Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Chemoselective Cu-Catalyzed Synthesis of Diverse *N*-Arylindole carboxamides, β-Oxo amides and *N*-Arylindole-3-carbonitriles using Diaryliodonium Salts

Manish Kumar Mehra, Monika Malik, Bintu Kumar and Dalip Kumar*

Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India

dalipk@pilani.bits-pilani.ac.in

Supplementary Information

Table of Contents

1. General Informations	S2
2. Experimental Procedures	S2
3. Characterization Data	S5
4. Copies of ¹ H & ¹³ C NMR spectra	S11
5. References	S39

1. General Informations

All the laboratory reagents were purchased from Sigma-Aldich, Alfa Aesar and Spectrochem India Pvt. Ltd and used without further purification. The reactions were monitored by thin layer chromatography and performed on Merck pre-coated plates (silica gel 60 F₂₅₄, 0.2mm). Column chromatographic purification of products was carried out using silica gel (100-200 mesh) and ethyl acetate/hexane mixture was used for elution. ¹H NMR spectra and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz using CDCl₃ and DMSO-*d*₆ solutions. Chemical shifts are given in ppm relative to the residual solvent peak (¹H NMR: CDCl₃ δ 7.26; DMSO-*d*₆ δ 2.50; ¹³C NMR: CDCl₃ δ 77.0; DMSO-*d*₆ δ 39.52) with multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (*J*, in Hz) and integration. Melting points were determined

using E-Z melting point apparatus and are uncorrected. High-resolution mass data were obtained on an Agilent 6545 Q-TOF LC/MS (ESI). Infrared spectra were recorded on Shimadzu IR Prestige-21 FT-IR spectrophotometer. Used α -cyano ketones and diaryliodonium salts were prepared according to literature reported methods.¹

2. Experimental Procedures

A. General procedure for the synthesis of indole-3-carbonitriles (9a-e):² Indole-3-carboxaldehyde was synthesized from commercially available indole *via* Vilsmeier-Haack formylation as reported in the literature.³

A round-bottom flask was successively charged with a mixture of indole-3-carboxaldehydes (13.78 mmol, 1.0 equiv), hydroxylamine hydrochloride (13.78 mmol, 1.0 equiv), and sodium formate (27.56 mmol, 2.0 equiv) dissolved in 15 mL of formic acid. The mixture was stirred for about 3 h at 130 °C until TLC revealed the complete consumption of the starting material. The reaction mixture was cooled to room temperature and poured into ice-cold water (150 mL) and

organic layer was extracted in dichloromethane (2 × 40 mL). The extracted organic layer was washed with saturated sodium bicarbonate (50 mL) and brine (50 mL) solution. Evaporated the organic phase under reduced pressure and the residue obtained was purified by silica gel column chromatography (ethyl acetate: hexane as eluent) to obtain pure indole-3-carbonitriles **9a-e** (65-70% yields).

B. General experimental procedure for *N*-arylindole-carboxamides (11a-k), *N*-phenyl-β-ketoamides (13a-d) and cephalandole A analogue (15): To the mixture indole-3-carbonitrile **9** or α-cyano ketones **12** (0.70 mmol, 1.0 equiv), copper(II)triflate (0.07 mmol) and diaryliodonium salts (**10**, 0.84 mmol, 1.2 equiv) were dissolved in DCE (2.5 mL, contains 0.1% v/v H₂O) under N₂ atmosphere. The resulting reaction mixture was stirred at 80 °C for 12 h in presence of inert (N₂) atmosphere. After completion of the reaction as indicated by TLC, the contents were cooled to room temperature and evaporated the solvent under reduced pressure. The obtained crude residue was purified by column chromatography using ethyl acetate and hexane as an eluent to obtain pure products **11a-k**, **13a-d** and **15**.

C. General experimental procedure for the synthesis of *N*-arylindole-carbonitriles (14a-c): A 10 mL round bottom flask was charged with indole-3-carbonitrile (**9a**, (0.70 mmol, 1.0 equiv), Cu(OTf)₂ (0.07 mmol, 10 mol%), *N*,*N*-diisopropylethylamine (2.1 mmol, 3.0 equiv), and the corresponding diaryliodonium salt (**10**, 0.84 mmol, 1.2 equiv). 1,2-Dichloroethane (2.5 mL) was then added to the flask. The reaction mixture was stirred at 80 °C for 12 h under nitrogen atmosphere. After completion of the reaction as indicated by TLC analysis, the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (ethyl acetate: hexane as eluent) to obtain the desired product **14a**.

