SUPPLEMENTARY INFORMATION

A Versatile Stereocontrolled Synthesis of 2-Deoxyiminosugar *C*-Glycosides and their Evaluation as Glycosidases Inhibitors

Alexandre Lumbroso,^a Clément Berthonneau,^a Isabelle Beaudet,^a Jean-Paul Quintard,^a Aurélien Planchat,^a M. Isabel García-Moreno,^b Carmen Ortiz-Mellet,^b Erwan Le Grognec^{a*}

^a Université de Nantes, CNRS, CEISAM, UMR 6230, 44000 Nantes, France. e-mail: <u>erwan.legrognec@univ-nantes.fr</u>

^b Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Professor García Gonzalez 1, 41012, Seville, Spain

Table of Contents

I-NMR spectra and NOESY analysis		5
¹ H NMR of compound 3 (400 MHz,	CDCl ₃ , 300K)	5
¹³ C NMR of compound 3 (100 MHz,	CDCl ₃ , 300K)	6
¹ H NMR of compound 4 (400 MHz,	CDCl ₃ , 300K)	7
¹³ C NMR of compound 4 (100 MHz,	CDCl ₃ , 300K)	
¹ H NMR of compound 5 - <i>exo</i> (400 M	[Hz, CDCl ₃ , 300K)	9
¹³ C NMR of compound 5 -exo (100 M	/Hz, CDCl ₃ , 300K)	
¹ H NMR of compound 5-endo (400 I	MHz, CDCl ₃ , 300K)	
¹³ C NMR of compound 5-endo (100	MHz, CDCl ₃ , 300K)	
¹ H NMR of compound 6-exo (300 M	(Hz, CDCl ₃ , 300K)	
¹³ C NMR of compound 6-exo (75 M	Hz, CDCl ₃ , 300K)	
¹ H NMR of compound 6-endo (300 I	MHz, CDCl ₃ , 300K)	
¹³ C NMR of compound 6-endo (75 M	/Hz, CDCl ₃ , 300K)	
¹ H NMR of compound 9 (400 MHz,	CDCl ₃ , 300K)	
¹³ C NMR of compound 9 (100 MHz,	CDCl ₃ , 300K)	
¹ H NMR of compound 10 (400 MHz	, CDCl ₃ , 300K)	
¹³ C NMR spectrum of compound 10	(100 MHz, CDCl ₃ , 300K)	
¹ H NMR of compound 11 (400 MHz	, CDCl ₃ , 300K)	
¹³ C NMR compound 11 (100 MHz, C	CDCl ₃ , 300K)	
¹ H NMR of compound 12 (300 MHz	, CDCl ₃ , 300K)	
¹³ C NMR of compound 12 (75 MHz,	CDCl ₃ , 300K)	
¹ H NMR of compound 13 in (300 MI	Hz, CDCl ₃ , 300K)	
¹³ C NMR of compound 13 (75 MHz,	CDCl ₃ , 300K)	
¹ H NMR of compound 14 (400 MHz	, CDCl ₃ , 300K)	
¹³ C NMR of compound 14 (100 MHz	z, CDCl ₃ , 300K)	
¹ H NMR of compound 15 (400 MHz	, CD ₃ OD, 300K)	
¹³ C NMR of compound 15 (100 MHz	z, CD ₃ OD, 300K)	
¹ H NMR of compound 16 (400 MHz	, CD ₃ OD, 300K)	
¹³ C NMR of compound 16 (100 MHz	z, CD ₃ OD, 300K)	
¹ H NMR of compound 17 ($dr = 67/3$)	3) in (300 MHz, CDCl ₃ , 300K)	
¹³ C NMR of compound 17 ($dr = 67/3$	33) (75 MHz, CDCl ₃ , 300K)	
¹ H NMR of compound 18 in (300 MI	Hz, CDCl ₃ , 300K)	
¹³ C NMR of compound 18 (75 MHz,	CDCl ₃ , 300K)	
¹ H NMR of compound 19' (400 MH	z, CDCl ₃ , 300K) obtained from 19 - <i>exo</i>	
¹³ C NMR of compound 19' (100 MH	Iz, CDCl ₃ , 300K) obtained from 19 - <i>exo</i>	
¹ H NMR compound 19-endo (300 M	(Hz, CDCl ₃ , 300K)	
¹³ C NMR compound 19-endo (75 MI	Hz, CDCl ₃ , 300K)	
¹ H NMR of compound 20 -exo (400 N	MHz, CDCl ₃ , 300K)	
¹³ C NMR of compound 20-exo (100	MHz, CDCl ₃ , 300K)	
¹ H NMR of compound 20-endo (300	MHz, CDCl ₃ 300K)	
¹³ C NMR of compound 20-endo (100	0 MHz, CDCl ₃ , 300K)	
Discrimination between exo and ende	<i>o</i> epoxides	
¹ H NMR of compound 21 (300 MHz	, CDCl ₃ , 300K)	
¹³ C NMR of compound 21 (75 MHz,	CDCl ₃ , 300K)	

