m/z$ 341.1860, indicative of a molecular formula C₂₀H₂₄N₂O₃ (Δ mmu 0.0) corresponding to one DBE less than **4**. Detailed analysis of the 2D NMR correlations (Figure S64) confirmed the structure of **8** to be the 7,8-methylenedioxy analogue of **4**.

HRESI(+)MS analysis of **9** revealed a protonated molecule $[M + H]^+ m/z$ 601.2695, indicative of a molecular formula $C_{38}H_{36}N_2O_5$ (Δ mmu –0.1) corresponding to an increase of C_9H_6O compared to **7**. The ¹H NMR signals for **9** (Figure S67) were broadened to such an extent that few individual peaks could be resolved and virtually no 2D couplings were observed. However, careful inspection and integration of the ¹H-¹³C HSQC NMR spectrum (Figure S69) revealed signals consistent with one methoxy group, one methylenedioxy group and two cinnamoyl groups. Therefore, the structure of **9** was tentatively assigned to be the N^1 -cinnamoyl analogue of **7**.

The structure of **10** was confirmed by comparison of spectroscopic data (Figures S70-S73) and HPLC retention time (Figure S7) with an authentic synthetic sample of 2,5-dibenzylpiperazine. The structures of **11–12** were also confirmed following mono- and di-derivatisation of synthetic **10** with cinnamoyl chloride. The spectroscopic data (Figures S88-S94) and HPLC retention times (Figures S8-S9) for the synthetic **11–12** were identical to those for the natural samples.

HRESI(+)MS analysis of **13** revealed a protonated molecule $[M + H]^+ m/z$ 501.2539, indicative of a molecular formula $C_{34}H_{32}N_2O_2$ (Δ mmu 0.2) corresponding to a decrease of C_2H_4 compared to **12**. The ¹H NMR signals for **13** were also significantly broadened and very challenging to interpret. However, careful inspection and integration of the ¹H-¹³C HSQC NMR spectrum (Figure S97) revealed only one isolated double bond, suggesting the presence of only one cinnamoyl group. Given the decrease of C_2H_4 compared to **12**, we hypothesised that **13** may be the corresponding N^1 -benzoyl analogue.. This hypothesis was confirmed by derivatisation of synthetic **11** with benzoyl chloride. The spectroscopic data (Figures S98-S99) and HPLC retention time (Figure S10) for the synthetic **13** were identical to those for the natural samples.

Hancockiamide A (1): White solid. $[\alpha]_D^{22}$ +110 (*c* 0.11, MeOH). UV (MeCN) λ_{max} (log ε) 207 (4.86), 242 (4.20), 275 (4.37) nm. HRESI(+)MS *m/z* 495.2252 [M+Na]⁺ (calcd. for C₂₉H₃₂N₂O₄Na⁺ 495.2254).

Hancockiamide B (2): White solid. $[\alpha]_D^{22}$ +92 (c 0.05, MeOH). UV (MeCN) λ_{max} (log ε) 206

(4.75), 237sh (4.10), 275 (4.28) nm. HRESI(+)MS m/z 537.2359 [M+Na]⁺ (calcd. for $C_{31}H_{34}N_2O_5Na^+$ 537.2360).

Hancockiamide C (3): White solid. $[\alpha]_D^{22}$ +129 (*c* 0.09, MeOH). UV (MeCN) λ_{max} (log ε) 209 (4.79), 253sh (4.20), 277 (4.34) nm. HRESI(+)MS *m*/*z* 535.2204 [M+Na]⁺ (calcd. for $C_{31}H_{32}N_2O_5Na^+$ 535.2203).

Hancockiamide D (4): Off-white solid. $[\alpha]_D^{22}$ +2 (*c* 0.04, MeOH). UV (MeCN) λ_{max} (log ε) 208 (4.76), 238sh (3.89), 273 (3.48) nm. HRESI(+)MS *m*/*z* 343.2017 [M+H]⁺ (calcd. for C₂₀H₂₇N₂O₃⁺ 343.2016).

Hancockiamide E (5): Off-white solid. $[\alpha]_D^{22}$ +83 (*c* 0.04, MeOH). UV (MeCN) λ_{max} (log ε) 208 (4.92), 240 (4.20), 275 (4.29) nm. HRESI(+)MS *m*/*z* 547.2432 [M+H]⁺ (calcd. for C₃₁H₃₅N₂O₇⁺ 547.2439).

Hancockiamide F (6): Off-white solid. $[α]_D^{22}$ +84 (*c* 0.10, MeOH). UV (MeCN) $λ_{max}$ (log ε) 207 (4.76), 271 (4.38), 297sh (4.00) nm. HRESI(+)MS *m/z* 551.2148 [M+Na]⁺ (calcd. for $C_{31}H_{32}N_2O_6Na^+$ 551.2153).

Hancockiamide G (7): White Solid. $[\alpha]_D^{22}$ +70 (*c* 0.20, MeOH). UV (MeCN) λ_{max} (log ε) 207 (4.48), 250sh (3.86), 274 (3.96) nm. HRESI(+)MS *m*/*z* 471.2273 [M+H]⁺ (calcd. for C₂₉H₃₁N₂O₄⁺ 471.2278).

Hancockiamide H (8): Pale yellow oil. $[\alpha]_D^{22}$ –6 (*c* 0.22, MeOH). UV (MeCN) λ_{max} (log ε) 209 (4.62), 238sh (3.75), 277 (3.18) nm. HRESI(+)MS *m/z* 341.1860 [M+H]⁺ (calcd. for C₂₀H₂₅N₂O₃⁺ 341.1860).

Hancockiamide I (9): White Solid. $[α]_D^{22}$ +49 (*c* 0.11, MeOH). UV (MeCN) $λ_{max}$ (log ε) 205sh (4.26), 211sh (4.25), 223sh (3.97), 276 (3.96) nm. HRESI(+)MS *m/z* 601.2695 [M+H]⁺ (calcd. for C₃₈H₃₇N₂O₅⁺ 601.2697).

Xenocockiamide A (10): Pale yellow oil. $[α]_D^{22}$ –7 (*c* 0.25, MeOH). UV (MeCN) $λ_{max}$ (log ε) 260 (2.89). HRESI(+)MS *m/z* 267.1856 [M+H]⁺ (calcd. for C₁₈H₂₃N₂⁺ 267.1856).

Xenocockiamide B (11): Off-white solid. $[\alpha]_D^{22}$ +123 (*c* 0.16, MeOH). UV (MeCN) λ_{max} (log ϵ) 217sh (4.31), 276 (4.18) nm. HRESI(+)MS *m/z* 397.2271 [M+H]⁺ (calcd. for C₂₇H₂₉N₂O⁺ 397.2274).

Xenocockiamide C (12): Off-white solid. $[\alpha]_D^{22}$ +47 (*c* 0.16, MeOH). UV (MeCN) λ_{max} (log ϵ) 211sh (4.14), 217 (4.10), 277 (4.04) nm. HRESI(+)MS *m/z* 527.2689 [M+H]⁺ (calcd. for $C_{36}H_{35}N_2O_2^+$ 527.2693).

Xenocockiamide D (13): Pale yellow oil. $[\alpha]_D^{22}$ +42 (*c* 0.17, MeOH). UV (MeCN) λ_{max} (log ϵ) 216sh (4.02), 275 (3.75) nm. HRESI(+)MS *m/z* 501.2539 [M+H]⁺ (calcd. for C₃₄H₃₃N₂O₂⁺ 501.2537).

4. Synthesis of xenocockiamide analogs

Cinnamoyl chloride (200 mg; 1.20 mmol) was dissolved in MeCN (2 mL) and added dropwise to a stirred solution of xenocockiamide A (**10**; 110 mg; 4.0 mmol) in MeCN (20 mL). After 60 min, the reaction mixture was diluted with sat. NaHCO₃ (100 mL) and extracted with AcOEt (100 mL). The organic extract was reduced *in vacuo* and purified by preparative HPLC (Zorbax C₁₈, 50% MeCN/H₂O for 12 min increased to 100% MeCN for 8 min, 20 mL min⁻¹) to yield xenocockiamide B (**11**; t_R 8.67 min; 40.2 mg, 36.5%) and xenocockiamide C (**12**; t_R 19.46 min; 14.4 mg, 13.1%). Benzoyl chloride (254 mg; 1.81 mmol) was added dropwise to a stirred solution of xenocockiamide B (**11**; 16.6 mg; 41.9 µmol) in MeCN (5 mL) containing triethylamine (30 µL), which was chilled to -20 °C prior to the reaction. After 18 h, the reaction mixture was recovered by dilution with H₂O (50 mL) and partitioned against AcOEt (50 mL). The organic extract was reduced *in vacuo* and purified by preparative HPLC (Zorbax C₁₈, isocratic 75% MeCN, 20 mL min⁻¹) to yield xenocockiamide D (**13**; t_R 12.87 min; 17.4 mg, 82.7%).

