Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions

Alexey A. Kostenko, Kseniya A. Bykova, Alexander S. Kucherenko^{*}, Andrey N. Komogortsev, Boris V. Lichitsky and Sergei G. Zlotin^{*}

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation

e-mail: zlotin@ioc.ac.ru, alexkucherenko@yandex.ru

.

Contents

1. General information	\$3
2. Synthesis of nitroallylic carbonates 2a-e.	S4
3. Catalytic asymmetric [3 + 3] annulation of 2 with 3.	S6
4. NMR pictures for compounds 2 and 8.	S9
5. HPLC data for Michael adducts 8.	S28
6. X-ray crystallographic data and refinement details for product 8ag.	S34

1. General information.

HRMS (high-resolution mass spectrometry) spectra were measured using electrospray ionization (ESI) and a time-of-flight (TOF) mass analyzer. The measurements were taken in the positive ion mode (interface capillary voltage 4500 V) in the mass range from m/z = 50 Da tom/z = 3000 Da; external or internal calibration was done with an electrospray calibrant solution. NMR spectra were recorded on a 300 MHz spectrometer. The chemical shifts of ¹H, ¹³C were measured relative to Me₄Si, CDCl₃ respectively. HPLC analyses were performed on an HPLC system equipped with chiral stationary phase columns (*AD-H*, *OD-H*, *OJ-H*, *IB-H*), detection at 220 or 254 nm. Optical rotations were measured on a Jasco P-2000 digital polarimeter with a sodium lamp and reported as follows; $[\alpha]^{TeC}_{D}$ (c = g/100 mL, solvent). Silica gel (0.060–0.200 mm) was used for column chromatography. All reagents and solvents were purified and dried according to common methods.

2. Synthesis of nitroallylic carbonates 2a-e.

.....

2a. Optimization of the reaction conditions.

	Ph OH CICC	nt, r.t., 24 h)OEt
	1a	2a	
Entry ^a	Solvent	Base	Yield, %
1	THF	Et ₃ N	< 20% b
2	DCM	Et ₃ N	< 20% ^b
3	THF	DABCO	25
4	DCM	DABCO	35
5	THF	DMAP	60
6	DCM	DMAP	93
7	THF	DBU	40
8	DCM	DBU	37

....

^aAll reactions were carried out **1a** (100 mg, 0.56 mmol), base (0.61 mmol, 1.1 equiv.) and ethyl chloroformate (66.8 mg, 0.61 mmol, 1.1 equiv) in the corresponding solvent (0.5 mL) at r.t. ^b ¹H NMR data.

2b. Preparation of nitroallylic carbonates 2a-e. General procedure and characterization data.

General procedure. To solution of nitroallylic alcohol **1a-e** ^{1–3} (6.8 mmol) in DCM (4.0 mL) were added DMAP (1.22 g, 10.0 mmol) and ethyl chloroformate (0.7 mL, 10.0 mmol) at 0° C. After the reaction was completed (TLC), the mixture was diluted with CH₂Cl₂ (10 mL) and washed with H₂O (3 x 5 mL). The organic phases were dried over Na₂SO₄, filtered and evaporated (10 Torr). Yellow residue was purified by flash chromatography (*n*-hexane/EtOAc 5/1 - 2/1) to afford pure products **2a-e.** Characterization data for **2a-e** are given below:

Ethyl (2-nitro-3-phenylallyl) carbonate (2a) Yellow solid (1.46 g, 85%). M.p. 66-68 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.40 (s, 1H), 7.52 (s, 5H), 5.30 (s, 2H), 4.29 (q, J = 7.1, 14.3 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): 154.5, 144.7, 140.6, 131.4, 130.8, 130.1, 129.3, 64.8, 60.6, 14.2 ppm. HRMS (ESI): m/z calcd. for C₁₂H₁₄NO₅⁺ [M+H]⁺: 252.0866, found 252.0859.

3-(4-Bromophenyl)-2-nitroallyl ethyl carbonate (2b). Yellow solid (2.06 g, 92%). M.p. = 68-71 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.31 (s, 1H), 7.67-7.64 (d, *J* = 8.4 Hz, 2H), 7.40-7.38 (d, *J* = 8.4 Hz, 2H), 5.26 (s, 2H), 4.32-4.25 (q, J = 7.1, 14.3 Hz, 2H), 1.39-1.34 (t, J = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.6, 145.0, 139.3, 132.7, 131.5, 129.7, 126.3, 64.4, 60.4, 14.2 ppm. HRMS (ESI): m/z calcd. for C₁₂H₁₃BrNO₅⁺ [M+H]⁺: 329.9972, found 329.9981.