¹ H NMR spectrum of compound 22 (400 MHz, CDCl ₃ , 300K)	
¹³ C NMR of compound 22 (100 MHz, CDCl ₃ , 300K)	49
¹ H NMR of compound 23 (400 MHz, CD ₃ OD, 300K)	50
¹³ C NMR of compound 23 (100 MHz, CD ₃ OD, 300K)	51
¹³ C NMR of compound 24 (100 MHz, CH ₃ OD, 300K)	53
¹ H NMR of compound 25 (400 MHz, CD ₃ OD, 300K)	54
¹³ C NMR of compound 25 (100 MHz, CD ₃ OD, 300K)	55
¹ H NMR of compound 26 (300 MHz, CD ₃ OD, 300K)	56
¹³ C NMR of compound 26 (75 MHz, CD ₃ OD, 300K)	57
¹ H NMR of compound 27 (400MHz, CD ₃ OD, 300K)	58
¹³ C NMR of compound 27 (100 MHz, CD ₃ OD, 300K)	59
¹ H NMR of compound 28 (400MHz, CD ₃ OD, 300K)	60
¹³ C NMR of compound 28 (100 MHz, CD ₃ OD, 300K)	61
¹ H NMR of compound 29 (400 MHz, CD ₃ OD, 300K)	
¹³ C NMR of compound 29 (100 MHz, CD ₃ OD, 300K)	
¹ H NMR of compound 30 (300 MHz, CD ₃ OD, 300K)	64
¹³ C NMR of compound 30 (75 MHz, CD ₃ OD, 300K)	65
¹ H NMR of compound 31 (400 MHz, CD ₃ OD, 300K)	66
¹³ C NMR of compound 31 (100 MHz, CD ₃ OD, 300K)	67
¹ H NMR of compound 32 (400 MHz, CD ₃ OD, 300K)	68
¹³ C NMR of compound 32 (100 MHz, CD ₃ OD, 300K)	69
¹ H NMR of compound 35 (400 MHz, CD ₃ OD, 300K)	
¹³ C NMR of compound 35 (100 MHz, CD ₃ OD, 300K)	71
II- Dixon and Lineweaver-Burk plots for Ki determination	
Figure S1 . Dixon Plot for K_i determination (473 ± 50 μ M) of 23 against <i>bovine liver</i> β -galactosidase	
Figure S2 . Dixon Plot for K_i determination (652 ± 55 μ M) of 24 against <i>bovine liver</i> β -galactosidase	
Figure S3 . Dixon Plot for K_i determination (10 ± 0.2 µM) of 25 against <i>bovine liver</i> β-galactosidase	
Figure S4 . Dixon Plot for K_i determination (475 ± 45 μ M) of 33 against <i>bovine liver</i> β -galactosidase	
Figure S5 . Dixon Plot for K_i determination (301 ± 25 μ M) of 26 against <i>bovine liver</i> β -galactosidase	
Figure S6 . Lineweaver-Burk Plot for K_i determination (1.3 ± 0.1 µM) of 27 against <i>bovine liver</i> β-galactosidase/glucosidase.	}- 73
Figure S7 . Dixon Plot for K_i determination (42 ± 4 μ M) of 28 against <i>bovine liver</i> β -galactosidase/ β -glucosidase.	74
Figure S8 . Lineweaver-Burk Plot for K_i determination (12.1 ± 2 μ M) of 29 against <i>bovine liver</i> β -galactosidase/ β	-
glucosidase.	
Figure S9. Dixon Plot for K_i determination (58 ± 6 μ M) of 30 against <i>bovine liver</i> β -galactosidase	
Figure S10 . Dixon Plot for K_i determination (594 ± 60 μ M) of 34 against <i>bovine liver</i> β -galactosidase	
Figure S11 . Dixon Plot for K_i determination (195 ± 20 μ M) of 35 against <i>bovine liver</i> β -galactosidase	
Figure S12 . Dixon Plot for K_i determination (46 ± 3 μ M) of 24 against <i>almonds</i> β -glucosidase.	
Figure S13 . Dixon Plot for K_i determination (252 ± 20 μ M) of 25 against <i>almonds</i> β -glucosidase	
Figure S14 . Dixon Plot for K_i determination (693 ± 65 µM) of 26 against <i>almonds</i> β-glucosidase	
Figure S15. Dixon Plot for Ki determination (36 \pm 4 μ M) of 27 against almonds β -glucosidase	
Figure S16 . Lineweaver-Burk Plot for K_i determination (11.4 ± 2 μ M) of 28 against <i>almonds</i> β -glucosidase	77
Figure S17. Lineweaver-Burk Plot for K_i determination (18 ± 2 μ M) of 29 against <i>almonds</i> β -glucosidase	77
Figure S18. Dixon Plot for K_i determination (436 ± 41 μ M) of 30 against <i>almonds</i> β -glucosidase	77
Figure S19. Dixon Plot for K_i determination (537 ± 50 μ M) of 34 against <i>almonds</i> β -glucosidase	