5. Reconstruction hkm pathway and heterologous expression in A. nidulans

The entire *hkm* gene cluster were cloned as three separate fragments into three AMA1-based episomal vectors with three different auxotrophy markers (*pyrG*, *riboB* and *pyrO*) under the native *hkm* gene promoters and terminators by yeast transformation-assisted recombination. Briefly, full length of *hkm6-11* fragment was amplified by PCR with three sets of primers from *A. hancockii* gDNA (Table S1). Then *S. cerevisiae* strain BJ5464-NpgA competent cells were transformed by the three overlapping DNA fragments and NotI-digested pYFAC-pyrG to generate plasmid pYFAC-CS1 by yeast homologous recombination. *Hkm1-5* whole region and *hkm12* were amplified with the designed primers (Table S1) and ligated into the NotI site of pYFAC-ribo and pYFAC-pyrO, respectively, to get pYFAC-CS2 and pYFAC-CS3 plasmids (see the below diagram). For the partial gene cluster expression plasmids were constructed using the same method only with the difference in the gene fragment that amplified and cloned into the pYFAC vectors (see Table S3). Yeast miniprep of corrected transformants was performed with ZymoprepTM Yeast Plasmid Miniprep I Kit. The resulting heterologous expression plasmids were introduced into *A. nidulans* LO7890 by polyethylene glycol protoplast transformation as described previously.³

6. Analytical methods

Analytical HPLC was performed on a gradient Agilent 1260 Infinity quaternary HPLC system. Preparative HPLC was performed on a gradient Shimadzu HPLC system comprising two LC-8A preparative liquid pumps with static mixer, SPD-M10AVP diode array detector and SCL-10AVP system controller with Rheodyne 7725i injection port. The columns used in the purification of the metabolites were selected from either a Hypersil C_{18} column (50 × 100 mm, 5 µm; Grace Discovery), or an Alltima C_{18} column (22 × 250 mm, 5 µm; Grace Discovery), eluted as isocratic or incremental stepped gradients with MeCN/water mixtures with or without 0.01% TFA modifier, as described for each separation. Preparative silica chromatography was undertaken using a Zorbax Si column (21.2 × 250 mm, 5 µm; Agilent) or Alltima Si column (10 × 250 mm, 10 µm; Grace) eluting with EtOH/hexane or AcOEt/hexane gradients. LCMS was performed on an Agilent 1260 Infinity series HPLC equipped with an Agilent 6130 Infinity series single quadrupole mass detector in both positive and negative ion modes.

For the *A. nidulans hkm* expressing strains, extracts from both mycelium and media were analyzed. Mycelium was collected by filtration and extracted with acetone. Media was extracted with either ethyl acetate/methanol/acetic acid (89.5:10:0.5). The crude extracts were dried down in vacuo and re-dissolved in methanol for LC-MS analysis. LC-DAD-MS metabolite profiles were performed on an Agilent 1260 liquid chromatography (LC) system coupled to a diode array detector (DAD) andm an Agilent 6130 Quadrupole mass spectrometer (MS) with an ESI source. Chromatographic separation was performed at 40 °C using a Kinetex C18 column (2.6 μm, 2.1 mm × 100 mm; Phenomenex). Chromatographic separation was achieved with a linear gradient of 5-95% MeCN-H₂O (0.1% (v/v) formic acid) in 10 min followed by 95% MeCN for 3 min then 5% MeCN-H₂O for 3 min, with a flow rate of 0.75 mL/min. The MS data were collected in the m/z range 100–1000.

7. Expression and purification of Hkm11 from yeast

As the gene *hkm11* is intro-free, the open reading frame of *hkm11* was directly amplified by PCR with primers of ADH2p-g11-F/ADH2t-g11(HT)-R from gDNA of A. hancockii. The PCR product was then inserted into the NdeI/PmlI-digestion site of the backbone vector xw55 by yeast homologous recombination to construct the expression plasmid. Then the plasmid was transformed into S. cerevisiae BJ5464-NpgA and dropout without uracil media was used to select the transformants. After growing for 2 days in 3 ml of dropout without uracil liquid media (30 °C, 240 rpm), yeast harboring the expression plasmid was inoculated into a 2 L flask containing 1 L YPD media (20 g peptone, 10 g yeast extract, 50 ml of 20% dextrose). The culture was placed in a shaker set 30 °C, 240 rpm. After 72 h, the cells were harvested by centrifugation (3750 rpm, 20 min, 4 °C) and resuspended in ~30 mL lysis buffer (20 mM Tris-HCl, pH 7.9, 0.5 M NaCl, 10 mM imidazole), and lysed by sonication on ice. Cellular debris was removed by centrifugation (17000 rpm, 30 min, at 4 °C), and Ni-resin was then added to the supernatant (2 mL/liter of culture). The suspension was swirled at 4 °C for over-night and loaded into a gravity column. The protein-bound resin was washed with 10 mM imidazole in wash buffer (50 mM NaH₂PO₄, 300 mM NaCl, 2 mM DTT), check the eluent using qualitative Bradfold assay for every quarter of washing, until Bradfold reagent didn't turn blue. Followed by 20 mM imidazole in wash buffer, when Bradfold reagent didn't turn blue, eluted protein with 250 mM imidazole in wash buffer until Bradfold assay turned negative. Purified Hkm11 was concentrated and exchanged into wash buffer + 10% glycerol with the Amicon filters, aliquoted, and flash frozen with liquid nitrogen.

8. In vitro enzymatic assay of Hkm11

To test the *in vitro* activity of Hkm11, 2 mM of cinnamic acid, 2 mM of hancockiamide D, 6 mM ATP, 4 mM MgSO₄ and 5 μ M of the purified protein Hkm11 were combined in 50 mM Tris-HCl buffer (pH 7.5) to a total volume of 150 μ L. After 12 h incubation at 37 °C, the reaction mixture were quenched and extracted with 150 μ L acetonitrile. The organic layer was directly used

for LC-MS analysis.

9. Yeast feeding assay

The plasmid xw55-CS1 was transformed into *S. cerevisiae* BJ5464-NpgA. Yeast strain expressing *hkm11* was initially grown in dropout minus uracil liquid media for 2 days, and then inoculated 300 μ L cultures into 100 mL fresh YPD media and shaking cultured for 24 h at 30 °C, 240 rpm. Then the yeast expressing Hkm11 culture was concentrated to 10 mL by centrifugation (800 rpm, 8 min). To facilitate the protein expression, 70 μ L 100% ethanol was added into the culture. After that, the yeast culture was fed with different cinnamic acid analogues and shaking cultured for another 48 h. The culture was then extracted with the same volume extract solvents (ethyl acetate/methanol/acetic acid at 89.5:10:0.5 ratio). The organic extracts were dried down *in vacuo* and re-dissolved in methanol for LC-MS analysis.

10. Bioassays

Purified metabolites were dissolved in DMSO to provide stock solutions (10,000 μ g/mL). An aliquot of each stock solution was transferred to the first lane of Rows B to G in a 96-well microtiter plate and two-fold serially diluted with DMSO across the 12 lanes of the plate to provide a 2,048-fold concentration gradient. Bioassay medium was added to an aliquot of each test solution to provide a 100-fold dilution into the final bioassay, thus yielding a test range of 100 to 0.05 μ g/mL in 1% DMSO. Row A contained no test compound (as a reference for no inhibition) and Row H was uninoculated (as a reference for complete inhibition).

CyTOX: NS-1 (ATCC TIB-18) mouse myeloma cells and Neonatal Foreskin Fibroblast (NFF) cells were inoculated in 96-well microtiter plates (190 μ L) at 50,000 cells/mL in DMEM (Dulbecco's Modified Eagle Medium + 10% fetal bovine serum (FBS) + 1% penicillin/streptomycin (10,000 U/mL / 10,000 μ g/mL, Life Technologies Cat. No. 15140122) and incubated in 37 °C (5% CO₂) incubator. At 48 h, resazurin (250 μ g/mL; 10 μ L) was added to each well and the plates were incubated for a further 48 h. Finally, the absorbance of each well at 605 nm was measured using a Spectromax plate reader (Molecular Devices).

ProTOX: *Bacillus subtilis* (ATCC 6633) and *Staphylococcus aureus* (ATCC 25923) were used as indicative species for Gram positive and negative antibacterial activity, respectively. A bacterial suspension (50 mL in 250 mL flask) was prepared in nutrient media by cultivation for 24 h at 250

rpm, 28 °C. The suspension was diluted to an absorbance of 0.01 absorbance units per mL, and 10 μ L aliquots were added to the wells of a 96-well microtiter plate, which contained the test compounds dispersed in nutrient broth (Amyl) with resazurin (12.5 μ g/mL). The plates were incubated at 28 °C for 48 h during which time the positive control wells change color from a blue to light pink color. MIC end points were determined visually. The absorbance was measured using Spectromax plate reader (Molecular Devices) at 605 nm and the IC₅₀ values determined graphically.

EuTOX: *Candida albicans* (ATCC 10231) and *Saccharomyces cerevisiae* (ATCC 9763) were used as indicative species for antifungal activity. A yeast suspension (50 mL in 250 mL flask) was prepared in 1% malt extract broth by cultivation for 24 h at 250 rpm, 24 °C. The suspension was diluted to an absorbance of 0.005 and 0.03 absorbance units per mL for *C. albicans* and S. *cerevisiae*, respectively. Aliquots (20 μ L and 30 μ L) *of C. albicans* and S. *cerevisiae*, respectively were applied to the wells of a 96-well microtiter plate, which contained the test compounds dispersed in malt extract agar containing bromocresol green (50 μ g/mL). The plates were incubated at 24 °C for 48 h during which time the positive control wells change color from a blue to yellow. MIC end points were determined visually. The absorbance was measured using Spectromax plate reader (Molecular Devices) at 620 nm and the IC₅₀ determined graphically.

