Generation and Trapping of Electron-Deficient 1,2-Cyclohexadienes. Unexpected Hetero-Diels-Alder Reactivity

Baolei Wang,^{a,b} Marius-Georgian Constantin,^a Simarpreet Singh,^c Rebecca L. Davis,^{*,c} and F. G. West^{*a}

^{a.} Department of Chemistry, University of Alberta, E3-43 Gunning-Lemieux Chemistry Centre, Edmonton, AB, Canada, T6G 2G2. Tel: +1 780 492-8187; Fax: +1 780 492 8231.

^b State-Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

^c Department of Chemistry, University of Manitoba, 360 Parker Bldg., 144 Dysart Rd., Winnipeg, MN, Canada R3T 2N2.

frederick.west@ualberta.ca rebecca.davis@umannitoba.ca

Electronic Supplementary Information, Part 1 (Experimental Details and Characterization Data)

Table of Contents

General Information	<u>S-2</u>
Experimental Section	S-2
General Procedure for the Synthesis of Intermediates	S-2
General Synthetic Procedure for the Dimerization and Furan Trapping Products	S-6
General Procedure for the Synthesis of Enamine Cycloadducts 16a-16h	S-15
References	S-18
¹ H, ¹³ C NMR, COSY, HSQC, HMBC, 2D-TROESY and HRMS Spectra	S-19
X-ray Data for Product 12d	S-105
X-ray Data for Product 13d	S-118
X-ray Data for Product 16a	S-127

General Information. Reactions were carried out in oven-dried glassware under a nitrogen atmosphere unless otherwise stated. Transfer of anhydrous solvents and reagents was accomplished with oven-dried syringes. Solvents were purified by usual methods before use. Thin layer chromatography was performed on glass plates precoated with 0.25 mm Kieselgel 60 F254 (Merck). Flash chromatography columns were packed with 230-400 mesh silica gel (Silicycle). Proton nuclear magnetic resonance spectra (¹H NMR) were recorded at 500 MHz and coupling constants (*J*) are reported in Hertz (Hz). Standard notation is used to describe the multiplicity of signals observed in ¹H NMR spectra: broad (br), multiplet (m), singlet (s), doublet (d), triplet (t), quartet (q), etc. Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 125 MHz. The chemical shifts are reported on the δ scale (ppm) and referenced to the residual solvent peaks: CDCl₃ (7.26 ppm, ¹H; 77.06 ppm, ¹³C) as internal standards. Infrared (IR) spectra were measured with a Mattson Galaxy Series FT-IR 3000 spectrophotometer. High-resolution mass spectrometry (HRMS) data (APPI/APCI/ESI technique) were recorded using an Agilent Technologies 6220 oaTOF instrument. HRMS data (EI technique) were recorded using a Kratos MS50 instrument.

Experimental Section

General Procedure for the Synthesis of Intermediates

General procedure for the preparation of the 2-arylacylhexanones A-C (1,3-diketones)

This procedure was based on that of Fos *et al.*^[1] To an ice-water cooled solution of 1-morpholino-1-cyclohexene (typically 40 mmol, 1 equiv.) and triethylamine (41 mmol, 1.03 equiv.) in chloroform (25 mL), arylacyl chloride (40 mmol, 1 equiv.) in 15 mL of chloroform was added dropwise with temperature below 15 °C (20 min). After that, the mixture was stirred at room temperature for 20 h. Then, 15 mL of 4 N hydrochloric acid were added and the mixture was refluxed for 5 h. The organic layer was separated, the aqueous layer was extracted with DCM (2 × 15 mL). The extract was combined with the organic layer separated and washed with water (2 × 15 mL). Following drying over MgSO₄, the solvents were removed under reduced pressure. The residue can be used directly, or washed with mixture solvents of hexanes and DCM, or purified further using flash chromatography to afford intermediates **A-C**.

Using the general procedure, 1-morpholino-1-cyclohexene with benzoyl chloride gave **A** as a yellow viscous liquid, yield 80%, which is pure enough to undergo further reaction. To treat the liquid with DCM and hexanes (placed in a fridge), light yellow solid can be obtained, totally in diketone form by ¹H NMR; mp 81-83 °C (lit.^[1] mp 76-78 °C); ¹H NMR (500 MHz, CDCl₃) δ

7.89 (d, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 4.38 (t, J = 7.0 Hz, 1H), 2.61-2.55 (m, 1H), 2.52-2.46 (m, 1H), 2.35-2.28 (m, 1H), 2.14-2.07 (m, 1H), 2.04-1.90 (m, 3H), 1.78-1.72 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.5, 197.5, 136.6, 133.3, 128.7, 128.5, 58.9, 42.3, 30.0, 27.3, 23.1.

Using the general procedure and flash chromatography (12:1 hexane:EtOAc), 1-morpholino-1-cyclohexene with 4-chlorobenzoyl chloride gave **B** as a red viscous liquid, yield 85%, 1:0.65:0.21 enol/keto mixture of **a'**, **b'** and **c'** by ¹H NMR; IR (cast film) 3414, 3093, 2945, 2848, 1712, 1683, 1589, 1574, 1488, 1450, 1275, 1092 cm⁻¹; HRMS (EI, M⁺) for $C_{13}H_{13}O_2{}^{35}Cl$ calcd. 236.0604, found: m/z 236.0602.

B(a'): ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 9.0 Hz, 2H), 7.39 (d, J = 9.0 Hz, 2H), 2.48 (t, J = 6.5 Hz, 2H), 2.38 (t, J = 6.5 Hz, 2H), 1.78-1.74 (m, 2H), 1.64-1.60 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 190.0, 189.9, 136.6, 135.8, 129.2, 128.4, 107.1, 32.7, 26.5, 23.4, 21.8.

B(b'): ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 4.31 (dd, J = 3.0, 1.0 Hz, 1H), 2.58-2.49 (m, 2H), 2.35-2.26 (m, 1H), 2.15-2.05 (m, 1H), 2.04-1.96 (m, 1H), 1.95-1.84 (m, 1H), 1.80-1.70 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 196.3, 139.8, 135.0, 129.9, 129.0, 58.9, 42.3, 29.9, 27.3, 23.1.

B(c'): ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 2.49-2.46 (m, 3H), 2.05-1.96 (m, 3H), 1.94-1.85 (m, 1H), 1.62-1.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 189.8, 165.8, 139.2, 135.7, 130.9, 128.7, 27.5, 26.3, 23.5, 22.4.

Using the general procedure, 1-morpholino-1-cyclohexene with 2-furoyl chloride gave **C** as light yellow solid, yield 78%, 1.07:1 enol/keto mixture of **a'** and **b'** by ¹H NMR; mp 104-107 °C; IR (cast film) 3394, 3131, 3117, 2938, 2861, 1700, 1661, 1566, 1468, 1445, 1271, 1254, 1029 cm⁻¹; HRMS (EI, M⁺) for C₁₁H₁₂O₃ calcd. 192.0786, found: m/z 192.0788.

C(a'): ¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, J = 1.5, 0.5 Hz, 1H), 7.16 (dd, J = 3.5, 1.0 Hz, 1H), 6.55 (dd, J = 4.0, 2.0 Hz, 1H), 2.69 (t, J = 5.5 Hz, 2H), 2.46 (t, J = 3.5 Hz, 2H), 1.77-1.72 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 186.1, 177.0, 150.9, 145.9, 118.2, 112.0, 105.9, 33.0, 24.7, 23.3, 21.4.

C(b'): ¹H NMR (500 MHz, CDCl₃) δ 7.55 (dd, J = 1.5, 0.5 Hz, 1H), 7.22 (dd, J = 3.5, 0.5 Hz,

1H), 6.53 (dd, J = 4.0, 2.0 Hz, 1H), 4.17 (ddd, J = 9.5, 6.0, 1.0 Hz, 1H), 2.57-2.53 (m, 1H), 2.50-2.46 (m, 1H), 2.29-2.23 (m, 1H), 2.13-2.08 (m, 1H), 2.02-1.97 (m, 2H), 1.90-1.86 (m, 1H), 1.74-1.70 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 207.7, 189.5, 152.5, 146.6, 117.7, 112.5, 59.1, 42.3, 29.3, 27.2, 23.1.

General procedure for the preparation of the arylacylhexenyl triflate intermediates 5a-5c

A solution of diketone **A** (or **B**, **C**) (typically 10 mmol, 1.0 equiv.) in THF (10 mL) was added dropwise to a stirred suspension of NaH (60% in mineral oil, 12 mmol, 1.2 equiv.) in THF (45 mL) at -10 °C-0 °C. After 45 min, a solution of PhNTf₂ (13 mmol, 1.3 equiv.) in THF (15 mL) was added and the resulting mixture was reacted at -10 °C-0 °C for 15 h. The reaction was diluted with H₂O (50 mL) and extracted with Et₂O (3 × 30 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to yield the triflate intermediate **5(a-c)**.

Using the general procedure and flash chromatography (18:1 hexane:Et₂O) provided **5a** as a colorless oil, yield 73%; R*f* 0.37 (hexanes/Et₂O 5:1); IR (cast film) 3064, 2947, 2867, 1669, 1598, 1582, 1450, 1418, 1247, 1212, 1139, 1031 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.89-7.86 (m, 2H), 7.62-7.58 (m, 1H), 7.51-7.47 (m, 2H), 2.56-2.52 (m, 2H), 2.50-2.46 (m, 2H), 1.95-1.90 (m, 2H), 1.81-1.75 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 194.5, 146.1, 135.5, 134.0, 130.2, 129.4, 128.8, 118.0 (q, *J* = 318.4 Hz, CF₃), 27.6, 27.5, 22.7, 21.1; HRMS (ESI) for C₁₄H₁₃F₃O₄S calcd. 357.0379 ([M+Na]⁺) and 335.0559 ([M+H]⁺), found: m/z 357.0372 ([M+Na]⁺) and 335.0560 ([M+H]⁺).

