# Supporting information

| Table of Contents                           | Page no |
|---------------------------------------------|---------|
| 1. General Information                      | S1      |
| 2. Experimental Procedures                  | S1      |
| 3. Spectral Data of Synthesized Compounds   | S2-S8   |
| 4. X-ray Data and Crystal Structures        | S7-S8   |
| 5. Spectral Copies of Synthesized Compounds | S8-S34  |

### **EXPERIMENTAL SECTION**

**General**. Phenylglyoxal and derivatives were synthesized using a reported procedure.<sup>1</sup> pyrrolidin-2-one, 2-naphthol, phenol and 4-hydroxycoumarin, were purchased from Sigma-Aldrich. Catalysts were obtained from TCI. Solvents and silica gel (60–120 mesh) and other common reagents were procured from local suppliers. Thin-layer chromatography (TLC) was carried out on Merck silica gel plates (60 F254). <sup>1</sup>H and <sup>13</sup>C{1H} NMR were recorded on a Bruker Ultrashield 500 and 400 MHz or Bruker Ascend 500 MHz instrument. Melting points were measured with a MEPA LABINDIA melting point apparatus. Single-crystal X-ray diffraction data were collected in Bruker D8-Quest diffractometers.

- I. General experimental procedure for the synthesis of 4, 6 and 8: A mixture of glyoxal (1), lactam (2) and Ca(OTf)<sub>2</sub>/Bu<sub>4</sub>NPF<sub>6</sub> (10/10 mol%) was heated directly at 100 °C for one hour. After complete conversion of compound 1 (monitored by TLC), phenolic nucleophile (naphthols 3 for 4, phenol 5 for 6 and fluorenol 7 for 8) was added to the above reaction mixture and continued heating as per the time mentioned. After completion of the reaction, monitored by TLC) the crude product was purified by column chromatography (25-30 % EtOAc in petroleum ether) to obtain the pure product 4 or 6 or 8.
- II. Experimental procedure for the synthesis of (4a): A mixture of 2-oxo-2-phenylacetaldehyde 1a (0.65 mmol, 100 mg), pyrrolidin-2-one 2 (0.78 mmol, 67 mg), and Ca(OTf)<sub>2</sub>/Bu<sub>4</sub>NPF<sub>6</sub> (22 mg/ 25 mg, 10/10 mol%) and stirred under neat conditions at 100 °C for one hour. After complete conversion of compound 1 (monitored by TLC), 2-naphthol 3a (0.65 mmol, 94 mg) was added to the above reaction mixture and continued stirring for 4 h. After completion of the reaction, the crude product was purified by column chromatography (25-30 % EtOAc in petroleum ether) to obtain the pure product 4a as a white solid in 85% yield.
- III. Experimental procedure for the synthesis of furocoumarin (10a): A mixture of 2-oxo-2-phenylacetaldehyde 1a (0.65 mmol, 100 mg), pyrrolidin-2-one 2a (0.78 mmol, 67 mg), and Ca(OTf)<sub>2</sub>/Bu<sub>4</sub>NPF<sub>6</sub> (22 mg/25 mg, 10/10 mol%) and stirred under neat conditions at 100 °C for 1 hour. After complete conversion of compound 1(monitored by TLC), DCE (2 mL) and 4-hydroxycoumarin 9 (0.65 mmol, 106 mg) were added to the above reaction

mixture and refluxed the reaction for 12 h. After completion of the reaction, the reaction mixture was directly absorbed on silica gel and was purified by column chromatography (25-30 % EtOAc in petroleum ether) to obtain the pure product **10a** with 50% yield. Compounds **10a**,**10b** are reported.<sup>2</sup>

#### IV. Spectral data of new compounds:

*1-(2-Phenylnaphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4a**). White solid (182 mg, 85%); mp: 207–209 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.03 (d, J = 8 Hz, 1H), 7.94 (d, J = 8 Hz, 1H), 7.84-7.83 (m, 2H), 7.76 (d, J = 9 Hz, 1H), 7.67 (d, J = 9 Hz, 1H), 7.59-7.56 (m, 1H), 7.51-7.46 (m, 3H), 7.41-7.39 (m, 1H), 3.95-3.91 (m, 1H), 3.76-3.71 (m, 1H), 2.84-2.77 (m, 2H), 2.44-2.36 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 151.5, 149.9, 130.9, 129.5, 129.2, 129.0 (2), 127.4, 127.0, 126.5, 125.8, 124.9, 122.0, 120.1, 116.9, 112.6, 49.5, 31.2, 19.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 328; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>18</sub>NO<sub>2</sub>: 328.1332; found: 328.1323; IR (film): *v<sub>max</sub>* 1690, 1219, 812, 771 cm<sup>-1</sup>.