3-(4-Fluorophenyl)-2-nitroallyl ethyl carbonate (2c). Yellow solid (1.70 g, 93%), M.p. 55-56°C. ¹H NMR (300 MHz, CDCl₃) δ 8.36 (s, 1H), 7.55 (m, 2H), 7.21 (t, *J* = 5.1 Hz, 2H), 5.28 (s, 2H), 4.33-4.26 (q, *J* = 7.1, 14.3 Hz, 2H), 1.43-1.32 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 166.1, 162.8, 154.4, 144. 5, 139.4, 132.5, 132.4, 127.0, 127.0, 116.8, 116.5, 64.9, 60.5, 14.2 ppm. HRMS (ESI): m/z calcd. for C₁₂H₁₃FNO₅⁺ [M+H]⁺: 270.0772, found 270.0779

Ethyl (2-nitro-3-(thiophen-2-yl)allyl) carbonate (2d). Yellow solid (1.57 g, 90%). M.p. 66-69 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.49 (s, 1H), 7.76-7.74 (d, J = 5.3 Hz, 1H), 7.57-7.56 (d, J = 3.6 Hz, 1H), 7.21 (m, 1H), 5.47 (s, 2H), 4.29-4.22 (q, J = 7.2, 14.3 Hz, 2H), 1.32 (t, J = 7.1, 3H) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.6, 141.0, 137.0, 134.4, 133.2, 128.8, 64.7, 60.6, 14.2 ppm. HRMS (ESI): m/z calcd. for C₁₀H₁₂NO₅S⁺ [M+H]⁺: 258.0431, found 258.0442.

Ethyl (2-nitro-5-phenylpenta-2,4-dien-1-yl) carbonate (2e). Yellow solid (1.66 g, 88%). M.p. 75-77 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.04-8.01 (d, *J* = 10.0 Hz, 1H), 7.59 (m, 2H), 7.43 (m, 3H), 7.28-7.14 (m, 2H), 5.36 (s, 2H), 4.29-4.22 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 154.8, 147.8, 143.1, 139.9, 135.1, 130.6, 129.0, 128.1, 120.1, 64.6, 59.3, 14.1 ppm. HRMS (ESI): m/z calcd. for C₁₄H₁₆NO₅⁺ [M+H]⁺: 278.1023, found 278.1028.

References for sections 1 and 2

- J. An, L. Q. Lu, Q. Q. Yang, T. Wang and W. J. Xiao, Enantioselective construction of oxa- and aza-angular triquinanes through tandem [4 + 1]/[3 + 2] cycloaddition of sulfur ylides and nitroolefins, *Org. Lett.*, 2013, **15**, 542–545.
- R. Parella, S. Jakkampudi, H. Arman and J. C. G. Zhao, Stereoselective Synthesis of
 3-Oxabicyclo[3.3.1]Nonan-2-Ones via a Domino Reaction Catalyzed by Modularly Designed
 Organocatalysts, *Adv. Synth. Catal.*, 2019, 361, 208–213.
- 3 N. Rastogi, I. N. N. Namboothiri and M. Cojocaru, α-Hydroxymethylation of conjugated nitroalkenes via the Morita-Baylis-Hillman reaction, *Tetrahedron Lett.*, 2004, **45**, 4745–4748.

3. Catalytic asymmetric [3 + 3] annulation of 2 with 3.

Model reaction between 2a and 3a. A mixture of organocatalyst 4 - 7 (0.0025 mmol, 5 mol %), 2a (12.6 mg, 0.05 mmol) and dimedone 3a (7.0 mg, 0.05 mmol) in DCM (0.1 mL) was stirred at ambient temperature for 5 h. The mixture was concentrated under reduced pressure (10 Torr), the residue was purified by flash chromatography (ethyl acetate) to afford 8aa as yellow oil.

General procedure. A mixture of organocatalyst **4b** (1.22 mg, 0.0025 mmol, 5 mol %), carbonate **2** (0.05 mmol) and cyclic enol **3** (0.05 mmol) in DCM (0.1 mL) was stirred at ambient temperature for 3-5 h. The mixture was concentrated under reduced pressure (10 Torr) and the residue was purified by flash chromatography on silicagel (ethyl acetate) to afford product **8**. Characterization data for **8** are given below:

7,7-Dimethyl-3-nitro-4-phenyl-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one (8aa) Yellow oil (14.4 mg, 96%). 94% *ee*, $[\alpha]_D^{20}$: +43.1 (c 0.1, CHCl₃). ¹H NMR (300 MHz, DMSO-d₆) δ 7.32 (m, 5H), 5.18 (d, *J* = 1.5 Hz, 1H), 4.77 (dt, *J* = 13.3 Hz, 1H), 4.63 (br s, 1H), 4.03 (dd, *J* = 11.9 Hz, 1., 1H), 2.62 (d, *J* = 17.2 Hz, 1H), 2.31 (t, *J* = 21.2 Hz, 2H), 2.12 (d, *J* = 15.8 Hz, 1H), 1.09 (s, 3H), 0.96 (s, 3H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 196.0, 169.8, 140.9, 129.1, 128.6, 127.6, 108.3, 82.7, 63.4, 50.5, 41.6, 36.3, 32.6, 29.3, 26.9 ppm. HRMS (ESI): m/z calcd. for C₁₇H₂₀NO₄ [M+H]⁺: 302.1387, found 302. 1380.