Figure	S20 .	Dixon Plot	t for <i>I</i>	K_i determination (140 ± 11 μM) of 35 against <i>almonds</i> β-glucosidase	78
Figure	S21 .	Dixon Plot	t for <i>I</i>	K_i determination (33 ± 3 µM) of 23 against green coffee beans α -galactosidase	78
Figure	S22 .	Dixon Plot	t for <i>I</i>	K_i determination (36 ± 5 µM) of 24 against green coffee beans α -galactosidase	79
Figure	S23 .	Dixon Plot	t for <i>I</i>	K_i determination (313 ± 28 µM) of 25 against green coffee beans α -galactosidase	79
Figure	S24 .	Dixon Plot	t for <i>I</i>	K_i determination (223 ± 20 μ M) of 33 against green coffee beans α -galactosidase	79
Figure	S25.	Dixon Plot	t for <i>I</i>	K_i determination (153 ± 12 µM) of 24 against <i>Aspergillus niger</i> amyloglucosidase	80
Figure	S26 .	Dixon Plot	t for <i>I</i>	K_i determination (116 ± 10 µM) of 26 against <i>Aspergillus niger</i> amyloglucosidase	80
Figure	S27 .	Dixon Plot	t for <i>I</i>	K_i determination (463 ± 40 μ M) of 27 against <i>Aspergillus niger</i> amyloglucosidase	80
Figure	S28 .	Dixon Plot	t for <i>I</i>	K_i determination (169 ± 15 µM) of 28 against <i>Aspergillus niger</i> amyloglucosidase	81
Figure	S29 .	Dixon Plot	t for <i>I</i>	K_i determination (1.4 ± 0.1 µM) of 34 against <i>Aspergillus niger</i> amyloglucosidase	81
Figure	S30 .	Dixon Plot	t for <i>I</i>	K_i determination (550 ± 45 µM) of 35 against <i>Aspergillus niger</i> amyloglucosidase	81
Figure	S31 .	Dixon Plot	t for <i>I</i>	K_i determination (22.8 ± 1.9 µM) of 32 against <i>Aspergillus niger</i> amyloglucosidase	82
Figure	S32 .	Dixon Plot	t for <i>I</i>	K_i determination (115 ± 10 µM) of 25 against <i>Penicilium decumbes</i> naringinase	82
Figure	S33 .	Dixon Plot	t for <i>I</i>	K_i determination (76 ± 5 µM) of 26 against <i>Penicilium decumbes</i> naringinase	82
Figure	S34 .	Dixon Plot	t for <i>I</i>	K_i determination (131 ± 11 µM) of 27 against <i>Penicilium decumbes</i> naringinase	83
Figure	S35 .	Dixon Plot	t for <i>I</i>	K_i determination (45 ± 3 µM) of 28 against <i>Penicilium decumbes</i> naringinase	83
Figure	S36 .	Dixon Plot	t for <i>I</i>	K_i determination (50 ± 4 µM) of 29 against <i>Penicilium decumbes</i> naringinase	83
Figure	S37 .	Dixon Plot	t for <i>I</i>	K_i determination (224 ± 20 μ M) of 30 against <i>Penicilium decumbes</i> naringinase	84
Figure	S38 .	Dixon Plot	t for <i>I</i>	K_i determination (67 ± 5 µM) of 34 against <i>Penicilium decumbes</i> naringinase	84
Figure	S39 .	Lineweave	er-Bu	rk Plot for K_i determination (4.9 ± 0.5 µM) of 35 against <i>Penicilium decumbes</i> naringinase	84
Figure	S40 .	Dixon Plot	t for <i>I</i>	K_i determination (272 ± 25 µM) of 32 against <i>Penicilium decumbes</i> naringinase	85

I-NMR spectra and NOESY analysis

¹H NMR of compound **3** (400 MHz, CDCl₃, 300K)