*1-(2-(2-Bromophenyl)naphtho*[*2*, *1-b*]*furan-1-yl*)*pyrrolidin-2-one* (**4b**). Following general experimental procedure-I, the product was obtained as white solid (129 mg, 74%); mp: 179–180 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.04 (d, *J* = 8 Hz, 1H), 7.94 (d, *J* = 8 Hz, 1H), 7.77 (d, *J* = 9 Hz, 1H), 7.73-7.71 (m, 1H), 7.68-7.63 (m, 2H), 7.59-7.56 (m, 1H), 7.50-7.47 (m, 1H), 7.42-7.39 (m, 1H), 7.35-7.37 (m, 1H), 3.87-3.83 (m, 1H), 3.49-3.44 (m, 1H), 2.73-2.66 (m, 1H), 2.57-2.51 (m, 1H), 2.34-2.25 (m, 1H), 2.14-2.08 (m, 1H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  176.2, 152.0, 149.9, 133.4, 132.6, 131.3, 130.9, 130.5, 129.0, 127.5 (2), 127.0, 126.7, 124.9, 123.7, 122.3, 119.3, 119.1, 112.8, 50.1, 31.1, 19.3 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 406; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>17</sub>BrNO<sub>2</sub>: 406.0437; found: 406.0432; IR (film): *v<sub>max</sub>* 1663, 1253, 811, 772, 723 cm<sup>-1</sup>.

*1-(2-(4-Bromophenyl)naphtho[2,1-b]furan-1-yl)pyrrolidin-2-one* (**4c**). Following general experimental procedure-I, the product was obtained as white solid (134 mg, 77%); mp: 231–232 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (d, *J* = 8 Hz, 1H), 7.93 (d, *J* = 8 Hz, 1H), 7.77 (d, *J* = 9 Hz, 1H), 7.69 (d, *J* = 9 Hz, 2H), 7.65 (d, *J* = 9 Hz, 1H), 7.62-7.57 (m, 3H), 7.52-7.49 (m, 1H), 3.97-3.92 (m, 1H), 3.72-3.67 (m, 1H), 2.87-2.72 (m, 2H), 2.51-2.33 (m, 2H); <sup>13</sup>C{1H} (125 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 151.6, 148.9, 132.3, 131.0, 129.3, 128.5, 127.4, 127.3, 127.1, 126.9, 125.0, 123.2, 121.9, 120.0, 117.5, 112.6, 49.5, 31.2, 19.5 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 406; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>17</sub>BrNO<sub>2</sub>: 406.0437; found: 406.0435; IR (film): *v<sub>max</sub>* 1685, 1260, 811, 771, 693 cm<sup>-1</sup>.

*1-(2-(4-Chlorophenyl)naphtho*[2,1-*b*]*furan-1-yl)pyrrolidin-2-one* (**4d**). Following general experimental procedure-I, the product was obtained as white solid (149 mg, 77%); mp: 162–163 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (d, J = 8 Hz, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.78-7.76 (m, 3H), 7.66 (d, J = 8.5 Hz, 1H), 7.60-7.57 (m, 1H), 7.52-7.49 (m, 1H), 7.47-7.44 (m, 2H), 3.97-3.93 (m, 1H), 3.73-3.68 (m, 1H), 2.88-2.73 (m, 2H), 2.53-2.32 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  176.0, 151.5, 148.8, 134.8, 130.9, 130.2, 129.3, 129.2, 129.1, 128.0, 127.3, 127.1, 127.0, 126.8, 125.0, 121.9, 120.0, 117.3, 112.5, 49.4, 31.2, 19.4 ppm; (LCMS): m/z [M + H]<sup>+</sup>: 362; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>17</sub>ClNO<sub>2</sub>: 362.0948; found: 362.0947; IR (film):  $v_{max}$  1696, 1586, 1457, 1274, 815, 772, 619 cm<sup>-1</sup>.