3-Nitro-4-phenyl-3,4,6,7-tetrahydrocyclopenta[b]pyran-5(2H)-one (8ab) Yellow oil (12.4 mg, 96%). 65% *ee*, $[\alpha]_D^{20}$: +56.2 (c 0.1, CHCl₃). ¹H NMR (300 MHz, DMSO-d₆) δ 7.35 (m, 5H), 5.23 (d, J = 1.7 Hz, 1H), 4.95 (dt, J = 13.4 Hz, 1H), 4.48 (br s, 1H), 4.20 (dd, J = 13.3 Hz, 1.8 Hz, 1H), 2.70 (m, 2H), 2.41 (m, 2H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 202.1, 184.0, 139.3, 129.2, 128.8, 127.9, 112.8, 82.8, 65.5, 36.8, 33.6, 26.3 ppm. HRMS (ESI): m/z calcd. for C₁₄H₁₃NO₄ [M+H]⁺: 260.0917, found 260.0922.

7-Methyl-3-nitro-4-phenyl-3,4-dihydropyrano[**4,3-b**]**pyran-5(2H)-one (8ac)** Yellow oil (13.5 mg, 94%). 87% *ee*, $[\alpha]_D^{20}$: +71.7 (c 0.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.17 (m, 5H), 5.91 (s, 1H), 4.91-4.77 (m, 3H), 4.23 (d, *J* = 12.8 Hz, 1H), 2.27 (s, 3H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 164.7, 162.5, 139.8, 129.3, 128.7, 128.0, 99.6, 96.4, 82.4, 63.4, 37.5, 19.7 ppm. HRMS (ESI): m/z calcd. for C₁₅H₁₄NO₅⁺ [M+H]⁺: 288.0866, found 288.0857.

3-Nitro-4-phenyl-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (8ad) White solid (14.9 mg, 92%), M.p. 58–60 °C. 70% *ee*, $[\alpha]_D^{20}$: +98.4 (c 0.1, CHCl₃). ¹H NMR (300 MHz, DMSO-d₆) δ 7.85 (d, J = 7.8 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.48 – 7.31 (m, 7H), 5.42 (d, J = 1.2 Hz, 1H), 5.10 (dt, J = 13.3 Hz, 1H), 4.83 (br s, 1H), 4.37 (dd, J = 12.8 Hz, 1.5 Hz, 1H) ppm. ¹³C{¹H}

NMR (75 MHz, DMSO-d₆) δ 161.0, 159.8, 152.5, 139.7, 133.2, 129.3, 128.9, 128.0, 125.0, 123.1, 117.0, 114.6, 99.8, 82.4, 64.1, 28.0 ppm. HRMS (ESI): m/z calcd. for C₁₈H₁₄NO₅⁺ [M+H]⁺: 324.0866, found 324.0862.

1,3-Diethyl-6-nitro-5-phenyl-2-thioxo-2,3,6,7-tetrahydro-1H-pyrano[2,3-d]pyrimidin-

4(5H)-one (8ae). Yellow oil (15.7 mg, 87%). 91% *ee*, $[\alpha]_D^{20}$: +78.0 (c 0.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.43-7.24 (m, 5H), 5.08-5.04 (m, 1H), 4.96 (s, 1H), 4.78-4.43 (m, 5H), 4.38-4.33 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (76 MHz, CDCl₃) δ 175.5, 159.4, 155.3, 138.9, 129.5, 129.0, 128.6, 128.3, 127.6, 89.7, 81.8, 64.1, 44.3, 43.7, 38.6, 12.7, 11.5 ppm. HRMS (ESI): m/z calcd. for C₂₅H₂₀N₃O₄S⁺ [M+H]⁺: 362.1130, found 362.1123.

6-Nitro-1,3,5-triphenyl-2-thioxo-2,3,6,7-tetrahydro-1H-pyrano[**2,3-d**]**pyrimidin-4(5H)-one** (**8af**) White solid (18.3 mg, 80%). 91% *ee*, $[\alpha]_D^{20}$: +201.0 (c 0.1, DMSO). M.p. 57 –59 °C. Very poor soluble compound in common solvents. ¹H NMR (300 MHz, DMSO-d₆) δ 7.62-7.12 (m, 15H), 5.28 (s, 1H), 4.88-4.82 (m, 2H), 4.22 (m, 1H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 178.0, 160.4, 156.6, 140.5, 140.0, 138.6, 129.8, 129.6, 129.5, 129.3, 129.2, 128.8, 128.4, 128.0, 90.5, 82.0, 65.2, 38.0 ppm. HRMS (ESI): m/z calcd. for C₂₅H₂₀N₃O₄S⁺ [M+H]⁺: 458.1130, found 458.1169.

3-Nitro-4-phenyl-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8ag) White solid (15.8 mg, 95%). 99% *ee*, $[\alpha]_D^{20}$: +102.6 (c 0.1, DMSO). M.p. >230 °C. ¹H NMR (300 MHz, DMSO-d₆) δ 8.06 (m, 1H), 7.88 (m, 3H), 7.40 (m, 6H), 5.35 (d, J = 1.6 Hz, 1H), 5.00 (m, 2H), 4.22 (dt, J = 14.2 Hz, 1H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 182.9, 178.4, 155.3, 140.1, 135.0, 134.3, 131.7, 131.2, 129.3, 129.0, 128.0, 126.5, 126.3, 118.8, 82.1, 63.7, 37.2 ppm. HRMS (ESI): m/z calcd. for C₁₉H₁₄NO₅⁺ [M+H]⁺: 336.0866, found 336.0861.