Phytox is a generic bioassay platform for herbicidal discovery. In the present study, *Eragrostis tef* (teff) seed was used as indicative monocotyledon species for herbicidal discovery. 10 to 15 teff seeds were dispensed using LabTIE seed dispenser into the wells of a 96-well microtiter plate containing the test compounds dispersed in 200 μ L of agar (1% w/v) per well. The plates were placed in a tray wrapped with semi-opaque bag, exposed to 1600 lux (inside the bag) using Power-GLO (20W) and Sun-GLO (20W) tubes, and incubated for 72 h at 24 °C. *Arabidopsis thaliana* (arabi) seed was used as indicative dicotyledon species for herbicidal discovery. Arabi was sterilized in 70% v/v ethanol containing 0.05% (v/v) Triton-X100 for 5 min. Seeds were allowed to settle, and replaced with 100% (v/v) ethanol briefly to mix, decanted ethanol and allowed ethanol residue to evaporate. Sterilized seeds (15-20) were dispensed using LabTIE seed dispenser into the wells of a 96-well microtiter plate containing the test compounds dispersed in 200uL 0.5 x Murashige and Skoog (MS) medium (Sigma M5524) (pH 5.9 + 0.7% w/v agar) per well. Plates were placed in 4 °C fridge for 48 h to stratify the seeds, then incubated at 24 °C for 72 h in a tray

wrapped with semi-opaque bag, exposed to 1600 lux (inside the bag) using Power-GLO (20W) and Sun-GLO (20W) tubes.

Supplementary Tables

Table S1. Primers used in this study.

Name	Sequence	Description	
WW have af all fall E	TAGTAACCTCGCGGGTGTTCTTGACGATGGCATCCTGCCATCA		
p k w_nkm_go-g11-1g1-F	GGCTACTATTGGATACT		
hkm_g6-g11-fg1-R	GGAGCCGTGGACTTCGTT		
hlm af all far E	CTTAGTAACCTCGCGGGTGTTCTTGACGATGGCATCCTGCCTA	For the construction of pVEAC CS1 plasmid	
пкш_g0-g11-1g2-г	TCACCAGCCCGCATCAG		
hkm_g6-g11-fg2-R	CTGAGTCACCCGTTGAACA		
hkm_g6-g11-fg3-f	CAGGTTTTGTTGAGAGGCGC		
pKW_hym-g6-g11-fg3-R	GAGCTACCGCACAACCGAA		
nVW hlymal a5 E	CTTAGTAACCTCGCGGGTGTTCTTGACGATGGCATCCTGCCG	_	
ркw-пкing1_g5-г	GCTCGGTCTAATTGGGAA		
hkm_g1-g5-frag1-R	TGTGGTTCGCGAGCTTC		
hkm_g1-g5-frag2-F	ACTGTGATGGCAAAGGAAAT	For the construction of pVEAC CS2 plasmid	
hkm_g1-g5-frag2-R	GGGTGAGATAGCAAGGGACA	For the construction of p 1 FAC-CS2 plasmid	
hkm_g1-g5-frag3-F	CCCGAACCATCCAATGTTAATC		
who him at as D	ACTTCTGCTAAAGGGTATCATCGAAAGGGAGTCATCCAGCCA		
1100-11KIII_g1_g3-K	GCCAGAGTTTGCCTGACT		
nKW al2 E	CTTAGTAACCTCGCGGGTGTTCTTGACGATGGCATCCTGCGG		
prw-g12-r	GTTTCCGTGAGTAGAGAA	For the construction of aVEAC CS2 algorid	
0.10 P	AGGAGTGATGAGACCCAACAACCATGATACCAGGGGGGCGAA	For the construction of p 1 FAC-CSS plasmid	
py10-g12-K	AACCGAACCTCTCCATTCG		

pyrG-g10-R	ACTTCAACACAGTGGAGGACATACCCGTAATTTTCTGGGCCG	For the construction of pYFAC-CS4 plasmid	
		Easthe construction of aVEAC CC5 alourid	
pKW-hkm g4 g5-F	IAGIAACCICGCGGGIGIICIIGACGAIGGCAICCIGCCCGG	For the construction of pYFAC-CS5 plasmid	
	AACAGAAAAGATGTGAAG	with the primer ribo-hkm_g1_g5-R	
PaleA hkma5 F	GTTAATTAGAACTCTTCCAATCCTATCACCTCGCCTTAATATGG		
	AGACACCAACCCCTCC	- For the construction of pYFAC-CS6 plasmid	
avec blen of D	AACACAGTGGAGGACATACCCGTAATTTTCTGGGCTTAATCTA		
pyrO-likiligJ-K	GGCCTTCCGGAATCCGA		
		For the construction of pYFAC-CS7 plasmid	
pKW-hkmg3_g5-F	GACAAGTTACTGTTCC	with the primers hkm_g1-g5-frag2-R,	
	UNCANOTIACIOTICC	hkm_g1-g5-frag3-F and ribo-hkm_g1_g5-R	
ADU2n all E	ACAATCAACTATCAACTATTAACTATATCGTAATACCATATGAC		
Аригр-ди-г	AGTGCCTGCTACTACG	For the construction of www.55 CS1 plasmid	
	AATTTGTCATTTAAATTAGTGATGGTGATGGTGATGCACCCCA	1 of the construction of xw55-CS1 plasmid	
Арни-ди-ди-к	CAAGTCGAAATCGAACA		

Gene	NCBI locus	Description/conserved domain	Putative function	
hkm1	BBP40_009487	Phytanoyl-CoA dioxygenase	Unknown*	
hkm2	BBP40_009486	Cellobiose dehydrogenase-like	Unknown*	
		cytochrome		
hkm3	BBP40_009485	Acetyltransferase	N-acetyltransferase	
hkm4	BBP40_009484	20G-Fe(II) dioxygenase	Putative hydroxylation	
hkm5	BBP40_009483	P450 monooxygenase	Methylenedioxy formation	
hkm6	BBP40_009482	Tyrosinase	Putative hydroxylation	
hkm7	BBP40_009481	FAD-dependent phenol hydroxylase	Putative hydroxylation	
hkm8	BBP40_009480	O-methyltransferase	O-methyltransferase	
hkm9	BBP40_009479	NmrA-like, reductase/epimerase	Pyrazine reductase	
hkm10	BBP40_009478	NRPS (A-T-R)	NRPS (A-T-R)	
hkm11	BBP40_009477	NRPS (A-T-C)	NRPS (A-T-C)	
hkm12	BBP40_009476	Phenylalanine ammonia lyase	trans-cinnamic acid synthetase	

Table S2. Putative functions of *hkm* genes.

*Note: Both *hkm1* and *hkm2* do not appear to be required for biosynthesis of hancockiamides as *hkm4–12* (without acetyltransferase gene *hkm3*) was able to produce hancockiamide G (7), desacetylated derivative of the most advanced metabolite in the pathway hancockiamide C (3) (see main manuscript). Upon closer inspection and comparison with its closet BLASTP homolog *Penicillium arizonense* PENARI_c033G11888 (XP_022483527.1), we noticed that the predicted coding sequence of *hkm1* is truncated due to a nonsense mutation at the N-terminal (24th codon from the translational start site ATG correspond to PENARI_c033G11888) and a frameshift mutation in the middle region (see Figure S130). The translated protein sequence including the nonsense mutation is >80% identical to PENARI_c033G11888. Therefore, *hkm1* has likely lost its function in *A. hancockii* but the homologs in other fungi, such as in *P. arizonense* and other species listed in cblaster result (Figure S5), are likely to be functional and could contribute to additional oxidation step(s) on the benzylpiperazine scaffold.

 Table S3. Plasmids used in this study.

Name	Backbone	Description		
		Aspergillus nidulans expression vector containing hkm6, hkm7,		
pYFAC-CS1 pKW-pyrG		hkm8, hkm9, hkm10 and hkm11 under native their promoters and		
		terminators.		
DVEAC CS2	nKW ribo	Aspergillus nidulans expression vector containing hkm1, hkm2,		
p1rAC-C52	p K w-1100	<i>hkm3</i> , <i>hkm4</i> and <i>hkm5</i> under their native promoters.		
DVEAC CS2	nKW nyrO	Aspergillus nidulans expression vector containing hkm12 under		
pYFAC-CS3 pKw-pyrO		their native promoter and terminators.		
		Aspergillus nidulans expression vector containing hkm6, hkm7,		
pYFAC-CS4 pKW-pyrG		hkm8, hkm9 and hkm10 under their native promoters and		
		terminators.		
DVEAC CS5	nKW rib()	Aspergillus nidulans expression vector containing hkm4 and		
prfAC-CS5 pkw-fib0		<i>hkm5</i> under their native promoters.		
NEAC CS6	nVW rib()	Aspergillus nidulans expression vector containing hkm5 under		
pYFAC-CS6 pKw-ribO		the alchol-inducible PalcA promoter.		
NEAC CS7	nVW rib()	Aspergillus nidulans expression vector containing hkm3, hkm4		
pirac-cs/	p kw -nbO	and <i>hkm5</i> under their native promoters and terminators.		
xw55 CS1	xw55	S. cerevisiae expression vector containing the gene hkm11 under		
AWJJ-COI	AWJJ	the promter ADH2.		

Table S4. Strains used in this study.