*1-(2-(4-Fluorophenyl)naphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4e**). Following general experimental procedure-I, the product was obtained as white solid (166 mg, 82%); mp: 202–203°C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8 Hz, 1H), 7.82-7.79 (m, 2H), 7.75 (d, *J* = 9 Hz, 1H), 7.65 (d, *J* = 9 Hz, 1H), 7.59-7.56 (m, 2 H), 7.49 (t, *J* = 8 Hz, 1H), 7.17 (t, *J* = 10.5 Hz, 1H), 3.95-3.91 (m, 1H), 3.71-3.66 (m, 1H), 2.87-2.72 (m, 2H), 2.50-2.30 (m, 2H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>)  $\delta$  176.1, 164.3, 161.8, 151.4, 149.2, 130.9, 129.2, 127.9, 127.8, 127.4, 127.0, 126.6, 124.9, 121.9, 120.0, 116.3, 116.1, 112.6, 49.5, 31.2, 19.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 346; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>17</sub>FNO<sub>2</sub>: 346.1243; found: 346.1242

*1-(2-(4-Methoxyphenyl)naphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4f**). Following general experimental procedure-I, the product was obtained as white solid (156 mg, 80%); mp: 210–211 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8 Hz, 1H), 7.77-7.71 (m, 3H), 7.64 (d, J = 8.8 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.49-7.46 (m, 1H), 7.01-6.99 (m, 2H), 3.94-3.90 (m, 1H), 3.86 (s, 3H), 3.73-3.68 (m, 1H), 2.88-2.71 (m, 2H), 2.48-2.32 (m, 2H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>)  $\delta$  176.2, 160.2, 151.1, 150.1, 130.9, 129.1, 127.4, 127.3, 126.8, 126.0, 124.7, 122.2, 122.0, 120.2, 115.5, 114.5, 112.5, 55.4, 49.5, 31.3, 19.4 ppm; (LCMS): m/z [M + H]<sup>+</sup>: 358; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>23</sub>H<sub>20</sub>NO<sub>3</sub>: 358.1443; found: 358.1442; IR (film):  $v_{max}$  1687, 1251, 828, 811, 729 cm<sup>-1</sup>.

*1-(7-Bromo-2-phenylnaphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4g**). Following general experimental procedure-I, the product was obtained as white solid (216 mg, 81%); mp: 186–187 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.10 (d, J = 2 Hz, 1H), 7.88 (d, J = 8.5 Hz, 1H), 7.82-7.81 (m, 2H), 7.70-7.64 (m, 3H), 7.50-7.47 (m, 2H), 7.42-7.40 (m, 1H), 3.90-3.85 (m, 1H), 3.75-3.70 (m, 1H), 2.81-2.76 (m, 2H), 2.44-2.36 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  176.1, 151.5, 150.4, 132.2, 131.2, 130.1, 129.3, 129.2, 129.1, 125.9, 125.9, 125.5, 123.6, 120.3, 118.6, 116.7, 113.8, 49.4, 31.2, 19.5 ppm; (LCMS): *m/z* [M + Na]<sup>+</sup>: 427; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>17</sub>BrNO<sub>2</sub>: 406.0443; found: 406.0441; IR (film): *v<sub>max</sub>* 1681, 1576, 1254, 892, 799, 636 cm<sup>-1</sup>.

*1-(7-Bromo-2-(p-tolyl)naphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4h**). Following general experimental procedure-I, the product was obtained as white solid (184 mg, 73%); mp: 195–196 °C;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 8.07 (d, J = 2 Hz, 1H), 7.87 (d, J = 9 Hz, 1H), 7.70-7.66 (m, 2H), 7.64-7.62 (m, 3H), 7.29-7.25 (m, 2H), 3.85-3.84 (m, 1H), 3.72-3.70 (m, 1H), 2.80-2.75 (m, 2H), 2.44 (s, 3H), 2.43-2.32 (m, 2H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>) δ 176.0, 151.2, 150.7, 139.4, 132.2, 131.1, 130.0, 129.8, 126.5, 125.8, 125.1, 123.6, 120.3, 118.4, 116.1, 113.7, 49.3, 31.2, 21.5, 19.4 ppm; (LCMS): m/z [M + H]<sup>+</sup>: 320; HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calculated for C<sub>23</sub>H<sub>18</sub>BrNO<sub>2</sub>Na: 442.0419; found: 442.0422.

*1-(7-Bromo-2-(4-chlorophenyl)naphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4i**). Following general experimental procedure-I, the product was obtained as white solid (188 mg, 80%); mp: 208–209 °C;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.31 (s, 1H), 7.94 (d, J = 9 Hz, 1H), 7.90-7.85 (m, 2H), 7.81-7.75 (m, 3H), 7.57 (d, J = 8 Hz, 2H), 3.90-3.86 (m, 1H), 3.74-3.69 (m, 1H), 2.78-2.64 (m, 2H), 2.46-2.37 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  176.1, 151.4,

150.4, 132.2, 131.2, 130.1, 129.2 (2), 129.1, 129.0, 125.8 (2), 125.4, 123.6, 120.3, 118.5, 116.7, 113.7, 49.4, 31.2, 19.4 ppm; (LCMS): m/z [M + H]<sup>+</sup>: 439; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>16</sub>BrClNO<sub>2</sub>: 440.0053; found: 440.0057.