2-Nitro-1-phenyl-2,3-dihydro-1H-benzo[a]pyrano[2,3-c]phenazine (8ah). Red solid (17.2 mg, 84%). 90% *ee*, $[\alpha]_D^{20}$: +92.5 (c 0.1, DMSO). M.p. >230 °C. ¹H NMR (300 MHz, DMSO-d₆) δ 8.91-8.89 (m, 1H), 8.18-8.08 (m, 2H), 7.92-7.75 (m, 4H), 7.58-7.53 (m, 1H), 7.40-7.25 (m, 5H), 5.75 (s, 1H), 5.35-5.26 (m, 2H), 4.03-3.96 (m, 1H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 177.9, 145.3, 140.9, 135.3, 134.6, 132.58, 132.3, 132.0, 131.6, 131.6, 131.5, 130.8, 129.4, 128.6, 127.9, 125.3, 125.1, 114.5, 103.4, 80.7, 42.7 ppm. HRMS (ESI): m/z calcd. for $C_{25}H_{18}N_3O_3^+$ [M+H]⁺: 408.1343, found 408.1333.

4-(4-Bromophenyl)-3-nitro-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8bg) White solid (15.5 mg, 75%). M.p. >230 °C (dec.) 97% *ee*, $[\alpha]_D^{20}$: +105.1 (c 0.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 8.20-8.17 (m, 1H), 8.05-8.02 (m, 1H), 7.78-7.75 (m, 2H), 7.54-7.52 (d, *J* = 8.4

Hz, 2H), 7.20-7.17 (d, J = 8.4 Hz, 2H), 5.13-5.08 (m, 2H), 4.80 (s, 1H), 4.36- 4.31 (m, 1H) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 182.4, 178.3, 154.4, 137.9, 134.7, 133.8, 132.7, 131.6, 130.8, 129.6, 126.8, 126.6, 122.6, 118.3, 81.6, 63.1, 37.1 ppm. HRMS (ESI): m/z calcd. for C₁₉H₁₃BrNO₅⁺ [M+H]⁺: 413.9932, found 413.9955.

1-(4-Fluorophenyl)-2-nitro-2,3-dihydro-1H-benzo[a]pyrano[2,3-c]phenazine (8ch). Red solid (18.5 mg, 87%). 94% *ee*, $[\alpha]_D^{20}$: +101.0 (c 0.1, DMSO). M.p. >220 °C. ¹H NMR (300 MHz, DMSO-d₆) δ 8.91-8.89 (d, J = 7.6 Hz, 1H), 8.19-8.08 (dd, J = 25.4, 7.6 Hz, 1H), 7.91-7.14 (m, 9H), 5.74 (s, 1H), 5.35-5.27 (m, 2H), 4.04-4.00 (d, J = 16.6 Hz, 1H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 177.9, 145.4, 137.4, 135.4, 134.6, 132.5, 132.3, 132.0, 131.7, 131.6, 131.5, 130.9, 130.7, 125.3, 125.1, 116.2, 115.9, 114.4, 103.5, 80.6, 42.6, 38.5 ppm. HRMS (ESI): m/z calcd. for C₂₅H₁₇FN₃O₃⁺ [M+H]⁺: 426.1248, found 426.1241.

3-Nitro-4-(thiophen-2-yl)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8dg). White solid (15.7 mg, 91%). M.p. 177-180 °C. 92% *ee*, $[\alpha]_D^{20}$: +79.8 (c 0.1, DMSO). ¹**H NMR** (300 MHz, DMSO-d₆) δ 8.05 (m, 1H), 7.94 (m, 1H), 7.86 (m, 1H), 7.51 (m, 1H), 7.17 (m, 1H), 6.99 (m, 1H), 5.44 (s, 1H), 5.08 (m, 1H), 5.00 (m, 2H), 4.22 (m, 1H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 182.7, 178.4, 154.4, 142.4, 135.1, 134.4, 131.6, 131.1, 128.1, 127.8, 126.8, 126.6, 126.4, 119.3, 81.5, 64.2, 32.2 ppm. HRMS (ESI): m/z calcd. for C₁₇H₁₂NO₅S⁺ [M+H]⁺: 342.0431, found 342.0452.

3-Nitro-4-styryl-3,4-dihydro-2H-benzo[g]chromene-5,10-dione. (8eg) White solid (16.2 mg, 90%). 99% *ee*, $[\alpha]_D^{20}$: +113.6 (c 0.1, DMSO). M.p. >230 °C (dec.) ¹H NMR (300 MHz, DMSO-d₆) δ 8.05-7.86 (m, 5H), 7.44-7.24 (m, 6H), 6.71-6.45 (m, 2H), 5.46 (s, 1H), 5.12-5.07 (m, 1H), 4.54-4.50 (m, 2H) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-d₆) δ 182.9, 178.5, 154.6, 136.7, 135.0, 134.4, 134.3, 131.8, 131.1, 129.0, 128.3, 127.8, 126.9, 126.4, 126.4, 118.9, 79.5, 64.1, 34.7 ppm. HRMS (ESI): m/z calcd. for C₂₁H₁₆NO₅⁺ [M+H]⁺: 362.1018, found 362.1028.