D. Experimental procedure for the reduction of indole-3-carboxamide 11a: To a mixture of indole-3-carboxamide 11a (50 mg, 0.21 mmol) in anhydrous THF (5 mL), LiAlH₄ (0.53 mmol, 2.5 equiv) was added in one portion. The resulting reaction mixture was refluxed for 4 h (the reaction was closely monitored by TLC). Upon completion of the reaction, the contents were cooled to room temperature and carefully quenched with the addition of water (6.0 mL). The organic layer was then extracted with ethyl acetate (3.0 mL × 3) and the combined organic layer was dried over anhydrous Na₂SO₄. Organic layer was concentrated at reduced pressure, the

S3

crude product was purified by column chromatography eluting with hexane and ethyl acetate (6 : 4) to obtain pure **16** in 42% yield.

E. Experimental procedure for indoloquinolone 17: A suspension of 1-methyl-*N*-phenyl-1*H*-indole-3-carboxamide 11j (50 mg, 0.20 mmol), AgTFA (44.2 mg, 0.2 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol) in AcOH (1.0 mL) was stirred at 120 °C for 12 h. After completion of the reaction, the contents were cooled to room temperature and basified with saturated aqueous solution of NaHCO₃, followed by organic layer was extracted with ethyl acetate (3 × 3 mL). The combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure to give the crude product which was purified by column chromatography on silica gel (*n*-hexane/EtOAc: 50/50) to yield the pure products **17** in 72% yield.

F. Experimental procedure for indoloquinolone 18: To a solution of **11k** (100 mg, 0.42 mmol) in dry THF (4.0 mL) were added NaH (20 mg, 0.84 mmol) and followed by methyliodide (0.08 mL, 1.26 mmol) at 0 °C. Resulting solution was refluxed for 4 h. After completion of the reaction, solvent was removed at rotavapor and then water (5.0 mL) was added carefully in the reaction mixture. The organic layer was separated in DCM (1.5 mL × 3) and then dried over Na₂SO₄. After evaporation of the solvent in vacuum, obtained *N*,1-dimethyl-*N*-phenyl-1*H*-indole-3-carboxamide was used for next step without any further purification.

Obtained *N*,1-dimethyl-*N*-phenyl-1*H*-indole-3-carboxamide (0.37 mmol) and Pd(OAc)₂ (0.037 mmol, 0.1 equiv), *t*-BuOK (0.074 mmol, 0.2 equiv), AgOAc (1.11 mmol, 3.0 equiv) were taken in 2.5 mL mixture of pivalic acid and acetic acid (3 : 1). The resulting solution was heated at 130 °C for 12 h. After completion of the reaction (as indicated by TLC), mixture was cooled down to room temperature and added a saturated solution of sodium carbonate. Organic layer was extracted with dichloromethane and removal of excess solvent gave crude product. Column chromatography of the crude product on silica gel using ethyl acetate and hexane (4 : 6) as eluant afforded **18** with overall 65% yield.

3. Characterization data

N-Phenyl-1*H*-indolyl-3-carboxamide (11a): White solid, 91% yield, mp 172–173 °C (lit. mp 173-175 °C)⁴. ¹H NMR (400 MHz, DMSO- d_6) δ δ 11.75 (s, 1H), 9.72 (s, 1H), 8.31 (d, *J* = 2.4 Hz, 1H), 8.21 (d, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.22 – 7.14 (m, 2H), 7.05 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100

MHz, DMSO-*d*₆) δ 163.7, 140.3, 136.7, 129.1, 129.0, 126.9, 123.1, 122.6, 121.5, 121.1, 120.2, 112.4, 111.0; IR (neat, cm⁻¹): 3375, 3248, 1643, 1602.

N-(*p*-Tolyl)-1*H*-indole-3-carboxamide (11b): Off-white solid, 89% yield, mp 200–201 °C (lit. mp 200.9-201.1 °C)⁵. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.71 (s, 1H), 9.64 (s, 1H), 8.27 (d, *J* = 3.0 Hz, 1H), 8.19 (d, *J* = 7.4 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.21 – 7.12 (m, 4H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.6, 137.7, 136.6, 131.9, 129.4, 128.9, 126.9, 122.5, 121.5,

121.0, 120.2, 112.4, 111.0, 20.9; IR (neat, cm⁻¹): 3377, 3247, 1642, 1238.