*1-(2-Isopropylnaphtho*[2,1-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4j**). Following general experimental procedure-I, the product was obtained as white solid (211 mg, 85%); mp: 220–221 °C;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.95-7.90 (m, 2H), 7.66 (d, *J* = 9 Hz, 1H), 7.59-7.57 (m, 1H), 7.52 (t, *J* = 7 Hz, 1H), 7.44 (t, *J* = 8 Hz, 1H), 4.04-3.99 (m, 1H), 3.70-3.65 (m, 1H), 3.14-3.08 (m, 1H), 2.79-2.65 (m, 2H), 2.47-2.34 (m, 2H), 1.40 (d, *J* = 6.5 Hz, 3H), 1.36 (d, *J* = 7 Hz, 3H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>)  $\delta$  175.7, 158.8, 151.2, 130.7, 129.0, 127.3, 126.6, 125.0, 124.5, 122.1, 119.4, 115.0, 112.6, 51.0, 31.1, 26.7, 21.1, 20.8, 19.2 ppm; (LCMS): *m/z* [M + Na]<sup>+</sup>: 315; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>NO<sub>2</sub>: 294.1488; found: 294.1480; IR (film): *v<sub>max</sub>* 1689, 1432, 1216, 1048, 803, 770, 663 cm<sup>-1</sup>.

*l*-(7-*Bromo-2-cyclopropylnaphtho*[2, *l*-*b*]*furan-1-yl*)*pyrrolidin-2-one* (**4k**). Following general experimental procedure-I, the product was obtained as white solid (232 mg, 73%); mp: 145–146 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.01 (d, *J* = 2 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.59-7.57 (m, 1H), 7.52-7.48 (m, 2H), 3.93-3.90 (m, 1H), 3.80-3.77 (m, 1H), 2.74-2.68 (m, 2H), 2.38-2.35 (m, 2H), 1.98-1.95 (m, 1H), 1.20-1.18 (m, 1H), 1.06-1.02 (m, 3H); <sup>13</sup>C {1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  175.8, 155.0, 150.3, 131.9, 130.8, 129.6, 125.2, 123.8, 123.7, 119.9, 118.1, 116.4, 113.4, 50.6, 31.0, 19.2, 7.6, 7.5, 6.9.2 ppm; (LCMS): *m*/*z* [M + Na]<sup>+</sup>: 370; HRMS (ESI-TOF): m/*z* [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>17</sub>BrNO<sub>2</sub>: 370.0442; found: 370.0444.

*1-(2-Phenylnaphtho*[2,1-*b*]*furan-1-yl*)*azepan-2-one* (**4**I). Following general experimental procedure-I, the product was obtained as white solid (170 mg, 73%); mp: 210–211°C;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.16 (d, J = 8 Hz, 1H), 7.93 (d, J = 8 Hz, 1H), 7.82 (d, J = 7.5 Hz, 2H), 7.74 (d, J = 9 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.58-7.55 (m, 1H), 7.49-7.46 (m, 3H), 7.39 (t, J = 7.5 Hz, 1H), 3.88-3.83 (m, 1H), 3.70-3.65 (m, 1H), 3.01-2.92 (m, 2H), 2.10-2.05 (m, 1H), 2.00-1.94 (m, 1H), 1.89-1.80 (m, 4H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>)  $\delta$  177.2, 151.4, 148.9, 130.9, 129.7, 129.1, 128.9, 128.8, 128.4, 127.5, 126.9, 126.7, 126.4, 124.7, 123.6, 122.3, 119.7, 112.7, 54.2, 38.1, 30.3, 28.8, 23.0 ppm; (LCMS): *m/z* [M + H]+: 356; HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calculated for C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>Na: 378.1470; found: 378.1476.