5. NMR pictures for compounds 2 and 8.

70

60 50 40 30 20 10 0 -10

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (мд)

S13

S21

Determination of *Dr* values for compounds 8 by ¹H NMR

(8ac): *Dr* anti/syn = 20:1

(8ad): *Dr* anti/syn = 25:1

(8ae): *Dr* anti/syn = 10:1

(**8af**): Dr anti/syn = 20:1

(8ah): *Dr* anti/syn = 25:1

(8bg): *Dr* anti/syn = 5.5:1

(8dg): *Dr* anti/syn = 25:1

(8eg): *Dr* anti/syn = 5:1

5. HPLC data for all Michael adducts 8.

7,7-Dimethyl-3-nitro-4-phenyl-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one (8aa):

94% *ee* [HPLC *Chiralpak OD-H*, *n-hexane/ⁱPrOH* 90:10, 1 mL min⁻¹, 254 nm, t_{major} = 30.1 min, t_{minor} = 25.5 min].

3-Nitro-4-phenyl-3,4,6,7-tetrahydrocyclopenta[b]pyran-5(2H)-one (8ab):

65% ee [HPLC Chiralpak AD-H, n-hexane/ⁱPrOH 90:10, 1 mL min⁻¹, 254 nm, t_{minor} = 17.1 min, t_{major} = 28.9 min].

7-Methyl-3-nitro-4-phenyl-3,4-dihydropyrano[4,3-b]pyran-5(2H)-one (8ac):

86% *ee* [HPLC *Chiralpak AD-H*, *n-hexane/*^{*i*}*PrOH* 70:30, 1 mL min⁻¹, 220 nm, t_{major} = 17.8 min, t_{minor} = 12.7 min].

3-Nitro-4-phenyl-3,4-dihydropyrano[3,2-c]chromen-5(2H)-one (8ad):

70% ee [HPLC Chiralpak AD-H, n-hexane/PrOH 70:30, 1 mL min⁻¹, 254 nm, t_{major} = 14.6 min, t_{minor} = 8.9 min].

1,3-Diethyl-6-nitro-5-phenyl-2-thioxo-2,3,6,7-tetrahydro-1H-pyrano[2,3-d]pyrimidin-4(5H)-one (8ae):

91% ee [HPLC Chiralpak IB-H, n-hexane/DCM 60:40, 0.7 mL min⁻¹, 220 nm, t_{minor} = 10.1 min, t_{major} = 14.6 min].

6-Nitro-1,3,5-triphenyl-2-thioxo-2,3,6,7-tetrahydro-1H-pyrano[2,3-d]pyrimidin-4(5H)-one (8af):

91% *ee* [HPLC *Chiralpak IB-H*, *n-hexane/DCM* 70:30, 0.6 mL min⁻¹, 220 nm, t_{major} = 10.6 min, t_{minor} = 12.7 min.]

3-Nitro-4-phenyl-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8ag):

99% ee [HPLC Chiralpak OJ-H, n-hexane/PrOH 70:30, 1 mL min⁻¹, 220 nm, t_{major} = 10.6 min, t_{minor} = 5.9 min].

2-Nitro-1-phenyl-2,3-dihydro-1H-benzo[a]pyrano[2,3-c]phenazine (8ah):

90% ee [HPLC Chiralpak AD-H, n-hexane/ⁱPrOH 70:30, 1 mL min⁻¹, 220 nm, t_{major} = 12.3 min, t_{minor} = 87.9 min].

4-(4-bromophenyl)-3-nitro-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8bg):

97% ee [HPLC Chiralpak OD-H, n-hexane/ⁱPrOH 70:30, 1 mL min⁻¹, 220 nm, t_{major} = 28.7 min, t_{minor} = 41.8 min].

1-(4-Fluorophenyl)-2-nitro-2,3-dihydro-1H-benzo[a]pyrano[2,3-c]phenazine (8ch):

94% ee [HPLC Chiralpak AD-H, n-hexane/ⁱPrOH 70:30, 1 mL min⁻¹, 220 nm, t_{major} = 61.7 min, t_{minor} = 9.2 min].

3-Nitro-4-(thiophen-2-yl)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8dg):

91% *ee* [HPLC *Chiralpak AD-H*, *n-hexane/ⁱPrOH* 80:20, 1 mL min⁻¹, 220 nm, t_{major} = 20.4 min, t_{minor} = 7.0 min].

3-Nitro-4-styryl-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (8eg):

99% ee [HPLC Chiralpak AD-H, n-hexane/ⁱPrOH 80:20, 1 mL min⁻¹, 220 nm, t_{major} = 38.4 min, t_{minor} = 12.7 min].

6. X-ray crystallographic data and refinement details for product 8ag.

X-ray diffraction data were collected at 100K on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (graphite monochromator, shutterless φ - and ω -scan technique), using Mo K_a-radiation (0.71073 Å). The intensity data were integrated by the SAINT program¹ and were corrected for absorption and decay using SADABS.² The structure was solved by direct methods using SHELXT³ and refined on *F*² using SHELXL-2018.⁴ Positions of all atoms were found from the electron density difference map. Atoms were refined with individual anisotropic (non-H atoms) and isotropic (H-atoms) displacement parameters. Four reflections (0 1 1, 1 3 T, T 2 T, 1 1 0) were affected by the beam stop, therefore they were omitted from the refinement. Aspherical scattering factors⁵ were applied at the final steps of the refinement. The absolute structure parameter was determined by using 2637 quotients [(I+)-(I-)]/[(I+)+(I-)].⁶ The SHELXTL program suite¹ was used for molecular graphics.