Strain name	Organism	Description
A. nidulans_hkm1-12	A.nidulans LO7890	<i>A. nidulans</i> expressing plasmids pYFAC-CS1, pYFAC-CS2 and pYFAC-CS3.
A. nidulans_hkm1-11	A. nidulans LO7890	A.nidulansexpressingplasmidspYFAC-CS1and pYFAC-CS2.
A. nidulans_hkm1-10	A. nidulans LO7890	<i>A. nidulans</i> expressing plasmids pYFAC-CS2 and pYFAC-CS4.
A. nidulans_hkm4-12	A. nidulans LO7890	<i>A. nidulans</i> expressing plasmids pYFAC-CS1, pYFAC-CS3 and pYFAC-CS5.
A. nidulans_hkm3-12	A. nidulans LO7890	<i>A. nidulans</i> expressing plasmids pYFAC-CS1, pYFAC-CS3 and pYFAC-CS7.
A. nidulans_hkm5	A. nidulans LO7890	A. nidulans expressing plasmid pYFAC-CS6.
S. cerevisiae_Hkm11	S. cerevisiae BJ5464-NpgA	S. cerevisiae expressing plasmid xw55-CS1

A. hancockii hkm gene cluster	Putative function	P. brasilianum WZXY-M122-9 brs gene cluster (% id*)	<i>Uncinocarpus reesii</i> 1704 (% id*)	Penicillium brasilianum (% id*)	Neosartorya fischeri NRRL 181 (% id*)	<i>Trichophyton</i> interdigitale H6 (% id*)
hkm1	Phytanoyl-CoA dioxygenase	PEBR_04673 (32.3%) ^a	UREG_04217 (41%)	PMG11_03964 (32%)	NFIA_045530 (43%)	
hkm2	cellobiose dehydrogenase cytochrome	brsF (47.3%)	UREG_04225 (54%)	<i>PMG11_03959</i> (47%)	NFIA_045610 (49%)	
11 2		<i>brsE</i> (48.6%)		PMG11_03958 (48%)		
пкт3	N-acetyltransferase	brsI (37.4%)	UREG_04224 (51%)	PMG11_03962 (37%)		
hkm4	2OG-Fe(II) dioxygenase	PEBR_04673 (52.1%) ^a	UREG_04217 (37%)	PMG11_03964 (52%)	NFIA_045530 (37%)	
hkm5	Cytochrome P450	brsH (49.7%)		<i>PMG11_03961</i> (60%)	NFIA_045580 (57%)	H101_00666 (2%)
hkm6	Tyrosinase	<i>brsD</i> (61.8%)	UREG_04223 (71%)	<i>PMG11_03957</i> (54%)	NFIA_045560 (43%)	
hkm7	FAD-dependent hydroxylase	<i>brsC</i> **(57.8%)	UREG_04222 (55%)	<i>PMG11_03956</i> (54%)	NFIA_045600 (48%)	
hkm8	O-methyltransferase	<i>brsG</i> (55.4%)	UREG_04216 (60%)	PMG11_03960 (70%)	NFIA_045570 (63%)	
hkm9	NmrA-like reductase	<i>brsB</i> (54.0%)	UREG_04221 (68%)	PMG11_03955 (65%)	NFIA_045620 (66%)	H101_00667 (66%)
hkm10	NRPS (A-T-R)	brsA (61.8%)	UREG_04220 (55%)	<i>PMG11_03954</i> (61%)	NFIA_045590 (60%)	H101_00668 (59%)
hkm11	NRPS (A-T-C)		UREG_04218 (44%)			<i>H101_00665</i> (30%)
hkm12	<i>trans</i> -Cinnamic acid synthetase		UREG_04219 (60%)			

Table S5. Orthologous gene clusters identified in other fungal species.

* indicates the encoding protein similarity. ** based on nucleotide MK887347.1 on NCBI assumed to be *brsC* (not annotated by the sequence author). ^{*a*} based on *P. brasilianum* LaBioMMi136 which should share the identical/similar nucleotide sequence with *P. brasilianum* WZXY-M122-9 which whole genome sequence is not available.

Table S6. Cinnamic acid homologues used for yeast feeding experiments together with hancockiamide D.

Table S7. ¹H (500 MHz) and ¹³C (125 MHz) NMR data for hancockiamide A (1) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1a	49.2, CH ₂	2.93, d (12.4)	3, 2'	1b	1b, 2
1b		2.76 ^b	3, 2'	1a, 2a	1a, 2
2	54.1, CH	4.31, m		1b, 3a/b	1a/b, 5/9, 2''
3a	35.6, CH ₂	3.05, dd (13.5, 9.3)	2, 4, 5/9	2, 3b	3b, 5/9
3b		2.75 ^b	2, 4, 5/9	2, 3a	3a
4	128.7, C				
5/9	106.7, CH	6.43, s	3, 4, 6/8, 7		2, 3a/b, 6/8-OMe
6/8	147.7, C				
7	133.9, C				
1-NH		2.30, br s			
6/8-OMe	55.8, CH ₃	3.61, s	6/8		5/9,
7-OH		7.97, br s	6/8, 7		
1′a	42.1, CH ₂	4.22, dd (13.1, 2.3)	2, 2', 1"	1′b	1′b
1′b		2.61, dd (13.1, 10.4)	2', 3'	1′a	1′a
2'	56.8, CH	2.70 ^b	4'		
3'	40.1, CH ₂	2.73 ^b	2', 4', 5'/9'		
4′	138.7, C				
5'/9'	129.2, CH	7.27, dd (7.4, 1.5)	5′/9′, 7′		
6'/8'	128.6, CH	7.31 ^c	4'		7'
7′	126.1, CH	7.21, tt (7.2, 1.5)	5'/9', 6'/8'		6'/8'
1″	165.0, C				
2"	119.2, CH	6.72, d (15.4)	1", 4"	3"	2, 5"/9"
3″	139.6, CH	7.08, d (15.4)	1", 5"/9"	2''	5''/9''
4‴	135.3, C				
5''/9''	127.5, CH	7.47, dd (7.7, 1.7)	3", 7"	6''/8''	6"/8" 2", 3"
6''/8''	128.3, CH	7.31 ^c	4", 7"	5''/9''	5"/9"
7''	128.4, CH	7.31 [°]	5"/9" , 6"/8"		

^a Major conformer; ^{b-c} Overlapping resonances

Table S8. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide A (1) TFA salt in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)	HMBC	COSY	NOESY
1a	45.9, CH ₂	3.39, d (12.6)	3, 2'	1b, 2, 1-NHa/b	
1b		3.31, dd (12.6, 12.4)	3, 2'	1a, 2, 1-NHa/b	
2	51.4, CH	4.77, m	1, 3, 4, 1', 1"	1a/b, 3a/b	5/9, 2"
3a	35.2, CH ₂	3.09, dd (13.8, 10.7)	1, 2, 4, 5/9	2, 3b	5/9
3b		2.83, dd (13.8, 4.8)	1, 2, 4, 5/9	2, 3a	5/9
4	127.0, C				
5/9	106.8, CH	6.46, s	3, 4, 6/8, 7		2, 3a/b, 6/8-OMe
6/8	147.8, C				
7	134.4, C				
1-NHa		9.41, br s		1a/b, 1-NHb	
1-NHb		9.11, br m		1a/b, 1-NHa, 2'	
6/8-OMe	55.8, CH ₃	3.62, s	6		5/9, 7-OH
7-OH		8.08, br s			6/8-OMe
1′a	37.5, CH ₂	4.45, dd (14.5, 3.1)	2, 1"	1′b, 2′	
1′b		3.04, dd (14.5, 11.9)	1″	1'a, 2'	
2'	55.7, CH	3.43, br s		1'a/b, 1-NHb,	
				3'a/b	
3'a	36.2, CH ₂	3.07, d (13.8)	1', 2', 4', 5'/9'	2′, 3′b	
3′b		2.98, dd (13.8, 9.3)	1', 2', 4', 5'/9'	2′, 3′a	
4′	135.5, C				
5'/9'	129.3, CH	7.33 ^b			
6'/8'	128.8, CH	7.39, t (7.5)	4', 8'	7'	
7′	127.2, CH	7.31, t (7.5)	5'/9'	6'/8'	
1″	165.0, C				
2"	117.9, CH	6.67, d (15.4)	1", 3", 4"	3"	2, 5"/9"
3″	140.9, CH	7.09, d (15.4)	1", 2", 4", 5"/9"	2"	5''/9''
4‴	135.0, C				
5''/9''	127.7, CH	7.46, dd (7.5, 1.3)	3", 7"	6''/8''	2", 3"
6''/8''	128.6, CH	7.33 ^b		5''/9''	
7''	129.5, CH	7.33 ^b			

^a Major conformer; ^b Overlapping resonances

Table S9. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide B (2) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)	HMBC	COSY	NOESY
1a	44.1, CH ₂	3.77, m		1b, 2	
1b		3.10, m		1a, 2	
2	55.5, CH	4.49, br m		1a/b, 3b	2'
3a	37.9, CH ₂	2.88 ^b			
3b		2.69 ^c		2	
4	129.5, C				
5/9	106.8, CH	6.46 ^d	3, 5/9, 6/8, 7		
6/8	147.9, C				
7	134.3, C				
6/8-OMe	55.9, CH ₃	3.72, s	6/8		
7-OH		8.12, s	6/8, 7		
1′a	38.4, CH ₂	4.16, br		1′b, 2′	
1′b		2.86 ^b		1'a, 2'	
2'	52.6, CH	4.26, br		1'a/b, 3'a/b	2
3′a	36.3, CH ₂	2.83 ^b		2'	
3′b		2.72 ^c		2'	
4'	137.5, C				
5'/9'	128.7, CH	7.27 ^e	7'		
6'/8'	128.4, CH	7.39	4', 6'/8'		
7'	126.6, CH	7.24 ^e	5'/9'		
1″	165.4, C				
2"	118.6, CH	6.44 ^d	1″	3″	
3″	140.8, CH	7.25 ^e	1", 5"/9"	2''	
4''	137.3, C				
5''/9''	127.7, CH	7.39 ^e	7''		
6''/8''	128.4, CH	7.33 ^e	4", 6"/8"		
7''	129.1, CH	7.22 ^e			
1‴	169.0, C				
2′′′	21.8, CH ₃	2.03, s	1‴		