*1-(2-(4-Bromophenyl)naphtho[2,1-b]furan-1-yl)azepan-2-one* (**4m**). Following general experimental procedure-I, the product was obtained as white solid (131 mg, 70%); mp: 207–208 °C;<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.13 (d, J = 8 Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.75 (d, J = 9.2 Hz, 1H), 7.72-7.70 (m, 2H), 7.65-7.61 (m, 2H), 7.60-7.56 (m, 2H), 7.51-7.47 (m, 1H), 3.91-3.85 (m, 1H), 3.68-3.62 (m, 1H), 3.02-2.90 (m, 2H), 2.13-2.05 (m, 1H), 1.95-1.79 (m, 4H), 1.57-1.51 (m, 1H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>) δ 177.1, 151.5, 147.8, 132.0, 130.9, 129.2, 128.6, 128.3, 127.4, 126.8, 126.8, 124.9, 123.9, 123.1, 122.2, 119.6, 112.6, 54.1, 38.1, 30.3, 28.9, 23 ppm; (LCMS): m/z [M + H]<sup>+</sup>: 434; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>24</sub>H<sub>21</sub>BrNO<sub>2</sub>: 434.0756; found: 434.0754; IR (film):  $v_{max}$  1644, 1481, 1218, 829, 772, 722 cm<sup>-1</sup>.

*l-(2-(4-Chlorophenyl)naphtho*[2,1-*b*]*furan-1-yl*)*azepan-2-one* (**4n**). Following general experimental procedure-I, the product was obtained as white solid (142 mg, 68%); mp: 205–206 °C;<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.13 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8 Hz, 1H), 7.79-7.74 (m, 3H), 7.63 (d, J = 9.2 Hz, 1H), 7.60-7.56 (m, 1H), 7.51-7.48 (m, 1H), 7.47-7.44 (m, 2H), 3.90-3.84 (m, 1H), 3.67-3.62 (m, 1H), 3.02-2.90 (m, 2H), 2.13-2.04 (m, 1H), 1.94-1.89 (m, 2H), 1.86-1.76 (m, 2H), 1.56-1.47 (m, 1H); <sup>13</sup>C{1H}(100 MHz, CDCl<sub>3</sub>) δ 177.1, 151.5, 147.8, 134.8, 130.9, 129.2, 129.1, 128.2, 128.1, 127.4, 126.8, 124.8, 123.8, 122.2, 119.6, 112.6, 54.1, 38.1, 30.3, 28.9, 23.0 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 390; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>24</sub>H<sub>21</sub>CINO<sub>2</sub>: 390.1261; found: 390.1260

*1-(5-Methoxy-2-phenylbenzofuran-3-yl)pyrrolidin-2-one* (6a). Following general experimental procedure-I, the product was obtained as white solid(161 mg, 80%); mp: 159-160 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.78 (t, *J* = 1.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 9 Hz, 2H), 6.93-6.91 (m, 1H), 6.82 (d, *J* = 2.5 Hz, 1H), 3.85 (s, 3H), 3.71 (t, *J* = 6.5 Hz, 2H), 2.70 (t, *J* = 8.0 Hz, 2H), 2.33-2.29 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  175.6, 156.4, 150.4, 148.3, 129.7, 129.1, 128.9, 126.7, 126.0, 116.0, 114.2, 112.4, 101.4, 56.1, 49.1, 31.1, 19.5 ppm; (LCMS): *m/z* [M + Na]<sup>+</sup>: 330; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>18</sub>NO<sub>3</sub>: 308.1281; found: 308.1280.

*1-(2-(4-Chlorophenyl)-5-methoxybenzofuran-3-yl)pyrrolidin-2-one* (**6b**). Following general experimental procedure-I, the product was obtained as white solid(139 mg, 76%);mp: 165-166 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.70-7.69 (m, 2H), 7.43-7.38 (m, 3H), 6.94-6.92 (m, 1H), 6.81 (d, *J* = 2.5 Hz, 1H), 3.84 (s, 3H), 3.70 (t, *J* = 7.0 Hz, 2H), 2.69 (t, *J* = 8.0 Hz, 2H), 2.33-2.29 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  175.5, 156.4, 149.3, 148.3, 134.9, 129.2, 128.1, 127.2, 126.5, 116.3, 114.4, 112.4, 101.4, 56.0, 49.1, 31.0, 19.4 ppm; (LCMS): *m/z* [M + Na]<sup>+</sup>: 363; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>17</sub>ClNO<sub>3</sub>: 342.0891; found: 342.0885; IR (film): *v<sub>max</sub>* 1690, 1452,1222, 847, 779, 640 cm<sup>-1</sup>.