 ^{13}C NMR of compound **3** (100 MHz, CDCl₃, 300K)

¹H NMR of compound **4** (400 MHz, CDCl₃, 300K)

¹³C NMR of compound **4** (100 MHz, CDCl₃, 300K)

¹H NMR of compound **5-***exo* (400 MHz, CDCl₃, 300K)

¹³C NMR of compound **5-***exo* (100 MHz, CDCl₃, 300K)

¹H NMR of compound **5-***endo* (400 MHz, CDCl₃, 300K)

¹³C NMR of compound **5-endo** (100 MHz, CDCl₃, 300K)

¹H NMR of compound **6-***endo* (300 MHz, CDCl₃, 300K)

¹³C NMR of compound **9** (100 MHz, CDCl₃, 300K)

 ^{13}C NMR spectrum of compound 10 (100 MHz, CDCl_3, 300K)

¹H NMR of compound **11** (400 MHz, CDCl₃, 300K)

¹H NMR of compound **12** (300 MHz, CDCl₃, 300K)

¹H NMR of compound **13** in (300 MHz, CDCl₃, 300K)

¹H NMR of compound **14** (400 MHz, CDCl₃, 300K)

¹³C NMR of compound **15** (100 MHz, CD₃OD, 300K)

¹H NMR of compound **16** (400 MHz, CD₃OD, 300K)

— 158.79 — 81.79 ∑ 59.80
∑ 58.55
∑ 57.69 ~_ 69.32 ~_ 68.69 — 14.21 .Ν. OH ЮH ŌΗ diaman and 90 80 f1 (ppm)

¹³C NMR of compound **16** (100 MHz, CD₃OD, 300K)

¹H NMR of compound **17** (dr = 67/33) in (300 MHz, CDCl₃, 300K)

¹³C NMR of compound **17** (dr = 67/33) (75 MHz, CDCl₃, 300K)

¹H NMR of compound **18** in (300 MHz, CDCl₃, 300K)

 ^{13}C NMR of compound 19^\prime (100 MHz, CDCl3, 300K) obtained from 19-exo

¹H NMR compound **19-endo** (300 MHz, CDCl₃, 300K)

¹³C NMR compound **19-endo** (75 MHz, CDCl₃, 300K)

¹H NMR of compound **20-***exo* (400 MHz, CDCl₃, 300K)

¹H NMR of compound **20-endo** (300 MHz, CDCl₃ 300K)

¹³C NMR of compound **20-***endo* (100 MHz, CDCl₃, 300K)

Discrimination between exo and endo epoxides

Having in hand the radiocrystallographic structure of **18**-*exo*, the assignment of the *exo* or *endo* epoxide was established on the basis of NMR spectra, including chemical shift of epoxide carbons in ¹³C NMR spectrometry and meaningful vicinal coupling constants or meaningful NOE effects as indicated on the following schemes.

Conformation and configuration corroborated by radiocrystallographic structure

¹H NMR of compound **21** (300 MHz, CDCl₃, 300K)

¹³C NMR of compound **21** (75 MHz, CDCl₃, 300K)

¹H NMR spectrum of compound **24** (400 MHz, CH₃OD, 300K)

¹³C NMR of compound **26** (75 MHz, CD₃OD, 300K)

¹H NMR of compound **27** (400MHz, CD₃OD, 300K)

¹³C NMR of compound **27** (100 MHz, CD₃OD, 300K)

¹³C NMR of compound **30** (75 MHz, CD₃OD, 300K)

¹H NMR of compound **31** (400 MHz, CD₃OD, 300K)

¹³C NMR of compound **32** (100 MHz, CD₃OD, 300K)

 ^{13}C NMR of compound **35** (100 MHz, CD₃OD, 300K)

II- Dixon and Lineweaver-Burk plots for Ki determination

Figure S1. Dixon Plot for K_i determination (473 ± 50 μ M) of **23** against *bovine liver* β -galactosidase.

Figure S2. Dixon Plot for K_i determination (652 ± 55 μ M) of **24** against *bovine liver* β -galactosidase.

Figure S3. Dixon Plot for K_i determination (10 ± 0.2 μ M) of **25** against *bovine liver* β -galactosidase.

Figure S4. Dixon Plot for K_i determination (475 ± 45 μ M) of **33** against *bovine liver* β -galactosidase.

Figure S5. Dixon Plot for K_i determination (301 ± 25 μ M) of **26** against *bovine liver* β -galactosidase.

Figure S6. Lineweaver-Burk Plot for K_i determination (1.3 ± 0.1 μ M) of **27** against *bovine liver* β -galactosidase/ β -glucosidase.