Using the general procedure and flash chromatography (20:1 hexane:Et₂O) provided **5b** as white solid, yield 72%; R*f* 0.46 (hexanes/Et₂OAc 6:1); mp 61-63 °C; IR (cast film) 3093, 2959, 2869, 1660, 1584, 1484, 1450, 1413, 1248, 1201, 1011 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 2.55-2.51 (m, 2H), 2.49-2.45 (m, 2H), 1.95-1.90 (m, 2H), 1.81-1.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.3, 146.5, 140.6, 133.8, 130.7, 129.8, 129.2, 118.0 (q, *J* = 318.1 Hz, CF₃), 27.6, 27.4, 22.6, 21.1; HRMS (EI, M⁺) for C₁₄H₁₂O₄S³⁵ClF₃ calcd. 368.0097, found: m/z 368.0095.

Using the general procedure and flash chromatography (6:1 to 3:1 hexane:Et₂O) provided **5c** as white solid, yield 56%; R*f* 0.28 (hexanes/Et₂O 5:1); mp 98-99 °C; IR (cast film) 3270, 3125, 3095, 2938, 2871, 1698, 1641, 1561, 1466, 1413, 1207, 1134, 1031 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 2.0 Hz, 1H), 7.25 (dd, *J* = 5.0, 0.5 Hz, 1H), 6.58 (dd, *J* = 3.5, 1.5 Hz, 1H), 2.54-2.48 (m, 4H), 1.92-1.86 (m, 2H), 1.78-1.73 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 181.4, 151.5, 147.7, 147.0, 129.2, 120.2, 118.1 (q, *J* = 318.1 Hz, CF₃), 112.7, 27.7, 26.9, 22.6, 21.1; HRMS (ESI) for C₁₂H₁₁F₃O₅S calcd. 347.0171 ([M+Na]⁺) and 325.0352 ([M+H]⁺), found: m/z 347.0168 ([M+Na]⁺) and 325.0353 ([M+H]⁺).

Procedure for the preparation of the 2-cyanohexanone D

This procedure was based on that of Vallribera and Shafir *et al.*^[2] NaH (60% in mineral oil, 6.96 g, 174 mmol, 3.0 equiv.) and a stir bar were placed in an an oven-dried 3-neck 250 mL flask under nitrogen. Dry hexane (80 mL) was added and the mixture was stirred for 15 min, then decanted the liquid via cannula to remove the protecting oil in NaH. Dry THF (80 mL) and *N*-methylaniline (18.62 g, 174 mmol, 3.0 equiv.) were added. The flask was then fitted with a reflux condenser and a solution of pimelonitrile (7.08 g, 58 mmol, 1.0 equiv.) in THF (40 mL) was added to the flask though an addition funnel (10 min). After that, the reaction mixture was brought to reflux for 2.5 h, leading to the formation of a thick paste. This mixture was cooled to 0 °C and was quenched with H₂O (30 mL). The mixture was further acidified to a pH of 1 using 4 N HCl for the complete hydrolysis of the intermediate imine. The resulting yellow solution was extracted with Et₂O (3 × 25 mL) and the organic layer combined was dried over MgSO₄. The solvents were removed under reduced pressure and the residue was purified by column chromatography.

Flash chromatography (3:1 hexane:EtOAc) gave **D** (5.94 g, yield 83 %) as yellow oil (lit.^[2] yield 73% (using distillation)).

D: R*f* 0.35 (hexanes/EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃) δ 3.50 (dd, J = 11.0, 5.5 Hz, 1H), 2.62-2.58 (m, 1H), 2.43-2.32 (m, 2H), 2.08-1.96 (m, 3H), 1.84-1.66 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 200.5, 116.7, 43.4, 40.7, 32.1, 26.8, 23.7; HRMS (EI, M⁺) for C₇H₉NO calcd. 123.0684, found: m/z 123.0681.

Procedure for the preparation of the cyanohexenyl triflate intermediate 5d

This procedure was based on that of Lin and Boyd *et al.*^[3] To a stirred, ice-cold solution of 2-cyanocyclohexanone (**D**, 1.80 g, 14.6 mmol, 1.0 equiv.) and diisopropylethylamine (3.06 mL,

17.6 mmol, 1.21 equiv.) in 18 mL of dry 1,2-dichloroethane, triflic anhydride (2.95 mL, 17.5 mmol, 1.2 equiv.) was added. The mixture was stirred at 0 °C for 2 h. Ethyl acetate (20 mL) was added to the mixture, and the resulting suspension was filtered through a short plug of silica gel and rinsed with excess EtOAc. The filtrate was concentrated under reduced pressure to give an oily residue which was made further purification by column chromatography.

Flash chromatography (5:1 hexane:EtOAc) gave **5d** (2.87 g, yield 77 %) as yellow oil (lit.^[3] yield 75%).

5d: R*f* 0.71 (hexanes/EtOAc 2:1); IR (cast film) 2953, 2873, 2227, 1668, 1426, 1218, 1139, 1054 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.54-2.50 (m, 2H), 2.45-2.41 (m, 2H), 1.86-1.81 (m, 2H), 1.73-1.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 118.3 (q, *J* = 318.6 Hz, CF₃), 114.0, 105.1, 28.5, 26.8, 21.7, 20.4; HRMS (EI, M⁺) for C₈H₈NO₃F₃S calcd. 255.0177, found: m/z 255.0181.

General Synthetic Procedure for the Dimerization and Furan Trapping Products

General synthetic procedure for the dimerization products 6a-6c of 1-arylacyl-1,2-cyclohexadienes *via* the hetero-Diels-Alder reaction

To a stirred solution of intermediate **5** (0.4 mmol, 1.0 equiv.) in anhydrous THF (1.0 mL) was added dropwise a solution of KO'Bu (0.48 mmol, 1.2 equiv.) in anhydrous THF (1.5 mL) at room temperature in 20 min. After being stirred over night, the reaction mixture was quenched with H₂O (10 mL) and extracted with Et₂O (3×15 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The residue was further purified by column chromatography to afford the new dimerization product **6**.

134 mg of starting material **5a** was used. Flash chromatography (7:1 hexane:EtOAc) gave **6a** (20 mg, 26 %) as yellow sticky oil (starting material **5a** recovered 7 mg, 5%); R*f* 0.42 (hexanes/EtOAc 4:1); IR (cast film) 3398, 3062, 2940, 2868, 1672, 1597, 1580, 1449, 1267 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.91-7.89 (m, 2H), 7.59-7.54 (m, 1H), 7.50-7.45 (m, 4H), 7.40-7.33 (m, 3H), 3.03 (br s, 1H), 2.60-2.51 (m, 2H), 2.47 (dd, *J* = 12.0, 4.0 Hz, 1H), 2.46-2.32

(m, 2H), 2.60-2.00 (m, 1H), 1.86-1.80 (m, 1H), 1.81-1.71 (m, 2H), 1.64-1.56 (m, 2H), 1.58-1.55 (m, 1H), 1.55-1.50 (m, 1H), 1.49-1.42 (m, 1H), 1.44-1.38 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 199.7, 145.9, 137.3, 135.7, 134.1, 133.4, 133.0, 129.3, 129.1, 128.6, 128.4, 127.9, 106.0, 97.3, 42.7, 37.0, 31.2, 28.8, 26.3, 24.5, 23.1(2), 23.1(1); HRMS (ESI, [M+Na]⁺) for C₂₆H₂₆O₃ calcd. 409.1774, found: m/z 409.1770.

73.7 mg of starting material **5b** was used. Flash chromatography (18:1 to 12:1 hexane:EtOAc) gave **6b** (5 mg, 11 %) as yellow sticky oil (starting material **5b** recovered 20 mg, 27%), there were little impurities in the product (very difficult to be removed); R*f* 0.34 (hexanes/EtOAc 6:1); IR (cast film) 3405, 2937, 2869, 1666, 1587, 1488, 1446, 1263, 1091 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 2.90 (br s, 1H), 2.55-2.48 (m, 2H), 2.42 (dd, *J* = 12.0, 4.0 Hz, 1H), 2.36-2.27 (m, 2H), 2.24-1.98 (m, 1H), 1.88-1.73 (m, 2H), 1.76-1.71 (m, 1H), 1.64-1.57 (m, 2H), 1.58-1.52 (m, 2H), 1.50-1.45 (m, 1H), 1.44-1.37 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 198.4, 144.9, 139.5, 135.4, 134.3, 134.2, 134.0, 133.0, 130.7, 130.4, 128.8, 128.1, 106.3, 97.3, 42.6, 37.2, 31.2, 28.6, 26.2, 24.4, 23.1, 23.0; HRMS (EI, M⁺) for C₂₆H₂₄O₃³⁵Cl₂ calcd. 454.1103, found: m/z 454.1102.

130 mg of starting material **5c** was used. Flash chromatography (3:2 hexane:Et₂O) gave **6c** (31 mg, 42 %) as yellow sticky oil (starting material **5c** recovered 12 mg, 10%); R*f* 0.28 (hexanes/Et₂O 1:1); IR (cast film) 3408, 2930, 2855, 1647, 1562, 1462, 1164, 1083, 1020 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, J = 2.0, 1.0 Hz, 1H), 7.48 (dd, J = 2.0, 1.0 Hz, 1H), 7.22 (dd, J = 3.5, 1.0 Hz, 1H), 6.64 (d, J = 3.5 Hz, 1H), 6.54 (dd, J = 3.5, 1.5 Hz, 1H), 6.46 (dd, J = 3.5, 2.0 Hz, 1H), 2.95 (br s, 1H), 2.81 (t, J = 6.5 Hz, 2H), 2.61 (dd, J = 12.0, 4.0 Hz, 1H), 2.52-2.49 (m, 2H), 2.11-2.05 (m, 1H), 1.94-1.78 (m, 2H), 1.80-1.74 (m, 1H), 1.66-1.58 (m, 2H), 1.60-1.52 (m, 2H), 1.51-1.44 (m, 1H), 1.39-1.30 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 185.9, 152.8, 150.2, 146.7, 142.7, 137.3, 135.6, 133.3, 119.2, 112.3, 111.2, 111.1, 106.9, 97.1, 42.5, 37.1, 31.4, 28.3, 24.7, 24.4, 23.1, 22.7; HRMS (ESI, [M+Na]⁺) for C₂₂H₂₂O₅ calcd. 389.1359,

found: m/z 389.1358.