*1-(2,5-Diphenylbenzofuran-3-yl) pyrrolidin-2-one* (**6c**). Following general experimental procedure-I, the product was obtained as white solid (190 mg, 82%); mp: 178–179 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.82-7.80 (m, 2H), 7.62-7.60 (m, 2H), 7.58-7.53 (m, 3H), 7.49-7.43 (m, 4H), 7.41-7.38 (m, 1H), 7.36-7.33 (m, 1H), 3.74 (t, *J* = 6.5 Hz, 2H), 2.71 (t, *J* = 6.5 Hz, 2H), 2.34-2.28 (m, 2H); <sup>13</sup>C{1H}(125 MHz, CDCl<sub>3</sub>)  $\delta$  175.7, 153.0, 150.3, 141.5, 137.2, 129.5, 129.2, 129.0, 128.8, 127.7, 127.1, 126.7, 126.2, 125.0, 117.7, 116.1, 112.0, 49.2, 31.1, 19.5 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 354; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>24</sub>H<sub>20</sub>NO<sub>2</sub>: 354.1488; found: 354.1481; IR (film): *v<sub>max</sub>* 2359, 1685, 1466, 1260, 811, 763, 650 cm<sup>-1</sup>.

*1-(4,10-Dimethyl-2,5,5-triphenyl-5H-fluoreno[3,2-b]furan-3-yl)pyrrolidin-2-one* (8*a*). Following general experimental procedure-I, the product was obtained as white solid (300 mg, 84%); mp: 296–297 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.96 (d, *J* = 7.5 Hz, 1H), 7.82 (d, *J* = 1 Hz 2H), 7.49 (t, *J* = 7 Hz, 2H), 7.42 (d, *J* = 7.5 Hz 1H), 7.37-7.33 (m, 7H), 7.28-7.20 (m, 7H), 3.64-3.60 (m, 2H), 2.96 (s, 3H), 2.62-2.52 (m, 2H ), 2.20-2.17 (m, 2H), 2.08 (s, 2H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 176.5, 155.5, 153.1, 150.7, 145.8, 143.3, 142.2, 140.7, 136.8, 129.7, 129.3, 129.0 (2), 128.1, 127.9, 127.4, 127.3, 126.6, 126.3, 125.9, 125.5, 125.2, 124.5, 122.8, 116.5, 115.0, 64.6, 50.5, 31.1, 19.1, 14.7, 12.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>:

546; HRMS (ESI-TOF): m/z  $[M + H]^+$  calculated for C<sub>39</sub>H<sub>32</sub>NO<sub>2</sub>: 546.2427; found: 546.2424; IR (film):  $v_{max}$  2936, 1692, 1491, 1220, 835, 764, 643 cm<sup>-1</sup>.

*1-(2-(4-Bromophenyl)-4,10-dimethyl-5,5-diphenyl-5H-fluoreno[3,2-b]furan-3-yl)pyrrolidin-2-one* (**8b**). Following general experimental procedure-I, the product was obtained as white solid (220 mg, 81%); mp: 297–298 °C;<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.95 (d, *J* = 8 Hz, 1H), 7.65 (d, *J* = 8.5 Hz 2H), 7.59 (d, *J* = 8.5 Hz 2H), 7.33-7.29 (m, 6H), 7.22-7.16 (m, 7H), 3.60-3.54 (m, 2H), 2.92 (s, 3H), 2.60-2.47 (m, 2H), 2.18-2.15 (m, 2H), 2.05 (s, 3H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 176.5, 155.5, 153.3, 149.8, 146.0, 143.3, 142.2, 140.6, 137.2, 132.3, 129.3, 129.0, 128.7, 128.2, 127.9, 127.5, 127.4(2), 126.7, 126.4, 125.6, 125.4, 124.4, 123.3, 122.9, 117.1, 115.1, 64.7, 50.6, 31.1, 19.2, 14.7, 12.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 624; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>39</sub>H<sub>31</sub>BrNO<sub>2</sub>: 624.1538; found: 624.1534; IR (film): *v<sub>max</sub>* 2922, 1686, 1484, 1339, 832, 771, 686 cm<sup>-1</sup>.

*1-(4,10-Dimethyl-5,5-diphenyl-2-(p-tolyl)-5H-fluoreno[3,2-b]furan-3-yl)pyrrolidin-2-one* (**8c**). Following general experimental procedure-I, the product was obtained as white solid (285 mg, 85%); mp: 291–292°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.94 (d, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 8 Hz 2H), 7.35-7.29 (m, 6H), 7.27-7.25 (m, 2H), 7.22-7.16 (m, 7H), 3.59-3.55 (m, 2H), 2.93 (s, 3H), 2.58-2.48 (m, 2H), 2.40 (s, 3H), 2.16-2.12 (m, 2H), 2.05 (s, 3H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz): 176.6, 155.5, 153.0, 151.1, 145.7, 143.4, 142.3,140.8,139.2, 136.6, 129.8, 129.3, 129.0, 128.2, 127.9, 127.3(2), 126.9, 126.6, 126.3, 125.9, 125.6, 125.1, 124.7, 122.8, 115.9,114.9, 64.6, 50.6, 31.1, 21.6, 19.2, 14.7, 12.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 560; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>40</sub>H<sub>34</sub>NO<sub>2</sub>: 560.2584; found: 560.2577; IR (film): *v<sub>max</sub>* 2919, 1686, 1448, 1287, 840, 722, 650 cm<sup>-1</sup>.