Figure S7. Dixon Plot for K_i determination (42 ± 4 μ M) of **28** against *bovine liver* β -galactosidase/ β -glucosidase.

Figure S8. Lineweaver-Burk Plot for K_i determination (12.1 ± 2 μ M) of **29** against *bovine liver* β -galactosidase/ β -glucosidase.

Figure S9. Dixon Plot for K_i determination (58 ± 6 μ M) of **30** against *bovine liver* β -galactosidase.

Figure S10. Dixon Plot for K_i determination (594 ± 60 μ M) of **34** against *bovine liver* β -galactosidase.

Figure S11. Dixon Plot for K_i determination (195 ± 20 μ M) of **35** against *bovine liver* β -galactosidase.

Figure S12. Dixon Plot for K_i determination (46 ± 3 μ M) of **24** against *almonds* β -glucosidase.

Figure S13. Dixon Plot for K_i determination (252 ± 20 μ M) of **25** against *almonds* β -glucosidase.

Figure S14. Dixon Plot for K_i determination (693 ± 65 μ M) of **26** against *almonds* β -glucosidase.

Figure S15. Dixon Plot for Ki determination (36 \pm 4 μ M) of **27** against almonds β -glucosidase.

Figure S16. Lineweaver-Burk Plot for K_i determination (11.4 ± 2 μ M) of **28** against *almonds* β -glucosidase.

Figure S17. Lineweaver-Burk Plot for K_i determination (18 ± 2 μ M) of **29** against *almonds* β -glucosidase.

Figure S18. Dixon Plot for K_i determination (436 ± 41 μ M) of **30** against *almonds* β -glucosidase.

Figure S19. Dixon Plot for K_i determination (537 ± 50 μ M) of 34 against *almonds* β -glucosidase.

Figure S20. Dixon Plot for K_i determination (140 ± 11 μ M) of 35 against *almonds* β -glucosidase.

Figure S21. Dixon Plot for K_i determination (33 ± 3 μ M) of **23** against *green coffee beans* α -galactosidase.

Figure S22. Dixon Plot for K_i determination (36 ± 5 μ M) of **24** against *green coffee beans* α -galactosidase.

Figure S23. Dixon Plot for K_i determination (313 ± 28 μ M) of 25 against green coffee beans α -galactosidase.

Figure S24. Dixon Plot for K_i determination (223 ± 20 μ M) of 33 against green coffee beans α -galactosidase.

Figure S25. Dixon Plot for K_i determination (153 ± 12 μ M) of 24 against Aspergillus niger amyloglucosidase.

Figure S26. Dixon Plot for K_i determination (116 ± 10 μ M) of 26 against Aspergillus niger amyloglucosidase.

Figure S27. Dixon Plot for K_i determination (463 ± 40 μ M) of 27 against Aspergillus niger amyloglucosidase.

Figure S28. Dixon Plot for K_i determination (169 ± 15 μ M) of 28 against Aspergillus niger amyloglucosidase.

Figure S29. Dixon Plot for K_i determination (1.4 ± 0.1 μ M) of 34 against Aspergillus niger amyloglucosidase.

Figure S30. Dixon Plot for K_i determination (550 ± 45 μ M) of 35 against Aspergillus niger amyloglucosidase.

Figure S31. Dixon Plot for K_i determination (22.8 ± 1.9 μ M) of **32** against *Aspergillus niger* amyloglucosidase.

Figure S32. Dixon Plot for K_i determination (115 ± 10 μ M) of 25 against *Penicilium decumbes* naringinase.

Figure S33. Dixon Plot for K_i determination (76 ± 5 μ M) of **26** against *Penicilium decumbes* naringinase.

Figure S34. Dixon Plot for K_i determination (131 ± 11 μ M) of **27** against *Penicilium decumbes* naringinase.

Figure S35. Dixon Plot for K_i determination (45 ± 3 μ M) of **28** against *Penicilium decumbes* naringinase.

Figure S36. Dixon Plot for K_i determination (50 ± 4 μ M) of 29 against *Penicilium decumbes* naringinase.

Figure S37. Dixon Plot for K_i determination (224 ± 20 μ M) of 30 against *Penicilium decumbes* naringinase.

Figure S38. Dixon Plot for K_i determination (67 ± 5 μ M) of **34** against *Penicilium decumbes* naringinase.

Figure S39. Lineweaver-Burk Plot for K_i determination (4.9 ± 0.5 μ M) of **35** against *Penicilium decumbes* naringinase.

Figure S40. Dixon Plot for K_i determination (272 ± 25 μ M) of **32** against *Penicilium decumbes* naringinase.