HMBC correlations for the dimerization products **6a-6c**:

Table S1 Optimization of the dimerization reaction conditions of 1,2-cyclohexadienebearing arylacyl group a

	OTF O	Base Solvent, Temp., N ₂ , Time		O O O H	
	5a		7a	6a	
Entry	Base (equiv.)	Solvent	Temp.	Time	Yield 6a (%) ^b
1	Et ₃ N (1.5)	THF	rt	12 h	0 ^c
2	DBU (1.05)	THF	rt	12 h	0
3	NaOH (1.05)	THF	rt	12 h	Trace ^d
4	KOH (1.05)	DMSO	rt	12 h	Trace
5	NaH (1.6)	THF	rt	12 h	0
6	KO'Bu (1.75)	THF	rt	12 h	5%
7	KO'Bu (1.2)	THF	- 78 to 0 °C	12 h	_ e
8	KO'Bu (1.75)	THF	0 °C to rt	12 h	Trace
9	KO'Bu (1.75)	DMSO	40	12 h	-
10	KO'Bu (1.2)	THF	45	3 h	12% ^f
11	KO'Bu (1.75)	Dioxane	100	2 h	0
12	KO'Bu (1.75)	DMF	120	2 h	-
13	KO'Bu (1.75)	DMSO	120	2 h	-
14	KO'Bu (1.02)	THF	rt	1.5 h	6% ^f
15	KO'Bu (2.1)	THF	rt	40 min	8% ^f
16	KO'Bu (2.1)	THF	45-50	30 min	Trace
17	KO'Bu (4.0)	THF	rt	2 h	-
18	KO'Bu (1.2)	THF	rt	3 h	20% ^f
19	KO'Bu (1.2)	THF	rt	12 h	26% ^f
^a Reaction	n conditions: in general,	5a (0.4 mmol) and b	ase $(0.42 \sim 1.6 \text{ mmo})$	l) in anhydrous so	lvent (~ 2.5 mL)

at different temperature under nitrogen for different time as mentioned in the table. ^{*b*} Isolated yield. ^{*c*} Almost no reaction underwent. ^{*d*} With little hydrolysis product **A**. ^{*e*} Messy mixture. ^{*f*} **5a** recovered 5%-8%, with little hydrolysis product **A**.

General procedure for the regioselective synthesis of the furan (or 2,5-dimethylfuran) trapping-[4+2] cycloadducts 10a-10d and 11d

To a stirred solution of intermediate **5** (0.2 mmol, 1.0 equiv.) and furan (2.0 mL, 137 equiv.) in anhydrous THF (0.5 mL) was added dropwise a solution of KO'Bu (0.4 mmol, 2.0 equiv.) in anhydrous THF (1.5 mL) at room temperature in 20 min. After being further stirred for 2 h, the reaction mixture was quenched with H₂O (10 mL) and extracted with Et₂O (3×15 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The residue was further purified by column chromatography to afford the cycloadduct **10**.

67 mg of starting material **5a** was used. Flash chromatography (12:1 hexane:EtOAc) gave **10a** (25 mg, 50 %) as white solid (**5a** recovered 3 mg, 5%); R*f* 0.30 (hexanes/EtOAc 6:1); mp 85-87 °C; IR (cast film) 3067, 3005, 2932, 2866, 1674, 1596, 1578, 1446, 1225, 1172, 1010 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.87-7.84 (m, 2H), 7.49-7.46 (m, 1H), 7.42-7.38 (m, 2H), 6.52 (dd, *J* = 5.5, 2.0 Hz, 1H), 6.25 (dd, *J* = 5.5, 1.5 Hz, 1H), 5.79 (t, *J* = 3.5 Hz, 1H), 5.43 (t, *J* = 1.0 Hz, 1H), 5.22 (br s, 1H), 2.61 (dt, *J* = 12.0, 3.5 Hz, 1H), 2.13-2.07 (m, 1H), 2.00-1.89 (m, 1H), 1.71-1.64 (m, 1H), 1.50-1.38 (m, 1H), 0.75 (ddd, *J* = 14.5, 12.0, 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 204.0, 139.4, 138.7, 138.1, 131.7, 129.7, 128.9, 128.0, 121.5, 85.9, 80.0, 59.0, 32.9, 24.1, 19.8; HRMS (EI, M⁺) for C₁₇H₁₆O₂ calcd. 252.1150, found: m/z 252.1151.

73.7 mg of starting material **5b** was used. Flash chromatography (15:1 to 12:1 hexane:EtOAc) gave **10b** (47 mg, 82 %) as light yellow solid (**5b** recovered 1.4 mg, 2%); Rf 0.32 (hexanes/EtOAc 7:1); mp 87-89 °C; IR (cast film) 3090, 3015, 2936, 2867, 1674, 1587, 1486, 1445, 1225, 1094 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 9.0 Hz, 2H), 7.36 (d, J = 9.0 Hz, 2H), 6.52 (dd, J = 5.5, 2.0 Hz, 1H), 6.24 (dd, J = 5.5, 2.0 Hz, 1H), 5.79 (t, J = 3.5 Hz, 1H), 5.35 (br s, 1H), 5.23 (br s, 1H), 2.57 (dt, J = 12.0, 3.5 Hz, 1H), 2.11-2.04 (m, 1H), 1.99-1.91 (m,

1H), 1.71-1.65 (m, 1H), 1.43-1.35 (m, 1H), 0.70 (ddd, J = 13.3, 12.5, 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 203.6, 139.3, 138.6, 138.0, 136.8, 130.4, 129.8, 128.3, 121.9, 86.1, 80.0, 59.0, 33.0, 24.2, 19.8; HRMS (EI, M⁺) for C₁₇H₁₅O₂³⁵Cl calcd. 286.0761, found: m/z 286.0755.

65 mg of starting material **5c** was used. Flash chromatography (8:1 to 5:1 hexane:EtOAc) gave **10c** (29 mg, 60 %) as white solid (**5c** recovered 1 mg, 2%); R*f* 0.29 (hexanes/EtOAc 4:1); mp 105-107 °C; IR (cast film) 3131, 3008, 2934, 2867, 2835, 1666, 1645, 1562, 1464, 1285, 1010 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, *J* = 2.0, 1.0 Hz, 1H), 7.32 (dd, *J* = 3.5, 0.5 Hz, 1H), 6.52 (dd, *J* = 5.5, 2.0 Hz, 1H), 6.50 (dd, *J* = 3.5, 2.0 Hz, 1H), 6.22 (dd, *J* = 5.5, 2.0 Hz, 1H), 5.86 (t, *J* = 3.5 Hz, 1H), 5.44 (t, *J* = 1.0 Hz, 1H), 5.21 (br s, 1H), 2.61 (dt, *J* = 12.5, 3.5 Hz, 1H), 2.21-2.15 (m, 1H), 2.00-1.92 (m, 1H), 1.70-1.64 (m, 1H), 1.43-1.33 (m, 1H), 0.69 (ddd, *J* = 13.5, 12.5, 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 190.2, 152.6, 145.7, 138.8, 138.7, 129.6, 121.9, 119.6, 112.1, 85.1, 80.0, 58.2, 31.1, 24.3, 19.7; HRMS (EI, M⁺) for C₁₅H₁₄O₃ calcd. 242.0943, found: m/z 242.0939.

Pertinent ROESY correlations for stereochemistry of above fuan trapping products containing arylacyl group:

153 mg (0.6 mmol, 1.0 equiv.) of starting material **5d**, 4.0 mL (92 equiv.) of furan and KO'Bu (1.2 mmol, 2.0 equiv.) were used to carry out the reaction for 45 min at room temperature. Flash chromatography (9:1 to 6:1 hexane:EtOAc) gave **10d** (47 mg, 45 %) as colorless oil; R*f* 0.25 (hexanes/EtOAc 4:1); IR (cast film) 3084, 3011, 2928, 2855, 2231, 1563, 1459, 1305, 1021 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.47 (dd, J = 5.5, 2.0 Hz, 1H), 6.07 (dd, J = 5.5, 1.5 Hz, 1H), 5.79

(t, J = 3.5 Hz, 1H), 5.27 (br s, 1H), 5.23 (br s, 1H), 2.38-2.28 (m, 1H), 2.22 (dt, J = 12.0, 3.5 Hz, 1H), 2.06-1.96 (m, 2H), 1.90-1.84 (m, 1H), 0.62 (ddd, J = 12.5, 12.0, 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 136.0, 127.9, 122.4, 122.3, 84.5, 79.7, 42.5, 30.4, 24.0, 19.6; HRMS (EI, M⁺) for C₁₁H₁₁NO calcd. 173.0841, found: m/z 173.0839.

Pertinent ROESY correlations for stereochemistry:

102 mg (0.4 mmol, 1.0 equiv.) of starting material **5d**, 2.8 mL (65 equiv.) of 2,5-dimethylfuran and KO'Bu (0.8 mmol, 2.0 equiv.) were used to carry out the reaction for 45 min at room temperature. Flash chromatography (9:1 hexane:EtOAc) gave **11d** (16 mg, yield 20 %) as yellow oil (**5d** recovered 10 mg, 10%); R*f* 0.67 (hexanes/EtOAc 2:1); IR (cast film) 3079, 2977, 2933, 2872, 2229, 1573, 1446, 1383, 1316, 1138 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.20 (d, J = 5.5 Hz, 1H), 5.83 (d, J = 5.0 Hz, 1H), 5.67 (dd, J = 4.0, 3.0 Hz, 1H), 2.35-2.30 (m, 1H), 2.12 (dt, J = 12.0, 3.5 Hz, 1H), 2.04-1.96 (m, 2H), 1.90-1.85 (m, 1H), 1.81 (s, 3H), 1.65 (s, 3H), 0.62 (ddd, J = 12.8, 12.0, 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 142.5, 142.2, 131.8, 121.4, 120.2, 89.3, 87.1, 48.3, 30.0, 23.5, 19.5, 15.6, 14.8; HRMS (EI, M⁺) for C₁₃H₁₅NO calcd. 201.1154, found: m/z 201.1154.

Pertinent ROESY correlations for stereochemistry:

General procedure for the regioselective synthesis of the DPIBF trapping-[4+2]

cycloadducts 12a-12d and 13d

To a stirred solution of intermediate **5** (0.2 mmol, 1.0 equiv.) and 1,3-diphenylisobenzofuran (DPIBF) (0.4 mmol, 2.0 equiv.) in anhydrous THF (2.0 mL) was added dropwise a solution of KO'Bu (0.4 mmol, 2.0 equiv.) in anhydrous THF (1.5 mL) at room temperature in 20 min. After being stirred for 2 h, the reaction mixture was quenched with H₂O (10 mL) and extracted with Et₂O (3×15 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The residue was further purified by column chromatography to afford the cycloadduct **12**.