N-(4-(*tert*-Butyl)phenyl)-1*H*-indole-3-carboxamide(11c): Offwhite solid, 80% yield, mp 185–186 °C; ¹H NMR (400 MHz, DMSO d_6) δ 11.72 (s, 1H), 9.66 (s, 1H), 8.29 (d, *J* = 2.9 Hz, 1H), 8.21 (d, *J* = 7.4 Hz, 1H), 7.69 (d, *J* = 8.7 Hz, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 2H), 7.22 – 7.12 (m, 2H), 1.29 (s, 9H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.6, 145.3, 137.7, 136.7, 128.9, 126.9, 125.6,

122.5, 121.6, 121.0, 120.0, 112.4, 111.0, 34.4, 31.7; IR (neat, cm⁻¹): 3213, 1636, 1234, 745; HRMS (ESI) m/z calcd for C₁₉H₂₁N₂O: 293.1648 (M + H)⁺, found: 293.1642.

N-(4-Methoxyphenyl)-1*H*-indole-3-carboxamide (11d): Offwhite solid, 82% yield, mp 201–202 °C (lit. mp 200-202 °C)⁶. ¹H NMR (400 MHz, DMSO- d_6) δ 11.71 (s, 1H), 9.63 (s, 1H), 8.26 (d, *J* = 3.0 Hz, 1H), 8.20 (d, *J* = 7.4 Hz, 1H), 7.69 – 7.66 (m, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.21 – 7.12 (m, 2H), 6.92 (d, *J* = 9.1 Hz, 2H), 3.75

S5

(s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.5, 155.3, 136.7, 133.3, 128.8, 126.9, 122.5, 121.8, 121.6, 121.0, 114.2, 112.4, 111.1, 55.6; IR (neat, cm⁻¹): 3398, 3217, 1631, 1236.

N-(4-Chlorophenyl)-1*H***-indole-3-carboxamide (11e):** Off-white solid, 75% yield, mp 224–225 °C (lit. mp 225-226 °C)⁶. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.25 (s, 1H), 8.16 (d, *J* = 7.5 Hz, 1H), 7.77 (d, *J* = 8.9 Hz, 2H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.9 Hz, 2H), 7.22 – 7.14 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.8, 138.9,

136.5, 129.3, 129.1, 128.9, 126.8 126.6, 122.9, 121.7, 121.4, 112.5, 110.5; IR (neat, cm⁻¹): 3410, 3118, 1641, 1233.

N-(*m*-Tolyl)-1*H*-indole-3-carboxamide (11f): Off-white solid, 86% yield, mp 196–197 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.73 (s, 1H), 9.64 (s, 1H), 8.30 (d, *J* = 3.0 Hz, 1H), 8.21 (d, *J* = 7.4 Hz, 1H), 7.64 (s, 1H), 7.57 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.23 – 7.13 (m, 3H), 6.86 (d, *J* = 7.5 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.7, 140.2, 138.1, 136.7, 129.0, 128.8, 126.90, 123.8, 122.6,

121.6, 121.1, 120.7, 117.3, 112.4, 111.0, 21.7; IR (neat, cm⁻¹): 3379, 3231, 1642, 1235; HRMS (ESI) *m/z* calcd for C₁₆H₁₅N₂O: 251.1179 (M + H)⁺, found: 251.1175.

5-Bromo-*N***-phenyl-1***H***-indole-3-carboxamide (11g):** Off-white solid, 75% yield, mp 220–221 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.95 (s, 1H), 9.80 (s, 1H), 8.37 – 8.35 (m, 2H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.36 – 7.30 (m, 3H), 7.06 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (100 MHz, DMSO) δ 163.3, 140.0, 135.4, 130.4,

129.0, 128.7, 125.2, 123.7, 123.3, 120.3, 114.5, 114.0, 110.5; IR (neat, cm⁻¹): 3402, 3290, 1641; HRMS (ESI) *m/z* calcd for C₁₅H₁₂BrN₂O: 315.0128 (M + H)⁺, found: 315.0118.