^a Major conformer; ^{b-e} Overlapping resonances

Table S10. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide C (3) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\ a}$, type	$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)	HMBC	COSY	NOESY
1a	44.2, CH ₂	3.81, m	2', 1'''	1b, 2	
1b		3.09, dd (15.4, 11.3)	2', 1'''	1a, 2	3b
2	55.4, CH	4.53, br s		1a/b	2'
3a	37.6, CH ₂	2.88, m		3b	3b
3b		2.72, m		3a	1b, 3a
4	131.9, C				
5	109.2, CH	6.42, s	3, 7, 9		
6	143.1, C				
7	133.4, C				
8	148.3, C				
9	103.3, CH	6.47, s	3, 5, 7, 8		
6-OMe	56.2, CH ₃	3.72, s	6		
7/8-OCH ₂ O	100.9, CH ₂	5.79, br s	7, 8	OCH ₂ Ob	
		5.58, br s	7, 8	OCH ₂ Oa	
1′a	38.2, CH ₂	4.18, m	2, 1″	1′b ,2′	
1′b		2.89, m	2', 3', 1"	1′a	
2'	52.6, CH	4.25, br m		3'a/b	2
3'a	36.7, CH ₂	2.84, br m	1', 2', 4', 5', 9'	2′, 3′b	3′Ъ
3′Ъ		2.73, br m	1', 2', 4', 5', 9'	2', 3'a	3'a
4'	137.4, C				
5'/9'	129.4, CH	7.23, br m	3', 7'	6'/8'	6'/8'
6'/8'	128.5, CH	7.32, br m	4'	5'/9', 7'	5'/9', 7'
7'	126.6, CH	7.25, br m	5'/9'	6'/8'	6'/8'
1″	165.1, C				
2"	118.1, CH	6.41, d (15.7)	1", 3", 4"	3″	3"
3"	140.3, CH	7.18, d (15.7)	1", 2", 4", 5", 9"	2"	2"
4‴	135.0, C				
5''/9''	127.7, CH	7.40, br m	7''	6''/8''	6''/8''
6''/8''	129.2, CH	7.33, br m	4", 5"/9"	5''/9'', 7''	5"/9"
7″	129.5, CH	7.27, br m	6''/8''	6''/8''	
1‴	169.1, C				
2‴	21.8, CH ₃	2.05, s	1‴		

^a Major conformer, ^{b-e} Overlapping resonances

	ОМе		н	21	0'
HO <u>7</u>	5	1	Ň	${\checkmark}$	
		2	2		
MeO			`N 1		
	3	5	н		

Pos.	$\delta_{\rm C}^{\ a}$, type	$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1a	47.1, CH ₂	2.61 ^b	2, 3		5/9
1b		2.57 ^c	3		
2	55.6, CH	2.72, ddd (12.9, 6.8, 3.4)			5/9
3	38.3, CH ₂	2.62 ^b	1, 2, 3, 5/9	5/9	5/9
4	129.8, C				
5/9	106.4, CH	6.43, s	3, 4, 5/9, 6/8, 7	3, 6/8-OMe	1a, 2, 3, 6/8-OMe
6/8	147.8, C				
7	133.6, C				
1-NH		2.13, br s			
6/8-OMe	55.9, CH ₃	3.72, s	6/8	5/9	5,9
7-OH		8.04, br s			
1′a	47.3, CH ₂	2.61 ^b	2', 3'		5'/9'
1′b		2.57 ^c	2'		5'/9'
2'	55.2, CH	2.75 ^d	1', 3', 4'		5'/9'
3'	38.0, CH ₂	2.76 ^d	1', 2', 4', 5'/9'	5'/9'	5'/9'
4′	140.1, C				
5'/9'	129.1, CH	7.19, dd (7.4, 1.3)	3', 5'/9',7'	3',6'	1'a/b, 2', 3'
6'/8'	128.4, CH	7.26, t (7.4)	4', 5'/9', 6'/8'	5'/9', 7'	
7'	125.7, CH	7.16, tt (7.4, 1.3)	5'/9'	6'/8'	
1'-NH		2.13, br s			

^a Major conformer, ^{b-d} Overlapping resonances

Table S12. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide D (4) di-TFA salt in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}{}^{\rm a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1	41.2, CH ₂	3.12° , br s			5/9
2	52.11 ^b , CH	3.64^{d} , br s			5/9
3a	34.1, CH ₂	3.07 ^e , br s	5/9		5/9
3b		2.93 ^f , br s	5/9		5/9
4	125.4, C				
5/9	106.7, CH	6.55, s	3, 4, 6/8, 7		1, 2, 3a/b,6/8-OMe
6/8	148.1, C			5,9	
7	134.7, C				
1-NH ₂		9.26, br s			
6/8-OMe	55.9, CH ₃	3.75, s	6/8	6,8	5,9
7-OH		8.30, br s			
1'	41.2, CH ₂	3.12° , br s			5'/9'
2'	52.25 ^b , CH	3.64^{d} , br s			5'/9'
3'a	34.1, CH ₂	3.07 ^e , br s	5'/9'		5'/9'
3′b		2.93 ^f , br s	5'/9'		
4'	135.8, C				
5'/9'	129.3, CH	7.31, d (7.3)	3', 7'	6'	1', 2', 3'a
6'/8'	128.8, CH	7.37, t (7.3)	4'	5′/9′, 7′	
7'	127.1, CH	7.27, t (7.3)	5'/9'	6'/8'	
1'-NH ₂		9.26, br s			

^a Major conformer, ^bAssignments interchangeable, ^{c-f}Overlapping resonances

Table S13. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide E (5) TFA salt in DMSO- d_6

R	2.3	a 8 (IDADA	GOGY	DODGN
Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}^{a}$ (<i>J</i> in Hz)	НМВС	COSY	ROESY
1a	46.1, CH ₂	3.36 ^b	2'	1b	
1b		3.26 ^b		1a, 2,	
2	51.4, CH	4.77, m		1b, 3a/b	5/9, 2"
3a	35.2, CH ₂	3.07, dd (13.6, 11.0)	2, 4, 5/9	2, 3b	5/9
3b		2.82, dd (13.6, 4.5)	4, 5/9	2, 3a	5/9
4	127.1, C				
5/9	106.8, CH	6.45, s	3, 4, 5, 6, 7, 9		2, 3a/b, 6'-OMe
6/8	147.9, C				
7	134.4, C				
1-NHa		9.05, br s		1-NHb	
1-NHb		8.90, br m		1-NHa	
6/8-OMe	55.8, CH ₃	3.62, s	6, 8		5"/9", 6"/8"
7-OH		8.08, br s	6, 7, 8		
1′a	37.7, CH ₂	4.52, br d (14.6)		1′b, 2′	1′b
1′b		3.00, dd (14.6, 11.9)	2'	1′a,	1′a
2'	55.9, CH	3.41 ^b		1'a, 3'	
3'	36.1, CH ₂	2.92, d (7.3)	1', 2', 4', 5/9'	2'	5', 9'
4'	127.9, C				
5'	109.0, CH	6.61, s	3', 6',7', 9',		3'
6'	143.3, C				
7′	133.9, C				
8'	148.6, C				
9'	103.2, CH	6.60, s	3', 5', 7', 8',		3', 6'-OMe
6'-OMe	56.3, CH ₃	3.84, s	6'		9′,
7′/8′-OCH ₂ O	101.2, CH ₂	5.99, s	7', 8'		
1″	165.1, C				
2"	117.9, CH	6.67, d (15.3)	1", 4"	3″	2, 5/9"
3″	140.8, CH	7.11, d (15.3)	1", 2", 4", 5/9"	2''	
4''	135.0, C				
5''/9''	127.7, CH	7.46, dd (7.5, 1.3)	3", 5",7", 9"	6''/8''	2", 6/8-OMe
6''/8''	128.6, CH	7.33 ^c	4", 5/9"	5''/9''	6/8-OMe
7″	129.5, CH	7.33 ^c	5/9''		