67 mg of starting material **5a** was used. Flash chromatography (30:1 hexane:EtOAc) gave **12a** (18 mg, 20 %) as white solid (**5a** recovered 22 mg, 33%; **6a** can also be isolated, 5%); R*f* 0.41 (hexanes/EtOAc 10:1); mp 124-126 °C; IR (cast film) 3060, 3035, 2932, 2853, 1668, 1598, 1578, 1497, 1458, 1448, 1238 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.60 (m, 4H), 7.47-7.41 (m, 5H), 7.38-7.34 (m, 1H), 7.30-7.26 (m, 4H), 7.23-7.18 (m, 2H), 7.15-7.08 (m, 3H), 6.01 (dd, *J* = 5.0, 2.5 Hz, 1H), 3.04 (ddd, *J* = 11.5, 4.0, 3.0 Hz, 1H), 2.13-2.07 (m, 1H), 2.03-1.95 (m, 1H), 1.69-1.60 (m, 2H), 0.56 (ddd, *J* = 12.3, 12.0, 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 204.9, 149.3, 144.7, 144.6, 143.1, 136.3, 134.8, 130.0, 128.4, 128.3, 128.0(8), 128.0(6), 128.0(0), 127.8, 127.6, 127.2, 126.0, 125.7, 124.4, 121.6, 117.5, 93.0, 89.4, 65.3, 32.2, 24.3, 19.6; HRMS (EI, M⁺) for C₃₃H₂₆O₂ calcd. 454.1933, found: m/z 454.1928.

73.7 mg of starting material **5b** was used. Flash chromatography (20:1 hexane:EtOAc) gave **12b** (22 mg, 23 %) as light yellow solid (**5b** recovered 5 mg, 7%); R*f* 0.58 (hexanes/EtOAc 6:1); mp 159-161 °C; IR (cast film) 3062, 3040, 2937, 1668, 1590, 1497, 1485, 1458, 1448, 1244, 1091 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 6.5 Hz, 2H), 7.58 (d, *J* = 7.0 Hz, 2H), 7.53-7.45 (m, 3H), 7.44-7.41 (m, 2H), 7.38-7.35 (m, 1H), 7.29-7.18 (m, 5H), 7.16-7.12 (m, 1H), 7.07-7.04 (m, 2H), 6.06 (dd, *J* = 5.0, 3.0 Hz, 1H), 3.03 (ddd, *J* = 11.5, 4.5, 3.0 Hz, 1H), 2.07-2.00 (m, 2H), 1.68-1.59 (m, 2H), 0.55 (ddd, *J* = 12.8, 12.0, 5.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃)

δ 203.5, 149.1, 144.5, 144.4, 141.1 136.4, 136.0, 134.7, 129.9, 128.5, 128.4, 128.1, 127.9, 127.7, 127.6, 127.4, 126.1, 125.6, 124.7, 121.6, 117.5, 92.9, 89.3, 65.3, 32.1, 24.2, 19.6; HRMS (EI, M⁺) for C₃₃H₂₅O₂³⁵Cl calcd. 488.1543, found: m/z 488.1542.

65 mg of starting material **5c** was used. Flash chromatography (18:1 to 3:1 hexane:EtOAc) gave **12c** (26 mg, 29 %) as colorless sticky oil (**5c** recovered 8 mg, 12%; **6c** can also be isolated, 8%); R*f* 0.24 (hexanes/EtOAc 10:1); IR (cast film) 3061, 3039, 2938, 2869, 1649, 1601, 1556, 1497, 1458, 1270 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.5 Hz, 2H), 7.58-7.49 (m, 5H), 7.39-7.28 (m, 4H), 7.23-7.14 (m, 4H), 6.97 (d, *J* = 3.5 Hz, 1H), 6.23 (dd, *J* = 3.5, 2.0 Hz, 1H), 6.07 (dd, *J* = 5.0, 2.5 Hz, 1H), 3.08 (ddd, *J* = 12.0, 4.5, 3.0 Hz, 1H), 2.07-2.02 (m, 1H), 1.99-1.90 (m, 1H), 1.66-1.59 (m, 1H), 1.53-1.46 (m, 1H), 0.55 (ddd, *J* = 13.0, 12.0, 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 189.1, 153.6, 149.7, 145.4, 144.7, 144.4, 136.0, 135.4, 128.5, 128.4, 128.2, 128.0, 127.7, 127.6, 126.0, 125.5, 123.7, 121.6, 119.5, 117.6, 111.4, 92.7, 89.5, 63.8, 31.3, 24.3, 19.5; HRMS (EI, M⁺) for C₃₁H₂₄O₃ calcd. 444.1726, found: m/z 444.1730.

Pertinent ROESY correlations for stereochemistry of above DPIBF trapping products containing arylacyl group:

76.5 mg (0.3 mmol, 1.0 equiv.) of starting material 5d, 0.9 mmol (3.0 equiv.) of DPIBF and

KO'Bu (0.6 mmol, 2.0 equiv.) were used to carry out the reaction for 30 min at room temperature. Flash chromatography (45:1 to 18:1 hexane:EtOAc) gave **12d** (40 mg, 36 %) and **13d** (13 mg, 12 %) as white solids.

12d: R*f* 0.25 (hexanes/EtOAc 10:1); mp 195-196 °C; IR (cast film) 3061, 3033, 2954, 2869, 2235, 1599, 1498, 1457, 1448, 1306, 1005 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 6.5 Hz, 2H), 7.75 (d, *J* = 7.0 Hz, 2H), 7.56-7.50 (m, 5H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.32-7.17 (m, 4H), 5.86 (dd, *J* = 4.0, 3.0 Hz, 1H), 2.51 (dt, *J* = 12.0, 3.5 Hz, 1H), 2.38-2.32 (m, 1H), 2.06-2.02 (m, 1H), 1.96-1.82 (m, 2H), 0.82 (ddd, *J* = 13.5, 12.0, 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.3, 142.1, 141.7, 135.4, 133.2, 129.1, 128.8, 128.6, 128.5(8), 128.5(6), 128.5(2), 126.6, 125.8, 125.2, 122.2, 120.6, 118.4, 91.7, 90.1, 51.1, 30.1, 24.0, 19.1; HRMS (EI, M⁺) for C₂₇H₂₁NO calcd. 375.1623, found: m/z 375.1621.

Pertinent ROESY correlations for stereochemistry:

13d: R*f* 0.45 (hexanes/EtOAc 10:1); mp 198-199 °C; IR (cast film) 3059, 3032, 2940, 2871, 2230, 1602, 1499, 1459, 1448, 1310, 1010 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.0 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.58-7.54 (m, 4H), 7.48-7.43 (m, 3H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.31-7.24 (m, 2H), 5.85 (dd, *J* = 6.0, 2.5 Hz, 1H), 2.32-2.25 (m, 1H), 2.12-2.04 (m, 1H), 1.99-1.91 (m, 2H), 1.77-1.70 (m, 1H), 1.17 (dt, *J* = 6.0, 12.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.9, 143.9, 140.7, 134.8, 134.7, 128.8, 128.7, 128.3, 128.1, 128.0, 127.6, 125.6, 125.5, 122.2, 121.2, 121.0, 120.2, 90.5, 90.2, 47.8, 29.8, 22.0, 17.8; HRMS (EI, M⁺) for C₂₇H₂₁NO calcd. 375.1623, found: m/z 375.1623.

Pertinent ROESY correlations for stereochemistry:

General procedure for the synthesis of the cycloadducts 16a-16h through Hetero-Diels-Alder trapping of cyclic allenes derived from 5a,b with electron-rich heterodienophiles

To a stirred solution of starting material **5** (0.3 mmol, 1.0 equiv.) and enamine **15** (3 mmol, 10 equiv.) in anhydrous THF (3 mL) under nitrogen atmosphere was added dropwise a solution of KO^tBu (0.45 mmol, 1.5 equiv.) in anhydrous THF (1.5 mL) at room temperature over 30 minutes. The reaction mixture was stirred for 3 h at room temperature and then it was quenched with NH₄Cl sat. solution (10 mL) and extracted with Et₂O (5 x 10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude was further purified by column chromatography on Al₂O₃ (neutral, Brockmann I, 40-160 µm) to afford the cycloadduct **16**. The column chromatography can be performed on silica as well, but for a slightly cleaner product we recommend the use of neutral alumina. When required HSQC was used for ¹³C NMR assignments. Enamine **15** was either readily available or synthesized according with the literature.⁴⁻⁶

110 mg of starting material **5a** was used. Flash chromatography (99:1 to 20:1 hexane:Et₂O) on neutral alumina gave **16a** (76 mg, 65 %) as light yellow solid; R*f* 0.38 (hexanes/EtOAc 9:1); mp 94-96 °C; IR (cast film) cm⁻¹ 3083, 3054, 3034, 2933, 2851, 1684, 1598, 1492, 1446, 1263, 1118; ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.39 (m, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.29 – 7.25 (m, 1H), 5.34 (t, *J* = 4.2 Hz, 1H), 3.61 (t, *J* = 4.6 Hz, 4H), 2.80 – 2.68 (m, 4H), 2.48 (ddd, *J* = 14.5, 6.0, 3.9 Hz, 1H), 2.39 (ddd, *J* = 14.6, 10.8, 4.0 Hz, 1H), 2.32 (dd, *J* = 10.1, 4.7 Hz, 1H), 2.21 – 2.09 (m, 2H), 1.99 (dtd, *J* = 13.5, 3.9, 1.3 Hz, 1H), 1.74 – 1.55 (m, 7H), 1.34 (ddd, *J* = 13.6, 11.7, 4.6 Hz, 1H), 1.25 – 1.17 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 141.6, 136.8, 134.7, 128.8, 127.8, 127.4, 120.3, 108.8, 90.3, 67.9, 44.9, 42.0, 30.6, 27.9, 26.7, 26.0, 24.4, 24.1, 22.7; HRMS (ESI, [M+H]⁺) for C₂₃H₂₉NO₂ calcd. 352.2271, found: m/z 352.2275.