5-Fluoro-*N***-phenyl-1***H***-indole-3-carboxamide** (**11h**): Off-white solid, 70% yield, mp 211–213 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.81 (s, 1H), 8.33 (s, 1H), 7.85 (dd, *J* = 10.2, 2.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.49 (dd, *J* = 8.9, 4.6 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 2H),

7.08 – 7.03 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.6, 158.39 (d, J_F = 231.8 Hz), 139.7, 133.1, 130.5, 129.1, 127.26 (d, J_F = 11.0 Hz), 123.5, 120.3, 113.64 (d, J_F = 9.9 Hz), 111.05 (d, J_F = 26.1 Hz), 110.8 (d, J_F = 4.6 Hz), 106.14 (d, J_F = 24.5 Hz); IR (neat, cm⁻¹): 3411, 3296, 1642; HRMS (ESI) m/z calcd for C₁₅H₁₂FN₂O: 255.0928 (M + H)⁺, found: 255.0920.

5-Nitro-*N***-phenyl-1***H***-indole-3-carboxamide(11i):** Off-white solid, 78% yield, mp 272–273 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 12.40 (s, 1H), 9.97 (s, 1H), 9.13 (d, *J* = 2.3 Hz, 1H), 8.56 (d, *J* = 2.9 Hz, 1H), 8.10 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.08 (t, *J* = 6.9 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.58 (d, *J* = 9.0 Hz), 7.59 (d, *J* = 9.0 Hz), 7.50 (d, *J* = 9.0 Hz), 7.59 (d, *J* = 9.0 Hz), 7.50 (d, J = 9.0 Hz), 7.50 (d, J = 9.0 Hz), 7.50 (d, J = 9.0 Hz), 7.5

1H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.8, 142.4, 139.8, 132.6, 129.1, 127.1, 126.3, 123.6, 120.4, 118.3, 118.0, 113.2, 112.9; IR (neat, cm⁻¹): 3428, 3290, 1645, 1523, 1485; HRMS (ESI) *m/z* calcd for C₁₅H₁₂N₃O₃: 282.0873 (M + H)⁺, found: 282.0869.

1-Methyl-*N***-phenyl-1***H***-indole-3-carboxamide (11j):** Off-white solid, 85% yield, mp 172–173 °C (lit. mp 172-173 °C);⁷ ¹H NMR (400 MHz, DMSO- d_6) δ 9.74 (s, 1H), 8.27 (s, 1H), 8.21 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.27 – 7.25 (m, 1H), 7.22 – 7.18 (m, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 3.89 (s, 3H);

¹³C NMR (100 MHz, DMSO- d_6) δ 163.3, 140.3, 137.3, 132.9, 129.0, 127.2, 123.1, 122.7, 121.7, 121.4, 120.1, 110.8, 110.0, 33.6; IR (neat, cm⁻¹): 3290, 1638.

N-Phenyl-1H-indole-2-carboxamide (11k): Pale yellow solid, 81% yield, mp 194-195 °C (lit. mp 192-193 °C)⁸. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.75 (s, 1H), 10.22 (s, 1H), 7.82 (d, *J* = 8.8, 1.2 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.40 – 7.36 (m, 2H), 7.25 – 7.21 (m, 1H), 7.14 – 7.06 (m, 2H); ¹³C NMR (100 MHz,

DMSO- d_6) δ 160.2, 139.4, 137.3, 131.9, 129.2, 127.5, 124.2, 124.0, 122.2, 120.6, 120.4, 112.9, 104.3; IR (neat, cm⁻¹): 3428, 3341, 1648.

3-(1H-Indol-3-yl)-3-oxo-N-phenylpropanamide(13a):

Light brown solid, 75% yield, mp 214–215 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.06 (s, 1H), 10.20 (s, 1H), 8.43 (d, *J* = 3.1 Hz, 1H), 8.19 (d, *J* = 7.0 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.06 (t, *J* = 7.4

Hz, 1H), 3.99 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 189.2, 166.3, 139.6, 137.1, 135.7, 129.2, 125.8, 123.7, 123.5, 122.4, 121.7, 119.5, 116.8, 112.7, 49.3; IR (neat, cm⁻¹): 3310, 1667, 1601, 1420, 1339, 1173; HRMS (ESI) *m/z* calcd for C₁₇H₁₅N₂O₂: 279.1128 (M + H)⁺, found: 279.1126.