^a Major conformer, ^b Obscured by water signal; ^c Overlapping resonances

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}^{a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1	50.0, CH ₂	4.12, s	2, 2', 1'''		3, 2"
2	204.1, C				
3	45.9, CH ₂	3.70, s	2, 4, 5, 9		1,9
4	128.7, C				
5	109.3, CH	6.47, d (1.5)	3, 4, 6, 7, 9	9	
6	142.9, C				
7	133.4, C				
8	148.9, C				
9	103.7, CH	6.44, d (1.5)	3, 5, 6, 7, 8	5	3, 6-OMe
6-OMe	56.2, CH ₃	3.79, s	6		9
7/8-OCH ₂ O	101.0, CH ₂	5.94, s	7, 8		
1′a	40.7, CH ₂	3.37, ddd (14.1, 6.9, 5.4)	2', 3', 1"	2', 1'b, 1'-NH	1′b, 2′
1′b		3.21, ddd (14.1, 8.0, 5.4)	2', 3', 1"	2', 1'a, 1'-NH	1'a, 2'
2'	59.0, CH	4.14, m	1, 1', 3'	1'a/b, 3'a/b	1'a/b, 3'a/b, 5'/9',
					1'-NH
3'a	36.5, CH ₂	2.80, dd (13.9, 6.0)	1', 2', 4', 5'/9'	2′, 3′b	2'
3′Ъ		2.75, dd (13.9, 8.5)	1', 2', 4', 5'/9'	2′, 3′a	2', 5'/9'
4'	138.3, C				
5'/9'	129.0, CH	7.26, br m	3', 4', 5'/9', 7'	6'/8'	2′, 3′b
6'/8'	128.4, CH	7.30, br m	4', 6'/8'	5′/9′, 7′	
7'	126.4, CH	7.21, br m	5'/9'	6'/8'	
1'-NH		8.02, t (5.8)	1', 1"	1'a/b	2', 2''
1″	165.2, C				
2"	121.7, CH	6.64, d (15.8)	1", 3", 4"	3″	1, 5"/9", 1'-NH
3"	139.2, CH	7.41, d (15.8)	1", 2", 4", 5"/9"	2''	
4″	134.7, C				
5''/9''	127.6, CH	7.57, br m	3", 5"/9", 7"	6''/8''	2", 6"/8"
6''/8''	128.9, CH	7.39, br m	4", 5"/9" ,6"/8"	5''/9'', 7''	5''/9''
7″	129.5, CH	7.36, br m	5''/9''	6''/8''	
1‴	169.9, C				
2‴	20.7, CH ₃	1.69, s	1‴		

^a Major conformer

Table S15. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide G (7) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}{}^{\rm a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1a	49.5, CH ₂	2.93, br d (12.1)	2', 3	1b, 2	1b, 2
1b		2.79, dd (12.1, 4.3)	3	1a, 2	1a, 2
2	54.3, CH	4.30, m	1, 4, 1', 1"	1a/b, 3a/b	1a/b, 5, 9, 2', 2"
3a	35.6, CH ₂	3.11, dd (13.4, 10.0)	1, 2, 4, 5, 9	2, 3b	3b, 5, 9
3b		2.70^{b}	1, 2, 4, 5, 9	2, 3a	3a, 5, 9
4	133.2, C				
5	108.9, CH	6.41, d (1.4)	3, 6, 7, 9	6-OMe	2, 3a/b, 6-OMe
6	143.0, C				
7	133.4, C				
8	148.1, C				
9	103.3, CH	6.42, d (1.4)	5, 7, 8		2, 3a/b
6-OMe	56.0, CH ₃	3.65, s	6	5	5
7/8-OCH ₂ Oa	100.6,	5.79, d (1.1)	7, 8	7/8-OCH ₂ Ob	7/8-OCH ₂ Ob
7/8-OCH ₂ Ob	CH ₂	5.49, br s	7,8	7/8-OCH ₂ Oa	7/8-OCH ₂ Oa
1-NH		2.20, br s			
1′a	42.1, CH ₂	4.21, br dd (12.7, 2.5)	2, 2', 1"	1′b ,2′	1′b, 2′
1′b		2.63, dd (12.7, 10.6)	2', 1"	1′a	1′a
2'	56.8, CH	2.68 ^b	1', 4'	1'a, 3'	2, 1'a
3'	40.1, CH ₂	2.72 ^b	1', 4', 5'/9'	2'	5'/9'
4'	138.6, C				
5'/9'	129.2, CH	7.26 ^c	3', 5'/9', 7'	6'/8'	3'
6'/8'	128.5, CH	7.31 ^c	4', 6'/8'	5′/9′, 7′	
7'	126.1, CH	7.22, t (7.5)	5'/9'	6'/8'	
1″	165.2, C				
2"	118.6, CH	6.68, d (15.4)	1", 3", 4"	3″	2, 5"/9" 3"
3"	139.4, CH	7.04, d (15.4)	1", 2", 4", 5"/9"	2''	5"/9"
4''	135.2, C				
5"/9"	127.5, CH	7.47, dd (8.0, 1.8)	3", 5"/9", 7"	6''/8''	2", 3", 6"/8"
6''/8''	128.3, CH	7.32 [°]	4''	5''/9'', 7''	5"/9"
7''	129.2, CH	7.27 ^c		6''/8''	

^a Major conformer; ^{b-c} Overlapping resonances
Table S16. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide H (8) in DMSO- d_6

OMe	Н з' о'
0_7_5	
0^{2} 9 3	H S V

Pos.	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm H}{}^{\rm a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1a	47.2, CH ₂	$2.60^{\rm a}$, m	2', 1'''	1b, 2	
1b		2.55 ^b , dd (15.4, 11.3)	2', 1'''	1a, 2	3b
2	55.3, CH	2.73 [°] , br s		1a/b	2'
3	38.06, CH ₂	2.65, m		3b	3b
4	134.5, C				
5	108.4, CH	6.45, d (1.2)	3, 7, 9		
6	143.0, C				
7	132.8, C				
8	148.2, C				
9	102.8, CH	6.44, d (1.2)	3, 5, 7, 8		
6-OMe	56.2, CH ₃	3.79, s	6		
7/8-OCH ₂ O	102.8, CH ₂	5.91, br s	7, 8		
1′a	47.2, CH ₂	$2.60^{\rm a}$, m	2, 1"	1′b ,2′	
1 <i>′</i> b		2.55 ^b , m	2', 3', 1"	1′a	
2'	55.3, CH	2.73 [°] , br m		3′a/b	2
3'	38.11, CH ₂	2.72 [°] , br m	1', 2', 4', 5', 9'	2′, 3′b	3′b
4'	140.0, C				
5'/9'	129.1, CH	7.18, br d (7.6)	3', 7'	6'/8'	6'/8'
6'/8'	128.1, CH	7.26, br dd (7.6, 7.3)	4'	5′/9′, 7′	5'/9', 7'
7'	125.7, CH	7.16, br dd (7.3, 7.3)	5'/9'	6'/8'	6'/8'
1-NH ₂		2.25, br s			
1'-NH ₂		2.25, br s			

^{a-c} Overlapping resonances

Table S17. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for hancockiamide I (9) in DMSO- d_6

^a Major conformer; ^b Assignments based on comparison with related metabolites and HSQCs

^{c-f} Overlapping resonances.^g Due to extreme peak broadening, no useful 2D correlations could be obtained

Table S18. ¹H (600 MHz) and ¹³C (150 MHz) NMR data xenocockiamide A (10) DMSO- d_6

Pos.	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$	HMBC	COSY	ROESY
1a/1′a	47.2, CH ₂	2.62, ddd, (11.6, 5.1, 2.5)	3, 2'	1b, 2	
1b/1′b		2.55, br dd (11.6, 2.5)	2, 3	1a, 2	2
2/2'	55.4, CH	2.74, br s	3, 1'	1a/1b	1b
3/3'	38.1, CH ₂	2.74, br s	2, 4, 5/9,	5/9	5/9
4/4′	140.0, C				
5/5'/9/9'	129.1, CH	7.19, dd, (8.2, 1.5)	3, 5/9, 7	3, 6/8, 7	3
6/6′/8/8′	128.2, CH	7.26, ddd, (8.2, 7.5, 1.5)	4, 6/8	5/9,7	
7/7′	125.7, CH	7.16, ddd, (7.5, 7.5, 1.5)	5/9	5/9, 6/8	
1/1'-NH ₂		2.06, br s			

Table S19. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for xenocockiamide B (11) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\ a}$, type	$\delta_{\rm H}^{\ a}$ (<i>J</i> in Hz)	HMBC	COSY	ROESY
1a	49.3, CH ₂	2.93, br d (12.5)	3, 2'	1b, 2	1b
1b		2.76 ^b	3	1a	1a, 2
2	54.0, CH	4.34, m,		1a, 3a/b	1b, 3b, 5/9, 2"
3a	35.5, CH ₂	3.17, dd (13.5, 9.5)	1, 2, 4, 5/9	2, 3b	3b
3b		2.88, dd (13.5, 5.5)	1, 2, 4, 5/9	2, 3a	3a
4	138.9, C				
5/9	129.3, CH	7.21	3, 5/9, 7	6/8	2, 3a/b, 6/8
6/8	128.3, CH	7.31	4, 6/8	5/9, 7	5/9,7
7	126.1 C	7.22		6/8	6/8
1-NH		2.26, br s			
1′a	42.1, CH ₂	4.23, br d	2, 2', 1"	1′b, 2′	1′b
1′b		2.65 ^b	2', 1"	1′a	1′a
2'	56.8, CH	2.66 ^b	4'	1'a, 3'	
3'	40.1, CH ₂	2.73 ^b	1', 4', 5'/9'	2'	5'/9'
4'	138.6, C				
5'/9'	129.2, CH	7.27,	3', 5'/9', 7'		3'
6'/8'	128.1, CH	7.17 ^c	4', 6'/8'	7'	
7′	126.2, CH	7.06, tt (7.2, 1.4)	5'/9'	6'/8'	
1″	164.8, C				
2"	118.7, CH	6.62, d (15.5)	1", 3", 4"	3"	2, 5"/9"
3″	139.9, CH	7.04, d (15.5)	1", 2", 4", 5"/9"	2''	5''/9''
4″	135.2, C				
5''/9''	127.6, CH	7.44, dd (7.7, 1.7)	3", 5"/9", 7"	6''/8''	6"/8" 2", 3"
6''/8''	128.6, CH	7.35 ^c	4", 6"/8"	5''/9''	5"/9"
7''	129.2, CH	7.27 ^c	5"/9"		

^a Major conformer; ^{b-c} Overlapping resonances

Table S20. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for xenocockiamide C (12) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a/b}$, type	$\delta_{\rm H}^{\rm a/b}$ (<i>J</i> in Hz)
1a/1'a	42.2 CH	4.37 ^c
1b/1′b	$45.5, CH_2$	3.15
2/2'	53.1, CH	4.41 ^c
3/3'	37.8, CH ₂	2.90, br s
4/4'	137.4, C	
5/9/5'/9'	128.4, CH	7.30 ^d
6/8/6'/8'	129.6, CH	7.25 ^d
7/7'	126.5, CH	7.15 ^d
1''/1'''	165.4, C	
2''/2'''	118.0, CH	6.23, br s
3''/3'''	141.5, CH	7.18 ^d
4''/4'''	137.3, C	
5''/9''/5'''/9'''	128.0, CH	7.45 ^d
6''/8''/6'''/8'''	128.7, CH	7.38 ^d
7''/7'''	128.4, CH	7.30 ^d

^a Major conformer; ^b Assignments based on comparison with related metabolites and HSQCs ^{c-d} Overlapping resonances. ^e Due to extreme peak broadening, no useful 2D correlations could be obtained.