104 mg of starting material **5a** was used. Flash chromatography (99:1 to 20:1 hexane: Et₂O) on neutral alumina gave **16b** (28 mg, 24 %) as light yellow oil; R*f* 0.45 (hexanes/EtOAc 10:1); IR (cast film) cm⁻¹ 3057, 3023, 2925, 2853, 1663, 1597, 1449, 1276, 1119; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dt, *J* = 6.3, 1.4 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.29 – 7.24 (m, 1H), 5.41 (td, *J* = 4.3, 1.2 Hz, 1H), 3.63 (t, *J* = 4.7 Hz, 4H), 2.78 (q, *J* = 4.7 Hz, 4H), 2.62 (d, *J* = 7.7 Hz, 1H), 2.52 – 2.36 (m, 2H), 2.18 (ddt, *J* = 8.1, 5.7, 3.1 Hz, 2H), 2.09 – 1.92 (m, 2H), 1.87 (ddd, *J* = 14.9, 7.2, 3.5 Hz, 1H), 1.80 – 1.39 (m, 7H), 1.36 – 1.16 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 143.0, 136.4, 135.7, 128.8, 127.7, 127.5, 119.6, 108.7, 93.8, 67.9, 45.6, 44.1, 31.1, 28.5, 28.1, 26.8, 26.1, 26.0, 23.8, 21.7; HRMS (ESI, [M+H]⁺) for C₂₄H₃₁NO₂ calcd. 366.2428, found: m/z 366.2417.

Relevant 2D-TROESY for 16c

94 mg of starting material **5a** was used. Flash chromatography (99:1 to 20:1 hexane: Et₂O) on neutral alumina gave **16c** (28 mg, 29 %) as light yellow oil; R*f* 0.42 (hexanes/EtOAc 10:1); IR (cast film) cm⁻¹ 3053, 3019, 2970, 2919, 2885, 2851, 1664, 1634, 1615, 1597, 1491, 1446, 1271, 1175, 1120, 1070; ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.36 – 7.31 (m, 2H), 7.29 – 7.23 (m, 1H), 5.46 (td, *J* = 4.2, 1.3 Hz, 1H), 3.67 – 3.59 (m, 4H), 3.00 – 2.88 (m, 4H), 2.76 – 2.69 (m, 1H), 2.50 – 2.40 (m, 2H), 2.22 – 2.14 (m, 2H), 1.93 – 1.81 (m, 2H), 1.72 – 1.60 (m, 2H), 1.11 (d, *J* = 6.9 Hz, 3H), 0.94 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.9, 136.4, 136.0, 128.8, 127.7, 127.6, 119.8, 108.1, 94.3, 68.0, 45.8, 36.7, 26.7, 26.1, 25.5, 23.8, 14.4, 8.9; HRMS (ESI, [M+H]⁺) for C₂₂H₂₉NO₂ calcd. 340.2271, found: m/z 340.2271.

96 mg of starting material **5a** was used. Flash chromatography (99:1 to 20:1 hexane: Et₂O) on neutral alumina gave **16d** (9 mg, 9 %) as light yellow oil; Rf 0.40 (hexanes/EtOAc 10:1); IR (cast film) cm⁻¹ 3057, 3034, 2957, 2930, 2855, 1667, 1597, 1491, 1448, 1254, 1119, 1066; ¹H

NMR (500 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2H), 7.39 – 7.34 (m, 2H), 7.32 – 7.28 (m, 1H), 5.58 (t, J = 4.3 Hz, 1H), 4.26 (s, 1H), 3.72 – 3.56 (m, 4H), 3.24 – 3.17 (m, 2H), 2.75 – 2.68 (m, 2H), 2.46 – 2.32 (m, 2H), 2.22 – 2.10 (m, 2H), 1.72 – 1.63 (m, 1H), 1.52 – 1.44 (m, 1H), 1.21 (s, 3H), 1.18 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 139.1, 136.1, 128.8, 128.0, 127.9, 115.5, 106.7, 98.3, 67.5, 49.4, 36.5, 30.4, 26.8, 26.0, 23.2, 23.2; HRMS (ESI, [M+H]⁺) for C₂₁H₂₇NO₂ calcd. 326.2115, found: m/z 326.2113.

112 mg of starting material **5b** was used. Flash chromatography (99:1 to 20:1 hexane: Et₂O) on neutral alumina gave **16e** (54 mg, 46 %) as light yellow oil; R*f* 0.28 (hexanes/EtOAc 10:1); IR (cast film) cm⁻¹ 3034, 2931, 2854, 1680, 1592, 1489, 1448, 1279, 1118, 1094; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 5.36 (t, *J* = 4.2 Hz, 1H), 3.59 (t, *J* = 4.6 Hz, 4H), 2.79 – 2.64 (m, 4H), 2.45 (ddd, *J* = 14.5, 6.0, 4.0 Hz, 1H), 2.38 (dd, *J* = 10.6, 4.0 Hz, 1H), 2.34 – 2.28 (m, 1H), 2.20 – 2.08 (m, 2H), 2.01 – 1.93 (m, 1H), 1.75 – 1.46 (m, 7H), 1.38 – 1.29 (m, 1H), 1.25 – 1.16 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 140.5, 135.2, 134.5, 133.1, 130.1, 128.0, 120.9, 109.3, 90.4, 67.9, 44.9, 41.9, 30.6, 27.9, 26.7, 25.9, 24.3, 24.0, 22.7; HRMS (ESI, [M+H]⁺) for C₂₃H₂₈CINO₂ calcd. 386.1881, found: m/z 386.1872.

104 mg of starting material **5a** was used. Flash chromatography (99:1 to 20:1 hexane: Et₂O) on neutral alumina gave **16f** (53 mg, 51 %) as light yellow oil; R*f* 0.30 (hexanes/EtOAc 10:1); IR (cast film) cm⁻¹ 3054, 3034, 2929, 2856, 1673, 1597, 1447, 1270, 1113; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 5.54 (t, *J* = 4.6 Hz, 1H), 2.98 – 2.87 (m, 4H), 2.67 (s, 1H), 2.44 (t, *J* = 6.2 Hz, 2H), 2.25 – 2.14 (m, 2H), 2.10 – 2.00 (m, 1H), 1.90 – 1.52 (m, 10H), 1.35 – 1.24 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 144.4, 137.1, 133.3, 128.9, 127.6, 127.3, 119.4, 106.8, 91.4, 44.1, 41.3, 29.7, 28.3, 26.8, 26.1, 24.6, 23.5, 23.5, 21.5; HRMS (ESI, [M+H]⁺) for C₂₃H₂₉NO calcd. 336.2322, found: m/z 336.2325.

16g

103 mg of starting material **5b** was used. Flash chromatography (99:1 to 20:1 hexane: Et₂O) on neutral alumina gave **16g** (20 mg, 19 %) as light yellow oil; R*f* 0.47 (hexanes/EtOAc 10:1); IR (cast film) cm⁻¹ 3042, 2971, 2932, 2886, 2851, 1672, 1613, 1591, 1489, 1450, 1270, 1120; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 5.49 (dt, *J* = 5.2, 2.5 Hz, 1H), 3.63 (t, *J* = 4.6 Hz, 4H), 2.91 (t, *J* = 4.7 Hz, 4H), 2.76 – 2.67 (m, 1H), 2.48 – 2.34 (m, 2H), 2.25 – 2.11 (m, 2H), 1.94 – 1.78 (m, 2H), 1.75 – 1.54 (m, 2H), 1.09 (d, *J* = 6.9 Hz, 3H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.9, 135.7, 134.9, 133.3, 130.1, 127.9, 120.4, 108.6, 94.5, 67.9, 45.8, 36.7, 26.7, 26.0, 25.4, 23.7, 14.3, 8.9; HRMS (ESI, [M+H]⁺) for C₂₂H₂₈ClNO₂ calcd. 374.1881, found: m/z 374.1881.

116 mg of starting material **5a** was used. Flash chromatography (99:1 to 20:1 hexane:EtOAc) on silica gave **16h** (6 mg, 6 %) as light yellow oil, which in contact with the air becomes dark red; R*f* 0.30 (hexanes/EtOAc 20:1); IR (cast film) cm⁻¹ 3057, 2929, 2851, 1716, 1660, 1597, 1581, 1448, 1393, 1278; ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.37 (m, 5H), 6.94 (t, *J* = 4.6 Hz, 1H), 2.57 – 2.49 (m, 4H), 2.47 – 2.41 (m, 2H), 2.31 – 2.26 (m, 2H), 2.03 (p, *J* = 6.4 Hz, 2H), 1.64 (p, *J* = 6.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 197.6, 168.4, 142.3, 133.4, 128.8, 128.6, 128.2, 122.4, 117.3, 117.0, 112.4, 39.1, 28.8, 26.4, 25.5, 21.1, 20.3; HRMS (EI, M⁺) for C₁₉H₁₈O₂ calcd. 278.1307, found: m/z 278.1300.

References

1. E. Fos, L. Borràs, M. Gasull, D. Mauleón and G. Carganico, J. Heterocyclic Chem., 1992, 29, 203.

2. Z. Jia, E. Gálvez, R. M. Sebastián, R. Pleixats, Á. Álvarez-Larena, E. Martin, A. Vallribera and A. Shafir, *Angew. Chem. Int. Ed.*, 2014, **53**, 11298.

3. H.-S. Lin, A. A. Rampersaud, K. Zimmerman, M. I. Steinberg and D. B. Boyd, *J. Med. Chem.*, 1992, **35**, 2658.

4. May, G. L.; Pinhey, J. T. Aust. J. Chem. 1982, 35 (9), 1859.

- 5. Carlson, R.; Nilsson, Å.; Strömqvist, M. Acta Chem. Scand. B 1983, 37, 7.
- 6. Carlson, R.; Nilsson, Å. Acta Chem. Scand. B 1984, 38, 49.

S-19

Baolei, BLW-1-4-a 125.691 MHz C13[H1] 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-7_2_ 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-81-1_2_ 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-83-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-32-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

C	2	0
Э	-2	0

Baolei, BLW-I-45-1_2_ 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

					$ \cdots $	$ \dots $				
200	180	160	140	120	100	80	60	40	20	ppm

Baolei, BLW-I-144-a 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-144-a 125.690 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C → actual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3 opposite side of solvent signal

										\cdots
200	180	160	140	120	100	80	60	40	20	ppm

Baolei, BLW-I-145-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

180	160	140	120	100	80	60	40	20	ppm

Mass spectrum (APPI) proof for the possible dimerization product of 1-benzoyl-1,2-cyclohexadiene 7a, which was isolated as an impure mixture from column chromatography after stirring the precursor 5a and KO'Bu in THF at room temperature for 3 h.