- 1. Bruker. APEX-III. Bruker AXS Inc., Madison, Wisconsin, USA, 2018.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. *J. Appl. Cryst.* 2015, 48, 3–10. https://doi.org/10.1107/S1600576714022985
- 3. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, A71, 3-8. https://doi.org/10.1107/S2053273314026370
- 4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8. https://doi.org/10.1107/S2053229614024218
- Lübben, J.; Wandtke, C.M.; Hübschle, Ch.B.; Ruf, M.; Sheldrick, G.M.; Dittrich, B. Aspherical scattering factors for SHELXL – model, implementation and application. *Acta Cryst.* 2019, A75, 50-62. https://doi.org/10.1107/S2053273318013840
- Parsons, S.; Flack, H.D.; Wagner, T. Use of intensity quotients and differences in absolute structure refinement. *Acta Cryst.* 2013, B69, 249-259. https://doi.org/10.1107/S2052519213010014

Table 1. Crystal data and structure refinement for KA152-3.			
Identification code	KA152-3		
Empirical formula	C19 H13 N O5		
Formula weight	335.30		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	P43		
Unit cell dimensions	a = 12.42180(14) Å	α= 90°.	
	b = 12.42180(14) Å	β= 90°.	
	c = 9.8189(2) Å	$\gamma = 90^{\circ}$.	
Volume	1515.07(5) Å ³		
Z	4		
Density (calculated)	1.470 g/cm ³		
Absorption coefficient	0.108 mm ⁻¹		
F(000)	696		
Crystal size	0.33 x 0.21 x 0.08 mm ³		
Theta range for data collection	2.644 to 33.419°.		
Index ranges	-19<=h<=19, -19<=k<=19, -15<=l<=15		
Reflections collected	59697		
Independent reflections	5899 [R(int) = 0.0289]		
Observed reflections	5688		
Completeness to theta = 25.242°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.8499 and 0.7971		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5899 / 1 / 281		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0205, wR2 = 0.0526		
R indices (all data)	R1 = 0.0222, $wR2 = 0.0541$		
Absolute structure parameter	-0.03(13)		
Largest diff. peak and hole	0.173 and -0.111 e.Å ⁻³		

	Х	У	Z	U(eq)
0(1)	346(1)	7133(1)	3337(1)	18(1)
O(2)	3563(1)	6570(1)	5806(1)	20(1)
O(3)	-364(1)	8310(1)	5372(1)	23(1)
O(4)	245(1)	4384(1)	2272(1)	41(1)
O(5)	945(1)	4637(1)	4271(1)	30(1)
N(5)	865(1)	4841(1)	3059(1)	24(1)
C(2)	807(1)	6674(1)	2128(1)	20(1)
C(3)	1544(1)	5737(1)	2453(1)	18(1)
C(4)	2453(1)	6088(1)	3399(1)	14(1)
C(4A)	1998(1)	6788(1)	4511(1)	14(1)
C(5)	2652(1)	6949(1)	5741(1)	14(1)
C(5A)	2182(1)	7566(1)	6894(1)	14(1)
C(6)	2766(1)	7675(1)	8101(1)	18(1)
C(7)	2324(1)	8235(1)	9193(1)	22(1)
C(8)	1310(1)	8701(1)	9082(1)	23(1)
C(9)	724(1)	8594(1)	7884(1)	21(1)
C(9A)	1156(1)	8018(1)	6790(1)	15(1)
C(10)	517(1)	7895(1)	5527(1)	16(1)
C(10A)	1008(1)	7238(1)	4414(1)	14(1)
C(11)	3319(1)	6643(1)	2551(1)	14(1)
C(12)	3528(1)	7740(1)	2668(1)	16(1)
C(13)	4318(1)	8224(1)	1866(1)	18(1)
C(14)	4891(1)	7618(1)	921(1)	21(1)
C(15)	4684(1)	6519(1)	797(1)	21(1)
C(16)	3905(1)	6036(1)	1614(1)	18(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for KA152-3. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(10A)	1.3466(10)
O(1)-C(2)	1.4361(11)
O(2)-C(5)	1.2272(10)
O(3)-C(10)	1.2194(10)
O(4)-N(5)	1.2291(12)
O(5)-N(5)	1.2210(13)
N(5)-C(3)	1.5182(12)
C(2)-C(3)	1.5151(13)
C(2)-H(2A)	1.051(16)
C(2)-H(2B)	0.996(17)
C(3)-C(4)	1.5260(12)
C(3)-H(3)	1.012(16)
C(4)-C(4A)	1.5053(11)
C(4)-C(11)	1.5251(11)
C(4)-H(4)	1.000(15)
C(4A)-C(10A)	1.3540(11)
C(4A)-C(5)	1.4693(11)
C(5)-C(5A)	1.4869(11)
C(5A)-C(6)	1.3950(11)
C(5A)-C(9A)	1.3975(11)
C(6)-C(7)	1.3908(12)
C(6)-H(6)	0.993(16)
C(7)-C(8)	1.3900(14)
C(7)-H(7)	1.043(17)
C(8)-C(9)	1.3894(14)
C(8)-H(8)	0.98(2)
C(9)-C(9A)	1.3981(12)
C(9)-H(9)	1.017(15)
C(9A)-C(10)	1.4803(12)
C(10)-C(10A)	1.4945(11)
C(11)-C(12)	1.3919(11)
C(11)-C(16)	1.3949(11)
C(12)-C(13)	1.3958(12)
C(12)-H(12)	0.980(15)
C(13)-C(14)	1.3902(13)
C(13)-H(13)	0.979(15)
C(14)-C(15)	1.3947(14)
C(14)-H(14)	1.017(17)

Table 3. Bond lengths [Å] and angles [°] for KA152-3.