Table S21. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for xenocockiamide D (13) in DMSO- d_6

Pos.	$\delta_{\rm C}^{\rm a/b}$, type	$\delta_{\rm H}^{\rm a/b}$ (<i>J</i> in Hz)
1a/1'a	42.2 GH	4.36 ^c
1b/1′b	$43.3, CH_2$	3.09
2/2'	53.5, CH	4.48 ^c
3/3'	37.4, CH ₂	2.90, br s
4/4′	137.1, C	
5/9/5'/9'	128.3, CH	7.31 ^d
6/8/6'/8'	129.6, CH	7.23 ^d
7/7′	126.5, CH	7.17^{d}
1″	165.7, C	
2''	118.1, CH	6.43, br s
3‴	141.3, CH	7.16 ^d
4''	137.0, C	
5''/9''	128.4, CH	7.49^{d}
6''/8''	128.7, CH	7.38 ^d
7''	128.4, CH	7.30^{d}
1‴	170.3	
2′′′	137.0, C	
3'''/7'''	128.0, CH	7.49^{d}
4′′′′/6′′′	128.3, CH	7.40^{d}
5′′′	129.3, CH	7.30^{d}

^a Major conformer; ^b Assignments based on comparison with related metabolites and HSQCs ^{c-d} Overlapping resonances. ^e Due to extreme peak broadening, no useful 2D correlations could be obtained.

Compd	Minimum inhibitory concentration (µg/mL)								
compa.	Bs ^[a]	Sa ^[b]	$Ca^{[c]}$	Sc ^[d]	Mm ^[e]	Nff ^[f]	<i>Tf</i> ^[g]	Teff ^[h]	Arabi ^[i]
1	50	_	_	_	3.1	_	_	_	_
2	50	_	_	_	25	_	_	_	_
3	_	_	_	_	25	_	_	_	6.3
4	_	_	_	_	1.6	_	_	_	50
5	_	_	_	_	13	_	_	_	_
6	_	_	_	_	100	_	_	_	_
7	6.3	25	100	_	13	100	_	_	100
8	_	_	_	_	50	_	_	_	_
9	_	_	_	_	_	_	_	_	_
10	_	_	_	_	50	_	_	_	_
11	6.3	25	50	100	6.3	50	50	_	_
12	_	_	_	_	_	_	_	_	_
13	_	_	_	_	13	_	_	_	_
control	0.4 ^[j]	0.8 ^[j]	1.6 ^[k]	1.6 ^[k]	0.4 ^[1]	3.1 ^[1]	1.6 ^[m]	3.1 ^[n]	0.2 ^[n]

Table S22. In vitro bioassay results for 1-13 identified in this study.

[a] *Bacillus subtilis* (ATCC 6633). [b] *Staphylococcus aureus* (ATCC 25923). [c] *Candida albicans* (ATCC 10231). [d] *Saccharomyces cerevisiae* (ATCC 9763); [e] Murine myeloma NS-1 (ATCC TIB-18). [f] Neonatal foreskin fibroblast. [g] *Tritrichomonas foetus* (KV-1). [h] *Eragrostis tef*. [i] *Arabidopsis thaliana*. [j] tetracycline hydrochloride. [k] blasticidin S hydrochloride. [l] staurosporine. [m] metronidazole. [n] cyclohexamide. – indicates no activity detected at 100 μg/mL.

Supplementary Figures

Figure S1. Detailed analysis of Hkm1. (A) protein sequence alignment of the revised Hkm1 with nonsense stop codon and PENARI_c033G11888 from *Penicillium arizonense*. (B) the missing region in predicted Hkm1 due to frameshift mutation.

Figure S2. HPLC metabolite profile of *Aspergillus nidulans* expressing *hkm3–12*.

Figure S3. LCMS metabolite profile of the extracts from small scale culture (50 mL) of *Aspergillus nidulans* expressing *hkm4–12* grown on GMM liquid media.

						UV λ=	= 210 nm
M		Amil	Multur				
	ſ₩'n				EIC n	n∕z 267, xeno	cockiamide A
			٨		EIC n	<i>n/z</i> 397, xeno	cockiamide B
					EIC n	<i>m/z</i> 527, xeno	cockiamide C
					EIC n	<i>m/z</i> 501, xeno	cockiamide D
			\wedge		EIC n	<i>n∕z</i> 471, hanc₀	ockiamide G
					EIC n	<i>m/z</i> 341, hanco	ockiamide H
	^	~~~~^		n	EIC n	<i>n/z</i> 601, hanc	ockiamide I
0	2	4	6	8	10	12	min

Figure S4. LCMS metabolite profile of the extracts *Aspergillus nidulans* expressing *hkm4–12* grown on YES media.

Figure S5. SDS-PAGE analysis of the C-terminal His-tagged recombinant Hkm11. Note: Precision Plus ProteinTM Dual Color Standard (BIO-RAD) was used as ladder.

Figure S6. In vivo verification of the function of Hkm5 by *Aspergillus nidulans* feeding experiments.

Identity (%)

Figure S7. Homologous gene clusters identified in public genome databases using hkm cluster as query sequence via cblaster (https://zenodo.org/record/3660769) tool.

1

4

1

Figure S8. Phenylpropanoid piperazines isolated from fungi.

Figure S9. HPLC chromatograms of synthetic and natural xenocockiamide A (10).

a) synthetic xenocockiamide A

Figure S10. HPLC chromatograms of synthetic and natural xenocockiamide B (11).

Figure S12. HPLC chromatograms of synthetic and natural xenocockiamide D (13).

Figure S13. ¹H NMR spectrum (500 MHz, DMSO- d_6) of hancockiamide A (1)

Figure S14. ¹³C NMR spectrum (125 MHz, DMSO- d_6) of hancockiamide A (1)

Figure S15. ¹H-¹³C HSQC spectrum (500 MHz, DMSO- d_6) of hancockiamide A (1)

Figure S16. ¹H-¹³C HMBC NMR spectrum (500 MHz, DMSO- d_6) of hancockiamide A (1)

Figure S17. COSY NMR spectrum (500 MHz, DMSO-*d*₆) of hancockiamide A (1)

Figure S18. ROESY NMR spectrum (500 MHz, DMSO-*d*₆) of hancockiamide A (1)

Figure S19. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of hancockiamide A (1) TFA salt

Figure S21. ¹H-¹³C HSQC spectrum (600 MHz, DMSO-*d*₆) of hancockiamide A (1) TFA salt

Figure S22. ¹H-¹³C HMBC NMR spectrum (600 MHz, DMSO-*d*₆) of hancockiamide A (**1**) TFA salt

Figure S23. COSY NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide A (1) TFA salt

Figure S24. NOESY NMR spectrum (600 MHz, DMSO-*d*₆) of hancockiamide A (1) TFA salt

Figure S27. ¹H-¹³C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide B (2)

Figure S28. 1 H- 13 C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide B (2)

Figure S29. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide B (2)

Figure S30. NOESY spectrum (600 MHz, DMSO- d_6) of hancockiamide B (2)

Figure S31. ¹H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide C (3)

Figure S32. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide C (3)

Figure S33. ¹H-¹³C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide C (3)

Figure S34. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide C (**3**)

Figure S35. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide C (3)

Figure S36. NOESY spectrum (600 MHz, DMSO- d_6) of hancockiamide C (3)

Figure S37. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D (4)

Figure S38. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide D (4)

Figure S39. ¹H-¹³C HSQC spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D (4)

Figure S40. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide D (4)

Figure S41. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide D (4)

Figure S42. ROESY spectrum (600 MHz, DMSO- d_6) of hancockiamide D (4)

Figure S43. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D di-TFA salt (4)

Figure S44. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of hancockiamide D di-TFA salt (4)

Figure S45. ¹H-¹³C HSQC spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D di-TFA salt (4)

Figure S46. ¹H-¹³C HMBC spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D di-TFA salt (4)

Figure S47. COSY spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D di-TFA salt (4)

Figure S48. ROESY spectrum (600 MHz, DMSO-*d*₆) of hancockiamide D di-TFA salt (4)