3-(5-Methoxy-1H-indol-3-yl)-3-oxo-N-phenylpropanamide

(13b): Light brown solid, 70% yield, mp 208–210 °C; ¹H
NMR (400 MHz, DMSO-*d₆*) δ 11.95 (s, 1H), 10.17 (s, 1H),
8.36 (d, *J* = 3.1 Hz, 1H), 7.70 (d, *J* = 2.5 Hz, 1H), 7.63 – 7.61 (m, 2H), 7.39 (d, *J* = 8.8 Hz, 1H), 7.31 (t, *J* = 7.9 Hz, 2H), 7.06

(t, J = 7.4 Hz, 1H), 6.86 (dd, J = 8.8, 2.6 Hz, 1H), 3.96 (s, 2H), 3.78 (s, 3H).); ¹³C NMR (100 MHz, DMSO- d_6) δ 189.1, 166.3, 156.0, 139.6, 135.7, 131.9, 129.2, 126.7, 123.7, 119.5, 116.7, 113.4, 113.3, 103.4, 55.7, 49.3; IR (neat, cm⁻¹): 3309, 3140, 1697, 1664, 1560; HRMS (ESI) m/z calcd for $C_{18}H_{17}N_2O_3$: 309.1234 (M + H)⁺, found: 309.1228.

3-(5-Bromo-1H-indol-3-yl)-3-oxo-N-phenylpropanamide

(13c): Light brown solid, 64% yield, mp 227–228 °C; ¹H NMR
(400 MHz, DMSO-d₆) δ 12.27 (s, 1H), 10.22 (s, 1H), 8.49 (d, J
= 3.1 Hz, 1H), 8.32 (d, J = 1.9 Hz, 1H), 7.61 (d, J = 7.6 Hz, 2H),
7.49 (d, J = 8.6 Hz, 1H), 7.38 (dd, J = 8.6, 2.0 Hz, 1H), 7.32

(t, J = 7.9 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 3.99 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 189.4, 166.1, 139.5, 136.8, 135.9, 129.2, 127.6, 126.1, 123.8, 123.8, 119.5, 116.3, 115.2, 114.9, 49.3; IR (neat, cm⁻¹): 3395, 3294, 1670, 995; HRMS (ESI) m/z calcd for C₁₇H₁₄BrN₂O₂: 357.0233 (M + H)⁺, found: 357.0196.

3-Oxo-*N***, 3-diphenylpropanamide (13d):** Off-white solid, 82% yield, mp 102–103 °C (lit. mp 102–104 °C);⁹ ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.06 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.61 (d, J = 7.9 Hz, 2H), 7.54 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 4.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 163.8, 137.6, 136.1, 134.4, 129.0, 129.0, 128.6, 124.6, 120.2, 45.6; IR (neat, cm⁻¹): 3310, 1693, 1658, 1595, 1543, 1442.

1-Phenyl-1*H***-indole-3-carbonitrile (14a):** Yellowish solid, 93% yield, mp 115–116 °C (lit. mp 116 °C)¹⁰. ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 1H), 7.81 (s, 1H), 7.63 – 7.59 (m, 2H), 7.55 – 7.49 (m, 4H), 7.39 – 7.36 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 135.6, 134.7, 130.1, 128.4, 128.0, 124.9, 124.6, 122.8, 120.0, 115.5, 111.6, 88.1; IR (neat, cm⁻¹): 3119, 2221,

1541; HRMS (ESI) m/z calcd for C₁₅H₁₁N₂: 219.0917 (M + H)⁺, found: 219.0911.

1-(*p***-Tolyl)-1***H***-indole-3-carbonitrile (14b):** White solid, 85% yield, mp 101–102 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.83 (m, 1H), 7.79 (s, 1H), 7.53 – 7.49 (m, 1H), 7.38 – 7.35 (m, 6H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 135.8, 135.3, 134.7, 130.5, 127.9, 124.8, 124.4, 122.7, 120.0, 115.6, 111.6, 87.8, 21.1; IR (neat, cm⁻¹): 3113, 2920, 2222, 1535; HRMS (ESI) *m/z* calcd for C₁₆H₁₃N₂: 233.1073 (M + H)⁺, found: 233.1066.