C(15)-C(16)	1.3928(12)
С(15)-Н(15)	0.980(17)
C(16)-H(16)	0.962(14)
C(10A)-O(1)-C(2)	116.35(6)
O(5)-N(5)-O(4)	124.64(9)
O(5)-N(5)-C(3)	119.26(8)
O(4)-N(5)-C(3)	116.08(9)
O(1)-C(2)-C(3)	111.81(7)
O(1)-C(2)-H(2A)	108.1(9)
C(3)-C(2)-H(2A)	107.8(9)
O(1)-C(2)-H(2B)	108.2(10)
C(3)-C(2)-H(2B)	109.1(10)
H(2A)-C(2)-H(2B)	111.9(14)
C(2)-C(3)-N(5)	108.07(7)
C(2)-C(3)-C(4)	110.84(7)
N(5)-C(3)-C(4)	112.49(7)
C(2)-C(3)-H(3)	108.5(9)
N(5)-C(3)-H(3)	102.9(8)
C(4)-C(3)-H(3)	113.6(8)
C(4A)-C(4)-C(11)	113.62(6)
C(4A)-C(4)-C(3)	109.19(7)
C(11)-C(4)-C(3)	108.57(7)
C(4A)-C(4)-H(4)	110.2(9)
C(11)-C(4)-H(4)	106.9(8)
C(3)-C(4)-H(4)	108.2(8)
C(10A)-C(4A)-C(5)	120.27(7)
C(10A)-C(4A)-C(4)	121.88(7)
C(5)-C(4A)-C(4)	117.83(7)
O(2)-C(5)-C(4A)	120.04(7)
O(2)-C(5)-C(5A)	121.33(7)
C(4A)-C(5)-C(5A)	118.63(7)
C(6)-C(5A)-C(9A)	119.82(7)
C(6)-C(5A)-C(5)	119.55(7)
C(9A)-C(5A)-C(5)	120.61(7)
C(7)-C(6)-C(5A)	119.91(8)
C(7)-C(6)-H(6)	120.1(10)
C(5A)-C(6)-H(6)	120.0(10)
C(8)-C(7)-C(6)	120.30(8)
C(8)-C(7)-H(7)	120.5(9)

C(6)-C(7)-H(7)	119.2(9)
C(9)-C(8)-C(7)	120.13(8)
C(9)-C(8)-H(8)	118.3(11)
C(7)-C(8)-H(8)	121.6(11)
C(8)-C(9)-C(9A)	119.87(9)
C(8)-C(9)-H(9)	121.3(9)
C(9A)-C(9)-H(9)	118.8(9)
C(5A)-C(9A)-C(9)	119.95(8)
C(5A)-C(9A)-C(10)	120.64(7)
C(9)-C(9A)-C(10)	119.40(7)
O(3)-C(10)-C(9A)	122.83(8)
O(3)-C(10)-C(10A)	120.44(8)
C(9A)-C(10)-C(10A)	116.73(7)
O(1)-C(10A)-C(4A)	124.78(7)
O(1)-C(10A)-C(10)	112.19(7)
C(4A)-C(10A)-C(10)	123.02(7)
C(12)-C(11)-C(16)	119.12(7)
C(12)-C(11)-C(4)	121.89(7)
C(16)-C(11)-C(4)	118.97(7)
C(11)-C(12)-C(13)	120.41(8)
С(11)-С(12)-Н(12)	119.2(9)
С(13)-С(12)-Н(12)	120.3(9)
C(14)-C(13)-C(12)	120.24(8)
С(14)-С(13)-Н(13)	121.4(9)
С(12)-С(13)-Н(13)	118.4(9)
C(13)-C(14)-C(15)	119.61(8)
C(13)-C(14)-H(14)	119.7(9)
C(15)-C(14)-H(14)	120.6(9)
C(16)-C(15)-C(14)	119.96(8)
С(16)-С(15)-Н(15)	120.8(10)
С(14)-С(15)-Н(15)	119.2(10)
C(15)-C(16)-C(11)	120.65(8)
C(15)-C(16)-H(16)	118.2(9)
С(11)-С(16)-Н(16)	121.1(9)