Mass spectrum (APPI) proof for the possible dimerization product of 1-benzoyl-1,2-cyclohexadiene 7a, which was isolated as an impure mixture from column chromatography after stirring the precursor 5a and KO'Bu in THF at room temperature over night.

Baolei, BLW-I-61-3 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-131A-2 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-69-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-101-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-115B-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-115B-1 125.690 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3 opposite side of solvent signal

Baolei, BLW-I-121B-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-121B-1 125.690 MHz C13[H1] APT_ad in cdcl3 (ref. to CDCl3 @ 77.06 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe C & CH2 same, CH & CH3 opposite side of solvent signal

Baolei, BLW-I-147A-2 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

F2 (ppm)

Baolei, BLW-I-161A-2 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-125A-1_2_ 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-121A-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-125B-1_3_ 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-155B-2_2_ 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

Baolei, BLW-I-155B-1 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.7 C -> actual temp = 27.0 C, colddual probe

F2 (ppm)

S-81

Department of Chemistry Mass Spectrometry Laboratory

Name	M. Constantin, West	Sample Name	cmi e1
Data Filename	20031712.d	Instrument Name	oaTOF6220
Position	-1	Operator	ami
Acq Method		DA Method	da ami low mass.m

User Spectra

Formula Calculat	or Results	
Farmerela	Ten Constant	

Formula	Ion Species	Mass	Calc. Mass	m/z	Calc. m/z	Diff (mDa)	Diff (ppm)	DBE Ion	Score
C23 H29 N O2	C23 H30 N O2	351.2202	351.2198	352.2275	352.2271	-0.38	-1.08	10 (M+H)+	97.8

--- End Of Report ---

Mass Spectrometry Facility, Dept. of Chemistry Univ. of Alberta, 1-780-492-5577

Page 1 of 1

Printed at: 7:38 PM on: 3/17/2020

16c

X-ray Data for Product 12d

 Table 1.
 Crystallographic Experimental Details

A. Crystal Data			
formula	C ₂₇ H ₂₁ NO		
formula weight	375.45		
crystal dimensions (mm)	$0.31 \times 0.23 \times 0.06$		
crystal system	triclinic		
space group	<i>P</i> (No. 2)		
unit cell parameters ^a			
<i>a</i> (Å)	10.4535 (9)		
<i>b</i> (Å)	11.5142 (10)		
<i>c</i> (Å)	17.3923 (14)		
α (deg)	71.1047 (11)		
β (deg)	87.8758 (11)		
$\gamma(\text{deg})$	89.5875 (11)		
$V(Å^3)$	1979.2 (3)		
Ζ	4		
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.260		
$\mu (\mathrm{mm}^{-1})$	0.076		

B. Data Collection and Refinement Conditions Bruker PLATFORM/APEX II CCD^b diffractometer radiation (λ [Å]) graphite-monochromated Mo K α (0.71073) temperature (°C) -80 ω scans (0.3°) (20 s exposures) scan type 52.99 data collection 2θ limit (deg) total data collected $15431 (-13 \le h \le 12, -14 \le k \le 14, -21 \le l \le 21)$ $8136 (R_{int} = 0.0361)$ independent reflections $5553 [F_0^2 \ge 2\sigma(F_0^2)]$ number of observed reflections (NO) direct methods/dual space (SHELXD^C) structure solution method full-matrix least-squares on F^2 (SHELXL-2014^d) refinement method Gaussian integration (face-indexed) absorption correction method range of transmission factors 1.0000-0.8231 data/restraints/parameters 8136 / 0 / 523 goodness-of-fit $(S)^e$ [all data] 1.023 final R indices f $R_1 [F_0^2 \ge 2\sigma (F_0^2)]$ 0.0521 wR_2 [all data] 0.1518 0.321 and -0.221 e Å⁻³ largest difference peak and hole

^{*a*}Obtained from least-squares refinement of 5641 reflections with $4.54^{\circ} < 2\theta < 52.48^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

^dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.

 $e_{S} = [\Sigma w (F_{0}^{2} - F_{c}^{2})^{2} / (n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^{2}(F_{0}^{2}) + (0.0798P)^{2}]^{-1} \text{ where } P = [\text{Max}(F_{0}^{2}, 0) + 2F_{c}^{2}]/3).$ $f_{R_{1}} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; w_{R_{2}} = [\Sigma w (F_{0}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{0}^{4})]^{1/2}.$

Table 2. Atomic Coor	rdinates and Equivalen	t Isotropic Displa	acement Parameters
----------------------	------------------------	--------------------	--------------------

(a) Molecule	e A			
Atom	x	У	Z	U_{eq} , Å ²
01	0.32084(11)	0.30007(11)	0.34947(7)	0.0294(3)*
N1	0.14271(18)	0.24811(16)	0.53516(11)	0.0465(5)*
C1	0.15280(17)	0.16363(16)	0.36272(11)	0.0293(4)*
C2	0.07751(18)	0.06953(17)	0.36727(12)	0.0349(4)*
C3	-0.06261(18)	0.06473(18)	0.39148(14)	0.0428(5)*
C4	-0.10861(18)	0.17559(17)	0.41441(13)	0.0399(5)*
C5	-0.03807(17)	0.29470(17)	0.36646(13)	0.0365(5)*
C6	0.10551(17)	0.27742(16)	0.38186(11)	0.0295(4)*
C7	0.20669(16)	0.37536(16)	0.32844(11)	0.0279(4)*
C8	0.19400(17)	0.38232(16)	0.24007(11)	0.0302(4)*
C9	0.14056(18)	0.46925(18)	0.17421(12)	0.0367(5)*
C10	0.1468(2)	0.4470(2)	0.09978(13)	0.0452(5)*
C11	0.2002(2)	0.3407(2)	0.09294(13)	0.0443(5)*
C12	0.25033(18)	0.25121(19)	0.16012(12)	0.0379(5)*
C13	0.24788(17)	0.27472(17)	0.23338(11)	0.0314(4)*
C14	0.28438(17)	0.20005(16)	0.31981(11)	0.0295(4)*
C15	0.12782(17)	0.26300(16)	0.46790(12)	0.0314(4)*
C16	0.22020(17)	0.49341(16)	0.34635(11)	0.0301(4)*
C17	0.33755(17)	0.52796(17)	0.36751(11)	0.0317(4)*
C18	0.35167(19)	0.64011(17)	0.37996(12)	0.0367(5)*
C19	0.2491(2)	0.71869(19)	0.37199(13)	0.0443(5)*
C20	0.1313(2)	0.68469(19)	0.35149(14)	0.0484(6)*
C21	0.11679(19)	0.57307(18)	0.33858(13)	0.0409(5)*
C22	0.38996(17)	0.10639(16)	0.33479(11)	0.0302(4)*
C23	0.39171(19)	0.00826(18)	0.40625(12)	0.0379(5)*
C24	0.4940(2)	-0.07237(19)	0.42244(14)	0.0459(5)*
C25	0.5966(2)	-0.0541(2)	0.36665(14)	0.0469(5)*
C26	0.5958(2)	0.0433(2)	0.29533(14)	0.0456(5)*
C27	0.49321(19)	0.12336(18)	0.27920(13)	0.0389(5)*

(b) Molecule B

Atom	x	У	Ζ	U_{eq} , Å ²
01	0.20567(11)	0.38816(11)	0.86935(7)	0.0291(3)*
N1	0.32261(17)	0.11407(16)	1.01204(11)	0.0471(5)*
C1	0.42747(17)	0.37202(16)	0.85732(11)	0.0293(4)*
C2	0.55337(17)	0.38714(18)	0.84885(11)	0.0344(4)*
C3	0.64413(18)	0.28669(18)	0.84779(12)	0.0407(5)*
C4	0.58052(19)	0.16471(18)	0.85434(13)	0.0438(5)*
C5	0.44825(18)	0.18203(18)	0.81699(12)	0.0375(5)*
C6	0.36313(17)	0.25167(16)	0.86021(11)	0.0297(4)*
C7	0.22849(17)	0.30301(16)	0.82448(11)	0.0292(4)*
C8	0.25341(16)	0.39146(16)	0.73835(11)	0.0288(4)*
С9	0.23818(18)	0.38329(18)	0.66181(11)	0.0335(4)*
C10	0.27860(19)	0.48249(18)	0.59470(12)	0.0375(5)*
C11	0.33440(18)	0.58554(18)	0.60508(12)	0.0362(5)*
C12	0.34992(17)	0.59328(17)	0.68252(11)	0.0315(4)*
C13	0.30802(16)	0.49604(16)	0.74836(11)	0.0284(4)*
C14	0.31861(17)	0.46663(16)	0.84033(11)	0.0291(4)*
C15	0.33875(17)	0.17473(17)	0.94560(12)	0.0331(4)*
C16	0.12356(17)	0.20890(16)	0.83995(11)	0.0295(4)*
C17	0.02732(18)	0.20032(17)	0.89854(12)	0.0359(5)*
C18	-0.06671(18)	0.10969(18)	0.91364(13)	0.0420(5)*
C19	-0.0653(2)	0.02888(19)	0.87017(13)	0.0452(5)*
C20	0.0300(2)	0.03684(19)	0.81178(13)	0.0442(5)*
C21	0.12480(19)	0.12615(17)	0.79695(12)	0.0382(5)*
C22	0.31384(18)	0.57187(16)	0.87313(11)	0.0314(4)*
C23	0.4156(2)	0.60579(19)	0.91068(12)	0.0401(5)*
C24	0.4063(2)	0.7078(2)	0.93638(13)	0.0512(6)*
C25	0.2958(3)	0.7754(2)	0.92697(13)	0.0527(6)*
C26	0.1917(2)	0.7396(2)	0.89249(14)	0.0519(6)*
C27	0.2015(2)	0.64016(19)	0.86471(13)	0.0432(5)*

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$.
Table 3.	Selected Interatomic Distances	(Å))
----------	--------------------------------	-----	---