Methyl 3-(3-cyano-1*H*-indol-1-yl)benzoate (14c): Off-white solid, 79% yield, mp 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 6.8, 1.8 Hz, 2H), 7.87 (d, J = 2.6 Hz, 1H), 7.85 (s, 1H), 7.74 – 7.66 (m, 2H), 7.54 – 7.52 (m, 1H), 7.41 – 7.37 (m, 2H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.1, 135.5, 134.4, 132.4, 130.2, 129.3, 129.0, 128.0, 125.8, 124.9, 123.1, 120.2, 115.2, 111.3, 88.9, 52.6; IR (neat, cm⁻¹):

3120, 2958, 2222, 1539; HRMS (ESI) m/z calcd for $C_{17}H_{13}N_2O_2$: 277.0972 (M + H)⁺, found: 277.0966.

2-(1*H***-Indol-3-yl)-4***H***-benzo[***d***][1,3]oxazin-4-one (15): Pale yellow solid, 63% yield, mp 236–237 °C (lit. mp 235-236 °C)¹¹. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.14 (s, 1H), 8.44 (dd,** *J* **= 6.1, 3.1 Hz, 1H), 8.31 (d,** *J* **= 3.0 Hz, 1H), 8.13 (d,** *J* **= 1.2 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.69 (d,** *J*

= 7.7 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.31 – 7.27 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 159.8, 156.1, 148.1, 137.4, 137.2, 132.1, 128.5, 127.4, 126.7, 125.4, 123.4, 122.0, 121.7, 116.7, 113.0, 106.9; IR (neat, cm⁻¹) 3414, 1746, 1539; HRMS (ESI) *m/z* calcd for C₁₆H₁₁N₂O₂: 263.0815 (M + H)⁺, found: 263.0806.

N-((1*H*-Indol-3-yl)methyl)aniline¹² (16): Brown liquid, 42% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.27 – 7.16 (m, 5H), 6.79 – 6.73 (m, 3H), 4.52 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 136.4, 129.3, 126.7, 122.7, 122.4, 119.8, 119.0, 117.4, 114.0, 112.9, 111.3, 40.1; IR (neat, cm⁻¹)

2943, 1519, 1022.

11-Methyl-5,11-dihydro-6*H***-indolo**[**3,2-***c*]**quinolin-6-one (17)**: Pale yellow solid, 72% yield, mp 312–313 °C (lit. mp 310-315 °C)¹³. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.54 (s, 1H), 8.49 (d, *J* = 8.2 Hz, 1H), 8.32 (d, *J* = 7.7 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.55 – 7.54 (m, 2H), 7.47 – 7.43 (m, 1H), 7.34 – 7.30 (m, 2H), 4.34 (s, 3H); ¹³C NMR (100

MHz, DMSO- d_6) δ 159.9, 140.4, 139.8, 138.9, 129.3, 124.5, 123.8, 123.6, 121.9, 121.8, 121.3, 116.9, 113.0, 110.7, 107.4, 33.8; IR (neat, cm⁻¹): 3394, 1655, 1022, 825, 763.

5,7-Dimethyl-5,7-dihydro-6*H***-indolo**[**2,3-***c*]**quinolin-6-one** (18): Off-white solid, 65% yield, mp 231–232 °C (lit. mp 234 °C)¹⁴. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.56 (d, *J* = 7.3 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.45 – 7.37 (m, 2H), 4.34 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ

156.4, 140.7, 136.3, 127.0, 126.5, 126.1, 123.9, 123.1, 123.1, 121.7, 121.4, 119.1, 118.0, 116.0, 111.7, 31.9, 29.6; IR (neat, cm⁻¹): 3051, 1640, 1273, 728.