*1-(5-(4-Chlorophenyl)-4,10-dimethyl-2,5-diphenyl-5H-fluoreno[3,2-b]furan-3-yl)pyrrolidin-2-one* (**8d**). Following general experimental procedure-I, the product was obtained as white solid (288 mg, 76%); mp: 266–267 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.95 (d, *J* = 8 Hz, 1H), 7.80 (d, *J* = 0.8 Hz 2H), 7.48-7.44 (m, 2H), 7.40 (d, *J* = 7.2 Hz 1H) 7.32-7.30 (m, 2H), 7.29-7.24 (m, 3H), 7.23-7.21 (m, 2H), 7.20-7.16 (m, 5H), 3.61-3.58 (m, 2H), 2.93 (s, 3H), 2.60-2.49 (m, 2H), 2.19-2.15 (m, 2H), 2.05 (s, 3H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 176.6, 155.5, 153.2, 150.8, 145.8, 143.3, 142.2, 140.7, 136.8, 129.7, 129.3, 129.1(2),129.0, 128.2, 127.9, 127.4, 127.3, 126.7, 126.4, 125.9, 125.6, 125.2, 124.6, 122.9, 116.5, 115.0, 64.6, 50.6, 31.1, 19.2, 14.7, 12.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 580; HRMS (ESI-TOF): m/z [M + H]<sup>+</sup> calculated for C<sub>39</sub>H<sub>31</sub>CINO<sub>2</sub>: 580.2043; found: 580.2039

*1-(5-(4-Chlorophenyl)-4, 10-dimethyl-5-phenyl-2-(p-tolyl)-5H-fluoreno[3,2-b]furan-3-yl)pyrrolidin-2-one* (**8e**). Following general experimental procedure-I, the product was obtained as white solid (278 mg, 78%); mp: 288–289 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.94 (d, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7 Hz 2H), 7.34-7.27 (m, 5H), 7.25-7.16 (m, 9H), 3.60-3.56 (m, 2H), 2.92 (s, 3H), 2.61-2.55 (m, 1H), 2.52-2.45 (m, 1H), 2.40(s, 3H) 2.18-2.13 (m, 2H), 2.04 (s, 3H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz): 176.6, 154.9, 153.0, 151.2(2), 145.2, 142.8, 142.1, 141.8, 141.0, 140.7, 139.3, 136.4, 132.5, 132.1, 130.7, 130.4, 129.8, 129.1, 128.8, 128.2, 128.1, 127.5, 127.4, 126.8, 126.5, 125.9, 125.4, 124.9, 124.7, 122.9, 115.8, 115.1, 64.1, 50.5, 31.1, 21.6, 19.2, 14.7, 12.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 594; HRMS (ESI-TOF):

 $m/z [M + H]^+$  calculated for C<sub>40</sub>H<sub>33</sub>ClNO<sub>2</sub>: 594.2210; found: 594.2214; IR (film):  $v_{max}$  2918, 1691, 1450, 1220, 820, 772, 644 cm<sup>-1</sup>.

*1-(4,7,10-Trimethyl-2,5,5-triphenyl-5H-fluoreno[3,2-b]furan-3-yl)pyrrolidin-2-one* (**8f**). Following general experimental procedure-I, the product was obtained as white solid (308 mg, 84%); mp: 293–294 °C;<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.94 (d, *J* =7.5 Hz, 1H), 7.68 (d, *J* = 8.5 Hz 2H), 7.34-7.30 (m, 5H), 7.27-7.25 (m, 3H), 7.21-7.16 (m, 7H), 3.60-3.56 (m, 2H), 2.93 (s, 3H), 2.60-2.55 (m, 1H), 2.52-2.46 (m, 1H), 2.40 (s, 3H), 2.18-2.14 (m, 2H), 2.05 (s, 3H) ppm; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 176.6, 155.5, 153.0, 151.1, 145.7, 143.4, 142.3,140.8,139.2, 136.6, 129.8, 129.3, 129.0, 128.2, 127.9, 127.3(2), 126.9, 125.9, 125.5, 125.1, 124.6, 124.7, 122.8, 115.9, 114.9, 64.5, 50.5, 31.1, 21.5, 19.1, 14.7, 12.4 ppm; (LCMS): *m/z* [M + H]<sup>+</sup>: 560; HRMS (ESI-TOF): m/z [M + Na]<sup>+</sup> calculated for C<sub>40</sub>H<sub>33</sub>NO<sub>2</sub>Na: 582.2409; found: 582.2407; IR (film): *v<sub>max</sub>* 2919, 1686, 1490, 1220, 820, 772, 645 cm<sup>-1</sup>.