Table 4. Anisotropic displacement parameters (Å²x 10³) for KA152-3. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	16(1)	21(1)	17(1)	-3(1)	-4(1)	1(1)
O(2)	15(1)	26(1)	19(1)	0(1)	-2(1)	5(1)
O(3)	14(1)	24(1)	32(1)	-9(1)	-2(1)	4(1)
O(4)	31(1)	43(1)	50(1)	-22(1)	9(1)	-21(1)
O(5)	26(1)	24(1)	42(1)	7(1)	6(1)	-3(1)
N(5)	17(1)	19(1)	35(1)	-9(1)	8(1)	-4(1)
C(2)	18(1)	28(1)	15(1)	-4(1)	-2(1)	-1(1)
C(3)	15(1)	20(1)	19(1)	-6(1)	3(1)	-5(1)
C(4)	14(1)	15(1)	15(1)	-2(1)	1(1)	-1(1)
C(4A)	13(1)	14(1)	13(1)	-1(1)	0(1)	0(1)
C(5)	14(1)	16(1)	13(1)	0(1)	0(1)	0(1)
C(5A)	16(1)	15(1)	12(1)	-1(1)	0(1)	-1(1)
C(6)	22(1)	19(1)	14(1)	-1(1)	-2(1)	-2(1)
C(7)	27(1)	23(1)	14(1)	-3(1)	-1(1)	-4(1)
C(8)	26(1)	28(1)	17(1)	-7(1)	4(1)	-3(1)
C(9)	19(1)	25(1)	20(1)	-7(1)	4(1)	-1(1)
C(9A)	14(1)	16(1)	16(1)	-3(1)	2(1)	-1(1)
C(10)	13(1)	15(1)	18(1)	-4(1)	0(1)	0(1)
C(10A)	13(1)	15(1)	15(1)	-2(1)	-1(1)	-1(1)
C(11)	13(1)	16(1)	14(1)	-2(1)	0(1)	-1(1)
C(12)	15(1)	16(1)	16(1)	1(1)	0(1)	-1(1)
C(13)	16(1)	19(1)	20(1)	4(1)	-1(1)	-2(1)
C(14)	16(1)	27(1)	19(1)	4(1)	2(1)	-2(1)
C(15)	17(1)	27(1)	20(1)	-2(1)	5(1)	-2(1)
C(16)	16(1)	21(1)	18(1)	-4(1)	3(1)	-2(1)

	Х	У	Z	U(eq)
H(2A)	1270(13)	7271(13)	1646(18)	32(4)
H(2B)	209(13)	6416(13)	1536(19)	38(4)
H(3)	1805(12)	5414(12)	1566(17)	26(3)
H(4)	2789(12)	5429(12)	3799(16)	26(4)
H(6)	3488(13)	7340(12)	8186(18)	33(4)
H(7)	2764(13)	8303(13)	10094(18)	32(4)
H(8)	985(14)	9099(14)	9840(20)	44(4)
H(9)	-12(12)	8941(12)	7775(16)	29(4)
H(12)	3131(12)	8164(12)	3345(16)	27(3)
H(13)	4451(12)	8996(12)	1980(16)	30(4)
H(14)	5472(13)	7976(12)	349(18)	34(4)
H(15)	5115(13)	6090(13)	161(18)	35(4)
H(16)	3787(11)	5274(11)	1518(15)	21(3)

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10 3) for KA152-3.

Table 6. Torsion angles [°] for KA152-3.

41.23(10)
65.21(9)
-58.48(9)
-108.50(9)
69.93(10)
14.19(11)
-167.38(8)
44.08(9)
-77.03(8)
-80.27(8)
158.61(7)
105.17(9)
-16.17(10)
-76.43(9)
162.23(7)
-177.55(8)
4.03(11)
3.12(11)
-175.30(7)
-3.01(12)
176.30(7)
178.22(8)
-2.46(11)
-0.09(12)
-178.86(8)
-1.05(14)
1.16(15)
-0.13(15)
1.11(12)
179.87(8)
-179.00(8)
-0.24(12)
-1.00(13)
179.11(8)
-177.11(8)
2.78(13)
2.24(11)
-177.87(8)

C(2)-O(1)-C(10A)-C(4A)	-11.56(12)
C(2)-O(1)-C(10A)-C(10)	169.76(7)
C(5)-C(4A)-C(10A)-O(1)	-179.63(7)
C(4)-C(4A)-C(10A)-O(1)	-1.27(12)
C(5)-C(4A)-C(10A)-C(10)	-1.09(12)
C(4)-C(4A)-C(10A)-C(10)	177.27(7)
O(3)-C(10)-C(10A)-O(1)	-3.53(11)
C(9A)-C(10)-C(10A)-O(1)	177.10(7)
O(3)-C(10)-C(10A)-C(4A)	177.77(8)
C(9A)-C(10)-C(10A)-C(4A)	-1.60(11)
C(4A)-C(4)-C(11)-C(12)	-9.77(11)
C(3)-C(4)-C(11)-C(12)	111.92(8)
C(4A)-C(4)-C(11)-C(16)	171.32(7)
C(3)-C(4)-C(11)-C(16)	-66.99(10)
C(16)-C(11)-C(12)-C(13)	-0.42(12)
C(4)-C(11)-C(12)-C(13)	-179.33(8)
C(11)-C(12)-C(13)-C(14)	1.21(13)
C(12)-C(13)-C(14)-C(15)	-1.09(13)
C(13)-C(14)-C(15)-C(16)	0.19(14)
C(14)-C(15)-C(16)-C(11)	0.61(14)
C(12)-C(11)-C(16)-C(15)	-0.49(13)
C(4)-C(11)-C(16)-C(15)	178.45(8)