(a) Molecule A	!	(b) Molecule B
Atom1	Atom2	Distance	Atom1	Atom2
01	C7	1.456(2)	01	C7
01	C14	1.464(2)	01	C14
N1	C15	1.142(2)	N1	C15
C1	C2	1.323(2)	C1	C2
C1	C6	1.527(2)	C1	C6
C1	C14	1.534(2)	C1	C14
C2	C3	1.505(3)	C2	C3
C3	C4	1.525(3)	C3	C4
C4	C5	1.533(2)	C4	C5
C5	C6	1.535(2)	C5	C6
C6	C7	1.587(2)	C6	C7
C6	C15	1.478(3)	C6	C15
C7	C8	1.523(3)	C7	C8
C7	C16	1.498(2)	C7	C16
C8	C9	1.387(3)	C8	C9
C8	C13	1.394(3)	C8	C13
С9	C10	1.398(3)	C9	C10
C10	C11	1.379(3)	C10	C11
C11	C12	1.400(3)	C11	C12
C12	C13	1.385(3)	C12	C13
C13	C14	1.531(3)	C13	C14
C14	C22	1.507(2)	C14	C22
C16	C17	1.391(3)	C16	C17
C16	C21	1.394(3)	C16	C21
C17	C18	1.387(3)	C17	C18
C18	C19	1.380(3)	C18	C19
C19	C20	1.388(3)	C19	C20
C20	C21	1.385(3)	C20	C21
C22	C23	1.383(3)	C22	C23
C22	C27	1.393(3)	C22	C27
C23	C24	1.387(3)	C23	C24
C24	C25	1.389(3)	C24	C25
C25	C26	1.377(3)	C25	C26
C26	C27	1.385(3)	C26	C27

Distance 1.451(2)

1.463(2)

1.147(2) 1.325(2) 1.530(2)

1.539(2) 1.495(3) 1.527(3) 1.534(3) 1.527(3) 1.591(3)

1.476(3) 1.528(2)

1.502(2) 1.379(3)

1.400(2)

1.397(3)

1.392(3)

1.394(3)

1.377(2)

1.532(2)

1.497(3)

1.386(3)

1.388(3)

1.394(3)

1.376(3) 1.378(3)

1.389(3)

1.391(3)

1.394(3)

1.387(3)

1.374(3)

1.389(3)

1.381(3)

Table 4. Selected Interatomic Angles (deg)

(a) Molecule A					(b) Mole	cule B	
Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C7	01	C14	98.84(12)	C7	01	C14	98.77(12)
C2	C1	C6	123.04(17)	C2	C1	C6	121.94(17)
C2	C1	C14	130.20(17)	C2	C1	C14	130.80(17)
C6	C1	C14	105.04(14)	C6	C1	C14	104.70(14)
C1	C2	C3	123.24(18)	C1	C2	C3	123.32(18)
C2	C3	C4	113.79(16)	C2	C3	C4	114.80(16)
C3	C4	C5	113.27(16)	C3	C4	C5	112.37(16)
C4	C5	C6	108.80(15)	C4	C5	C6	108.83(17)
C1	C6	C5	109.77(15)	C1	C6	C5	110.41(15)
C1	C6	C7	99.71(13)	C1	C6	C7	99.67(13)
C1	C6	C15	109.69(15)	C1	C6	C15	109.72(15)
C5	C6	C7	120.64(15)	C5	C6	C7	119.91(16)
C5	C6	C15	109.48(15)	C5	C6	C15	109.46(15)
C7	C6	C15	106.93(14)	C7	C6	C15	107.07(14)
01	C7	C6	97.84(13)	01	C7	C6	98.37(13)
01	C7	C8	100.84(13)	01	C7	C8	101.18(13)
01	C7	C16	111.39(14)	01	C7	C16	112.07(14)
C6	C7	C8	107.73(14)	C6	C7	C8	107.66(13)
C6	C7	C16	118.00(14)	C6	C7	C16	115.35(14)
C8	C7	C16	117.89(15)	C8	C7	C16	119.34(15)
C7	C8	C9	132.35(17)	C7	C8	C9	133.75(17)
C7	C8	C13	106.08(15)	C7	C8	C13	105.28(15)
C9	C8	C13	121.55(18)	C9	C8	C13	120.89(17)
C8	C9	C10	117.36(19)	C8	C9	C10	118.06(18)
C9	C10	C11	121.2(2)	C9	C10	C11	120.78(18)
C10	C11	C12	121.3(2)	C10	C11	C12	120.97(17)
C11	C12	C13	117.61(19)	C11	C12	C13	117.95(17)
C8	C13	C12	120.89(18)	C8	C13	C12	121.34(17)
C8	C13	C14	105.12(15)	C8	C13	C14	105.49(15)
C12	C13	C14	133.77(18)	C12	C13	C14	132.88(16)
01	C14	C1	101.36(13)	O1	C14	C1	101.90(13)
01	C14	C13	99.68(13)	O1	C14	C13	100.11(13)
01	C14	C22	109.57(14)	O1	C14	C22	110.10(14)
C1	C14	C13	101.96(14)	C1	C14	C13	100.65(14)
C1	C14	C22	119.62(15)	C1	C14	C22	123.15(16)
C13	C14	C22	121.26(15)	C13	C14	C22	117.59(15)
N1	C15	C6	177.6(2)	N1	C15	C6	178.5(2)
C7	C16	C17	120.55(16)	C7	C16	C17	121.12(16)
C7	C16	C21	120.57(17)	C7	C16	C21	119.73(16)

C17	C16	C21	118.82(17)	C17	C16	C21	119.11(16)
C16	C17	C18	120.55(18)	C16	C17	C18	120.09(19)
C17	C18	C19	120.37(19)	C17	C18	C19	120.35(19)
C18	C19	C20	119.54(19)	C18	C19	C20	119.92(18)
C19	C20	C21	120.3(2)	C19	C20	C21	120.1(2)
C16	C21	C20	120.37(19)	C16	C21	C20	120.46(19)
C14	C22	C23	121.04(17)	C14	C22	C23	123.58(17)
C14	C22	C27	119.90(17)	C14	C22	C27	118.03(17)
C23	C22	C27	118.85(18)	C23	C22	C27	118.39(18)
C22	C23	C24	120.80(19)	C22	C23	C24	120.4(2)
C23	C24	C25	119.8(2)	C23	C24	C25	120.8(2)
C24	C25	C26	119.8(2)	C24	C25	C26	119.3(2)
C25	C26	C27	120.2(2)	C25	C26	C27	120.2(2)
C22	C27	C26	120.50(19)	C22	C27	C26	120.9(2)

Table 5.Torsional Angles (deg)

(a) Molecule A

(a) Molecule A				(b) Molecule B					
Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C14	01	C7	C6	60.15(14)	C14	01	C7	C6	59.68(14)
C14	01	C7	C8	-49.69(14)	C14	01	C7	C8	-50.29(15)
C14	01	C7	C16	-175.60(14)	C14	01	C7	C16	-178.54(14)
C7	01	C14	C1	-52.69(15)	C7	01	C14	C1	-52.30(15)
C7	01	C14	C13	51.71(14)	C7	01	C14	C13	50.96(15)
C7	01	C14	C22	179.98(14)	C7	01	C14	C22	175.45(14)
C6	C1	C2	C3	0.2(3)	C6	C1	C2	C3	-4.8(3)
C14	C1	C2	C3	-162.52(19)	C14	C1	C2	C3	-163.77(18)
C2	C1	C6	C5	-26.7(2)	C2	C1	C6	C5	-24.6(2)
C2	C1	C6	C7	-154.31(18)	C2	C1	C6	C7	-151.66(17)
C2	C1	C6	C15	93.7(2)	C2	C1	C6	C15	96.2(2)
C14	C1	C6	C5	139.77(15)	C14	C1	C6	C5	139.09(15)
C14	C1	C6	C7	12.11(17)	C14	C1	C6	C7	11.99(16)
C14	C1	C6	C15	-99.91(16)	C14	C1	C6	C15	-100.18(16)
C2	C1	C14	01	-171.62(19)	C2	C1	C14	01	-175.28(19)
C2	C1	C14	C13	85.8(2)	C2	C1	C14	C13	81.9(2)
C2	C1	C14	C22	-51.1(3)	C2	C1	C14	C22	-51.4(3)
C6	C1	C14	01	23.31(17)	C6	C1	C14	01	23.11(17)
C6	C1	C14	C13	-79.27(16)	C6	C1	C14	C13	-79.73(15)
C6	C1	C14	C22	143.79(16)	C6	C1	C14	C22	146.97(16)
C1	C2	C3	C4	-2.9(3)	C1	C2	C3	C4	2.0(3)
C2	C3	C4	C5	32.8(3)	C2	C3	C4	C5	30.2(2)
C3	C4	C5	C6	-58.9(2)	C3	C4	C5	C6	-58.6(2)
C4	C5	C6	C1	53.8(2)	C4	C5	C6	C1	54.59(19)
C4	C5	C6	C7	168.75(17)	C4	C5	C6	C7	169.47(15)
C4	C5	C6	C15	-66.6(2)	C4	C5	C6	C15	-66.31(19)
C1	C6	C7	01	-43.68(15)	C1	C6	C7	01	-43.54(14)
C1	C6	C7	C8	60.40(17)	C1	C6	C7	C8	61.09(16)
C1	C6	C7	C16	-163.03(15)	C1	C6	C7	C16	-162.88(15)
C5	C6	C7	01	-163.69(16)	C5	C6	C7	01	-163.94(15)
C5	C6	C7	C8	-59.6(2)	C5	C6	C7	C8	-59.3(2)
C5	C6	C7	C16	77.0(2)	C5	C6	C7	C16	76.7(2)
C15	C6	C7	01	70.48(15)	C15	C6	C7	01	70.69(16)
C15	C6	C7	C8	174.56(14)	C15	C6	C7	C8	175.32(14)
C15	C6	C7	C16	-48.9(2)	C15	C6	C7	C16	-48.6(2)
01	C7	C8	C9	-152.76(19)	01	C7	C8	С9	-153.08(19)
01	C7	C8	C13	28.54(16)	01	C7	C8	C13	30.23(17)
C6	C7	C8	C9	105.3(2)	C6	C7	C8	С9	104.3(2)
C6	C7	C8	C13	-73.41(17)	C6	C7	C8	C13	-72.39(17)