4. Copies of ¹H &¹³C NMR spectra

¹H NMR spectrum of 11a

¹H NMR spectrum of 11b

7.0 6.5 f1 (ppm) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 6.0

¹³C NMR spectrum of 11b

¹H NMR spectrum of 11c

¹³C NMR spectrum of 11c

HRMS Spectrum of 11c

MS Zoomed Spectrum

¹H NMR spectrum of 11d

¹³C NMR spectrum of 11d

¹H NMR spectrum of 11e

¹³C NMR spectrum of 11e

¹H NMR spectrum of 11f

¹³C NMR spectrum of 11f

¹H NMR spectrum of 11g

¹³C NMR spectrum of 11g

S18

HRMS Spectrum of 11g

MS Zoomed Spectrum

¹H NMR spectrum of 11h

¹³C NMR spectrum of 11h

HRMS Spectrum of 11h

MS Zoomed Spectrum

¹H NMR spectrum of 11i

¹³C NMR spectrum of 11i

HRMS Spectrum of 11i

MS Zoomed Spectrum

¹³C NMR spectrum of 11j

S23

¹³C NMR spectrum of 11k

¹H NMR spectrum of 13a

HRMS Spectrum of 13a

MS Zoomed Spectrum

¹³C NMR spectrum of 13b

¹H NMR spectrum of 13c

HRMS Spectrum of 13c

¹H NMR spectrum of 13d

¹³C NMR spectrum of 13d

¹H NMR spectrum of 14a

DK-MM-IN-41

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

¹³C NMR spectrum of 14a

HRMS Spectrum of 14a

MS Zoomed Spectrum

¹H NMR spectrum of 14b

HRMS Spectrum of 14b

MS Zoomed Spectrum

¹³C NMR spectrum of 14c

HRMS Spectrum of 14c

MS Zoomed Spectrum

¹H NMR spectrum of 15

¹³C NMR spectrum of 15

HRMS Spectrum of 15

MS Zoomed Spectrum

¹³C NMR spectrum of 16

¹³C NMR spectrum of 17

¹³C NMR spectrum of 18

5. References

- (a) J. Slaett, I. Romero and J. Bergman, *Synthesis*, 2004, **2004**, 2760; (b) N. Soldatova, P. Postnikov, O. Kukurina, V. V. Zhdankin, A. Yoshimura, T. Wirth and M. S. Yusubov, *ChemistryOpen*, 2017, **6**, 18; (c) M. Zhu, N. Jalalian and B. Olofsson, *Synlett*, 2008, **2008**, 592; (d) E. Lindstedt, M. Reitti and B. Olofsson, *J. Org. Chem.*, 2017, **82**, 11909.
- (a) D. Kumar, M. K. Narayanam, K. H. Chang and K. Shah, *Chem Biol Drug Des*, 2011, **77**, 182; (b) D. Kumar, N. M. Kumar, K.-H. Chang, R. Gupta and K. Shah, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 5897.
- (a) H. Pessoa-Mahana, I. Cuevas M, C. D. Pessoa-Mahana, R. Araya-Maturana, I. A. Fajardo and C. Saitz Barría, *J. Chil. Chem. Soc.*, 2011, **56**, 866; (b) C. Chay, R. Cansino, C. Pinzón, R. Torres-Ochoa and R. Martínez, *Mar. Drugs*, 2014, **12**, 1757.
- 4. D. Hadjipavlou-Litina, G. E. Magoulas, M. Krokidis and D. Papaioannou, *Eur. J. Med. Chem.*, 2010, **45**, 298.
- 5. P. Peterson, J. Wolf III and C. Niemann, J. Org. Chem., 1958, 23, 303.
- 6. J. Zaletova, M. Dzurilla, P. Kutschy, P. Pazdera, V. Kováčik, J. Aldölfi and S. Bekešová, *Collect. Czech. Chem. Commun.*, 2004, **69**, 453.
- P. Caramella, A. C. Corsico, A. Corsaro, D. Del Monte and F. M. Albini, *Tetrahedron*, 1982, 38, 173.
- 8. S. Mahboobi, S. Teller, H. Pongratz, H. Hufsky, A. Sellmer, A. Botzki, A. Uecker, T. Beckers, S. Baasner and C. Schächtele, *J. Med. Chem.*, 2002, **45**, 1002.

- (a) A. Chakraborty, S. Majumdar and D. K. Maiti, *Tetrahedron Lett.*, 2016, **57**, 3298; (b) H. O. M. Satu, S. Komatsu and T. Kato, *Chem. Pharm. Bull.*, 1984, **32**, 3848.
- 10. Q. Wu, Y. Luo, A. Lei and J. You, J. Am. Chem. Soc., 2016, 138, 2885.
- 11. J. J. Mason, J. Bergman and T. Janosik, J. Nat. Prod., 2008, 71, 1447.
- 12. Y.-H. He, Y. Xiang, D.-C. Yang and Z. Guan, *Green Chem.*, 2016, **18**, 5325.
- (a) N. Wang, K. Imai, C.-Q. Pang, M.-q. Wang, M. Yonezawa, Y. Zhang, J. Nokami and T. Inokuchi, *Bull. Chem. Soc. Jpn.*, 2013, **86**, 864; (b) J. Bourdais and A. Lorre, *J. Heterocycl. Chem.*, 1975, **12**, 1111.
- 14. Z. Chen and X. Wang, Org. Biomol. Chem., 2017, 15, 5790.