Figure S49. ¹H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide E TFA salt (5)

Figure S51. ¹H-¹³C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide E TFA salt (5)

Figure S52. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide E TFA salt (5)

Figure S53. COSY spectrum (600 MHz, DMSO-*d*₆) of hancockiamide E TFA salt (**5**)

Figure S54. ROESY spectrum (600 MHz, DMSO-*d*₆) of hancockiamide E TFA salt (5)

Figure S55. ¹H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide F (6)

Figure S56. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide F (6)

Figure S57. 1 H- 13 C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide F (6)

Figure S58. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide F (6)

Figure S59. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide F (6)

Figure S60. ROESY spectrum (600 MHz, DMSO- d_6) of hancockiamide F (6)

Figure S61. ¹H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide G (7)

Figure S62. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide G (7)

Figure S63. 1 H- 13 C HSQC spectrum (600 MHz, DMSO- d_{6}) of hancockiamide G (7)

Figure S64. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide G (7)

Figure S65. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide G (7)

Figure S66. ROESY spectrum (600 MHz, DMSO-*d*₆) of hancockiamide G (7)

Figure S67. ¹H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide H (8)

Figure S68. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of hancockiamide H (8)

Figure S69. ¹H-¹³C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide H (8)

Figure S70. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of hancockiamide H (8)

Figure S71. COSY spectrum (600 MHz, DMSO- d_6) of hancockiamide H (8)

Figure S72. ROESY spectrum (600 MHz, DMSO-*d*₆) of hancockiamide H (8)

Figure S73. ¹H NMR spectrum (600 MHz, DMSO- d_6) of hancockiamide I (9)

Figure S74. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of hancockiamide I (9) S115

Figure S75. 1 H- 13 C HSQC spectrum (600 MHz, DMSO- d_6) of hancockiamide I (9) S116

Figure S76. ¹H NMR spectrum (600 MHz, DMSO- d_6) of xenocockiamide A (10)

Figure S77. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide A (10)

Figure S78. 1 H- 13 C HSQC spectrum (600 MHz, DMSO- d_6) of xenocockiamide A (10)

Figure S79. ¹H-¹³C HMBC spectrum (600 MHz, DMSO-*d*₆) of xenocockiamide A (10)

Figure S80. COSY spectrum (600 MHz, DMSO-*d*₆) of xenocockiamide A (10)

Figure S81. ROESY spectrum (600 MHz, DMSO- d_6) of xenocockiamide A (10)

Figure S82. Comparison of ¹H NMR spectra (600 MHz, DMSO- d_6) of natural and synthetic xenocockiamide A (10)

Figure S83. Comparison of 13 C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenocockiamide A (10)

Figure S84. ¹H NMR spectrum (600 MHz, DMSO- d_6) of xenocockiamide B (11)

Figure S85. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide B (11)

Figure S86. ¹H-¹³C HSQC spectrum (600 MHz, DMSO-*d*₆) of xenocockiamide B (**11**)

Figure S87. ¹H-¹³C HMBC spectrum (600 MHz, DMSO- d_6) of xenocockiamide B (11) S128

Figure S88. COSY spectrum (600 MHz, DMSO- d_6) of xenocockiamide B (11)

Figure S89. ROESY spectrum (600 MHz, DMSO-*d*₆) of xenocockiamide B (11)

Figure S90. Comparison of ¹H NMR spectra (600 MHz, DMSO- d_6) of natural and synthetic xenocockiamide B (11) S131

Figure S91. Comparison of 13 C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenocockiamide B (11)

Figure S92. ¹H NMR spectrum (600 MHz, DMSO- d_6) of xenocockiamide C (12)

Figure S93. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide C (12)

Figure S94. ¹H-¹³C HSQC spectrum (600 MHz, DMSO- d_6) of xenocockiamide C (12)

Figure S95. Comparison of ¹H NMR spectra (600 MHz, DMSO- d_6) of natural and synthetic xenocockiamide C (12) S136

Figure S96. Comparison of ¹³C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenocockiamide C (12)

Figure S97. ¹H NMR spectrum (600 MHz, DMSO- d_6) of xenocockiamide D (13)

Figure S98. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of xenocockiamide D (13)

Figure S99. 1 H- 13 C HSQC spectrum (600 MHz, DMSO- d_{6}) of xenocockiamide D (13)

Figure S100. Comparison of ¹H NMR spectra (600 MHz, DMSO- d_6) of natural and synthetic xenocockiamide D (13)

Figure S101. Comparison of ¹³C NMR spectra (150 MHz, DMSO- d_6) of natural and synthetic xenocockiamide D (13)

Figure S102. HRESI(+)MS spectrum of hancockiamide A (1)

Figure S103. HRESI(+)MS spectrum of hancockiamide B (2)

Figure S104. HRESI(+)MS spectrum of hancockiamide C (3)

Figure S105. HRESI(+)MS spectrum of hancockiamide D (4)

Figure S106. HRESI(+)MS spectrum of hancockiamide E (5)

Figure S107. HRESI(+)MS spectrum of hancockiamide F (6)

Infusion_P31368_S0009455_Hancockiamid...

Infusion_P31368_S0009455_Hancockiamide G_Positive_1 #31_RT: 0.27_AV: 1_NL: 1.95E9 T: FTMS + p ESI Full ms [50.0000-750.0000]

200626_P0031352_QEP_S0009353_IST_8371...

06/26/20 12:53:49

Figure S109. HRESI(+)MS spectrum of hancockiamide H (8)

200717_P0031394_QEP_S0009560_IST_8457_Hancockamide_I_Positive_1 #52-67 RT: 0.56-0.70 AV: 16 NL: 1.61E8 T: FTMS + p ESIFull ms [150.0000-2000.0000]

Figure S110. HRESI(+)MS spectrum of hancockiamide I (9)

200626_P0031352_QEP_S0009349_IST_8370...

06/26/20 12:04:16

Figure S111. HRESI(+)MS spectrum of natural xenocockiamide A (10)

200626_P0031352_QEP_S0009352_IST_8369...

06/26/20 12:41:24

Figure S112. HRESI(+)MS spectrum of synthetic xenocockiamide A (10)

Figure S113. HRESI(+)MS spectrum of natural xenocockiamide B (11)

200626_P0031352_QEP_S0009351_IST_8367...

Figure S114. HRESI(+)MS spectrum of synthetic xenocockiamide B (11)

200717_P0031394_QEP_S0009559_IST_8456_Xenocockamide_C_Positive_1 #52-70 RT: 0.54-0.71 AV: 19 NL: 2.52E8 T: FTMS + p ESIFull ms [150.0000-2000.0000]

Figure S115. HRESI(+)MS spectrum of natural xenocockiamide C (12)

200626_P0031352_QEP_S0009350_IST_8368_Xenocockiamide_C_Positive_1 #58-80_RT: 0.56-0.76_AV: 23_NL: 1.82E8 T: FTMS + p ESI Full ms [150.0000-2000.0000]

Figure S116. HRESI(+)MS spectrum of synthetic xenocockiamide C (12)

200626_P0031352_QEP_S0009354_IST_8402...

200626_P0031352_QEP_S0009354_IST_8402_Xenocockiamide_D_Positive_1 #47-54_RT: 0.45-0.52_AV: 8_SB: 175_0.01-0.44 , 0.80-2.00_NL: 5.28E7 T: FTMS + p ESI Full ms [150.0000-2000.0000]

Figure S117. HRESI(+)MS spectrum of natural xenocockiamide D (13)

200626_P0031352_QEP_S0009355_IST_8403_Xenocockiamide_D_Positive_1 #71_RT: 0.69_AV: 1_NL: 3.92E8 T: FTMS + p ESI Full ms [150.0000-2000.0000]

Figure S118. HRESI(+)MS spectrum of synthetic xenocockiamide D (13)

Figure S119. UV-vis spectrum of hancockiamide A (1)

Figure S120. UV-vis spectrum of hancockiamide B (2)

Figure S121. UV-vis spectrum of hancockiamide C (3)

Figure S122. UV-vis spectrum of hancockiamide D (4)

Figure S123. UV-vis spectrum of hancockiamide E (5)

Figure S124. UV-vis spectrum of hancockiamide F (6)

Figure S125. UV-vis spectrum of hancockiamide G (7)

Figure S126. UV-vis spectrum of hancockiamide H (8)

Figure S127. UV-vis spectrum of hancockiamide I (9)

Figure S128. UV-vis spectrum of xenocockiamide A (10)

Figure S129. UV-vis spectrum of xenocockiamide B (11)

Figure S130. UV-vis spectrum of xenocockiamide C (12)

Figure S131. UV-vis spectrum of xenocockiamide D (13)

Supplementary references

1. Qiao, K.; Chooi, Y.-H.; Tang, Y., Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. *Metab. Eng.* **2011**, *13*, 723–732.

2. Chiang, Y.-M.; Ahuja, M.; Oakley, C. E.; Entwistle, R.; Asokan, A.; Zutz, C.; Wang, C. C. C.; Oakley, B. R., Development of genetic dereplication strains in *Aspergillus nidulans* results in the discovery of aspercryptin. *Angew. Chem. Int. Ed.* **2016**, *55*, 1662–1665.

3. Yin, W.-B.; Chooi, Y. H.; Smith, A. R.; Cacho, R. A.; Hu, Y.; White, T. C.; Tang, Y., Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in *Aspergillus nidulans*. ACS Syn. Biol. **2013**, *2*, 629–634.