#### **References**:

- 1. H. A. Riley and A. R. Gray, Org. Synth., 1935, 15, 67.
- V. N. Babu, A. Murugan, N. Katta, S. Devatha, and D. S. Sharada, J. Org. Chem., 2019, 84, 6631

#### Data for Single X-Ray Crystal Structure 4n.

Vapor diffusion crystallization method was used for crystal growth for **4n** Where compound was dissolved in chloroform by heating to make saturated solution in small vial is placed in closed bottle with other solvent as *n*-hexane.



Figure S1. ORTEP representation of compound 4n and thermal ellipsoids are drawn with 50% probability.

#### Crystal data and structure refinement for 4n.

| Identification code | SHELXL-97            |  |
|---------------------|----------------------|--|
| Empirical formula   | $C_{24}H_{20}CINO_2$ |  |
| Formula weight      | 389.86               |  |

| Temperature                       | 293 K                                       |
|-----------------------------------|---------------------------------------------|
| Wavelength                        | 0.71073 Å                                   |
| Crystal system                    | 'Monoclinic'                                |
| Space group                       | P 1 21/c 1                                  |
| Unit cell dimensions              | a = 12. 2034(4) Å $\alpha$ = 90.00.         |
|                                   | b = 8. 3948 (3) Å $\beta$ = 91.400 (3).     |
|                                   | $c = 19.2731(6) \text{ Å } \gamma = 90.00.$ |
| Volume                            | 1973. 85 (11)                               |
| Z                                 | 4                                           |
| Density (calculated)              | 1.312 Mg/m3                                 |
| Absorption coefficient            | 0.213 mm-1                                  |
| F(000) 816.0                      |                                             |
| Crystal size                      | 0.24 x 0.20 x 0.16 mm3                      |
| Theta range for data collection   | 2.11 to 25.00 °.                            |
| Index ranges                      | -14<=h<=14,-9<=k<=9,-22<=l<=22              |
| Reflections collected             | 18149                                       |
| Independent reflections           | 8017 [R(int) = 0.0503]                      |
| restraints / parameters           | 1 / 798                                     |
| Goodness-of-fit on F <sup>2</sup> | 1.067                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0665, wR2 = 0.1254                   |
| R indices (all data)              | R1 = 0.0436, wR2 = 0.1113                   |
|                                   |                                             |



 $^1\mathrm{H}$  and  $^{13}\mathrm{C}\{1\mathrm{H}\}$  spectra of  $\!4b$ 



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of 4c



 $^{1}H$  and  $^{13}C{1H}$  spectra of 4d



 $^1H$  and  $^{13}C\{1H\}$  spectra of 4e



 $^{1}$ H and  $^{13}$ C{1H} spectra of 4f



 $^{1}\text{H}$  and  $^{13}\text{C}\{1\text{H}\}$  spectra of 4g



 $^{1}H$  and  $^{13}C{1H}$  spectra of **4h** 



# $^1H$ and $^{13}C\{1H\}$ spectra of4i



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of4j



### <sup>1</sup>H and <sup>13</sup>C{1H} spectra of $4\mathbf{k}$



# $^{1}\text{H}$ and $^{13}\text{C}\{1\text{H}\}$ spectra of4l



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of 4m



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of 4n



### <sup>1</sup>H and <sup>13</sup>C{1H} spectra of **6a**



### $^{1}H$ and $^{13}C{1H}$ spectra of **6b**



# <sup>1</sup>H and <sup>13</sup>C{1H} spectra of 6c



# <sup>1</sup>H and <sup>13</sup>C{1H} spectra of 8a



### <sup>1</sup>H and <sup>13</sup>C{1H} spectra of **8b**



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of 8c



 $^{1}$ H and  $^{13}$ C{1H} spectra of 8d



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of 8e



<sup>1</sup>H and <sup>13</sup>C{1H} spectra of **8f** 