C16	C7	C8	C9	-31.3(3)	C16	C7	C8	C9	-29.7(3)
C16	C7	C8	C13	149.98(15)	C16	C7	C8	C13	153.64(16)
01	C7	C16	C17	9.5(2)	01	C7	C16	C17	-7.3(2)
01	C7	C16	C21	-173.32(16)	01	C7	C16	C21	174.91(16)
C6	C7	C16	C17	121.52(18)	C6	C7	C16	C17	104.2(2)
C6	C7	C16	C21	-61.3(2)	C6	C7	C16	C21	-73.6(2)
C8	C7	C16	C17	-106.3(2)	C8	C7	C16	C17	-125.17(19)
C8	C7	C16	C21	70.8(2)	C8	C7	C16	C21	57.0(2)
C7	C8	C9	C10	179.26(18)	C7	C8	C9	C10	-176.40(18)
C13	C8	C9	C10	-2.2(3)	C13	C8	C9	C10	-0.1(3)
C7	C8	C13	C12	179.17(16)	C7	C8	C13	C12	176.29(16)
C7	C8	C13	C14	3.72(18)	C7	C8	C13	C14	1.70(17)
C9	C8	C13	C12	0.3(3)	C9	C8	C13	C12	-0.9(3)
C9	C8	C13	C14	-175.15(16)	C9	C8	C13	C14	-175.51(16)
C8	C9	C10	C11	2.1(3)	C8	C9	C10	C11	1.0(3)
C9	C10	C11	C12	0.0(3)	C9	C10	C11	C12	-0.9(3)
C10	C11	C12	C13	-1.9(3)	C10	C11	C12	C13	-0.2(3)
C11	C12	C13	C8	1.8(3)	C11	C12	C13	C8	1.1(3)
C11	C12	C13	C14	175.68(19)	C11	C12	C13	C14	173.94(18)
C8	C13	C14	O1	-34.46(16)	C8	C13	C14	01	-32.69(17)
C8	C13	C14	C1	69.45(16)	C8	C13	C14	C1	71.59(16)
C8	C13	C14	C22	-154.53(15)	C8	C13	C14	C22	-151.84(16)
C12	C13	C14	01	150.95(19)	C12	C13	C14	01	153.62(19)
C12	C13	C14	C1	-105.1(2)	C12	C13	C14	C1	-102.1(2)
C12	C13	C14	C22	30.9(3)	C12	C13	C14	C22	34.5(3)
01	C14	C22	C23	90.48(19)	01	C14	C22	C23	130.74(18)
01	C14	C22	C27	-84.3(2)	01	C14	C22	C27	-49.9(2)
C1	C14	C22	C23	-25.8(2)	C1	C14	C22	C23	10.6(3)
C1	C14	C22	C27	159.48(17)	C1	C14	C22	C27	-170.04(16)
C13	C14	C22	C23	-154.40(17)	C13	C14	C22	C23	-115.5(2)
C13	C14	C22	C27	30.9(2)	C13	C14	C22	C27	63.8(2)
C7	C16	C17	C18	176.63(16)	C7	C16	C17	C18	-177.92(18)
C21	C16	C17	C18	-0.6(3)	C21	C16	C17	C18	-0.1(3)
C7	C16	C21	C20	-176.96(18)	C7	C16	C21	C20	178.61(18)
C17	C16	C21	C20	0.2(3)	C17	C16	C21	C20	0.7(3)
C16	C17	C18	C19	0.4(3)	C16	C17	C18	C19	-0.5(3)
C17	C18	C19	C20	0.1(3)	C17	C18	C19	C20	0.5(3)
C18	C19	C20	C21	-0.4(3)	C18	C19	C20	C21	0.2(3)
C19	C20	C21	C16	0.3(3)	C19	C20	C21	C16	-0.8(3)

Table 5. Torsional Angles (continued)

	(a) Molecule A					(b) Molecule B				
Atom1	Atom2	Atom3	Atom4	Angle		Atom1	Atom2	Atom3	Atom4	Angle
C14	C22	C23	C24	-175.01(18)		C14	C22	C23	C24	177.11(18)
C27	C22	C23	C24	-0.2(3)		C27	C22	C23	C24	-2.2(3)
C14	C22	C27	C26	174.81(18)		C14	C22	C27	C26	-178.94(18)
C23	C22	C27	C26	0.0(3)		C23	C22	C27	C26	0.4(3)
C22	C23	C24	C25	0.5(3)		C22	C23	C24	C25	1.5(3)
C23	C24	C25	C26	-0.5(3)		C23	C24	C25	C26	1.1(3)
C24	C25	C26	C27	0.2(3)		C24	C25	C26	C27	-2.9(3)
C25	C26	C27	C22	0.0(3)		C25	C26	C27	C22	2.1(3)

Table 6. Anisotropic Displa	acement Parameters (U_{ij} , Å ²)
-------------------------------------	--

(a) Molecule A

Atom	U11	U22	<i>U</i> 33	U23	<i>U</i> 13	U12
01	0.0230(7)	0.0294(6)	0.0371(7)	-0.0123(6)	-0.0046(5)	0.0028(5)
N1	0.0554(12)	0.0446(10)	0.0413(11)	-0.0166(9)	-0.0004(9)	0.0005(9)
C1	0.0267(10)	0.0304(9)	0.0293(10)	-0.0075(8)	-0.0044(7)	0.0017(7)
C2	0.0304(11)	0.0319(10)	0.0419(11)	-0.0111(9)	-0.0034(8)	0.0000(8)
C3	0.0302(11)	0.0400(11)	0.0548(13)	-0.0108(10)	-0.0004(9)	-0.0072(9)
C4	0.0235(10)	0.0393(11)	0.0508(13)	-0.0064(10)	0.0014(9)	-0.0035(8)
C5	0.0221(10)	0.0347(10)	0.0479(12)	-0.0067(9)	-0.0029(8)	0.0007(8)
C6	0.0244(10)	0.0291(9)	0.0325(10)	-0.0066(8)	-0.0013(7)	-0.0003(7)
C7	0.0185(9)	0.0286(9)	0.0350(10)	-0.0081(8)	-0.0020(7)	0.0023(7)
C8	0.0226(9)	0.0326(10)	0.0332(10)	-0.0076(8)	-0.0002(7)	-0.0046(7)
C9	0.0269(10)	0.0361(10)	0.0416(12)	-0.0047(9)	-0.0030(8)	-0.0033(8)
C10	0.0401(13)	0.0517(13)	0.0373(12)	-0.0045(10)	-0.0094(9)	-0.0034(10)
C11	0.0416(13)	0.0577(14)	0.0334(11)	-0.0142(10)	-0.0025(9)	-0.0056(10)
C12	0.0329(11)	0.0455(12)	0.0374(11)	-0.0162(9)	-0.0006(8)	-0.0050(9)
C13	0.0230(10)	0.0358(10)	0.0347(10)	-0.0104(8)	-0.0013(7)	-0.0036(8)
C14	0.0252(10)	0.0293(9)	0.0363(10)	-0.0136(8)	-0.0020(8)	-0.0020(7)
C15	0.0279(10)	0.0271(9)	0.0391(12)	-0.0111(8)	0.0031(8)	0.0004(7)
C16	0.0258(10)	0.0297(9)	0.0331(10)	-0.0080(8)	0.0004(7)	0.0005(7)
C17	0.0260(10)	0.0355(10)	0.0331(10)	-0.0106(8)	-0.0009(8)	0.0012(8)
C18	0.0346(11)	0.0389(11)	0.0383(11)	-0.0152(9)	0.0005(8)	-0.0056(9)
C19	0.0482(14)	0.0322(11)	0.0551(14)	-0.0180(10)	0.0037(10)	-0.0042(9)
C20	0.0384(13)	0.0359(11)	0.0718(16)	-0.0190(11)	-0.0003(11)	0.0083(9)
C21	0.0232(10)	0.0363(11)	0.0625(14)	-0.0150(10)	-0.0014(9)	0.0013(8)
C22	0.0255(10)	0.0302(9)	0.0401(11)	-0.0180(8)	-0.0051(8)	0.0015(7)
C23	0.0322(11)	0.0393(11)	0.0414(12)	-0.0118(9)	-0.0044(9)	0.0010(9)
C24	0.0449(13)	0.0366(11)	0.0551(14)	-0.0121(10)	-0.0145(10)	0.0071(9)
C25	0.0355(12)	0.0448(12)	0.0660(16)	-0.0251(12)	-0.0101(10)	0.0114(9)
C26	0.0340(12)	0.0500(13)	0.0561(14)	-0.0221(11)	0.0015(10)	0.0078(10)
C27	0.0342(11)	0.0378(11)	0.0455(12)	-0.0148(9)	0.0005(9)	0.0046(9)
(b) Moled	cule B					
Atom	<i>U</i> ₁₁	U22	<i>U</i> 33	U23	<i>U</i> ₁₃	<i>U</i> ₁₂
01	0.0222(7)	0.0319(7)	0.0336(7)	-0.0112(6)	0.0009(5)	-0.0028(5)
N1	0.0432(11)	0.0459(10)	0.0427(11)	-0.0012(9)	0.0004(8)	0.0003(8)
C1	0.0255(10)	0.0314(9)	0.0280(10)	-0.0052(8)	-0.0026(7)	-0.0009(7)
C2	0.0277(10)	0.0366(10)	0.0347(11)	-0.0054(8)	-0.0035(8)	-0.0014(8)
C3	0.0267(11)	0.0473(12)	0.0404(12)	-0.0035(9)	-0.0004(8)	0.0020(9)
C4	0.0325(12)	0.0401(11)	0.0521(13)	-0.0062(10)	0.0034(9)	0.0085(9)
C5	0.0334(11)	0.0347(10)	0.0435(12)	-0.0121(9)	0.0032(9)	0.0043(8)

 Table 6.
 Anisotropic Displacement Parameters (continued)

Atom	<i>U</i> ₁₁	U22	<i>U</i> 33	U23	<i>U</i> 13	<i>U</i> ₁₂
C6	0.0247(10)	0.0298(9)	0.0319(10)	-0.0060(8)	-0.0018(7)	0.0016(7)
C7	0.0238(10)	0.0312(9)	0.0323(10)	-0.0099(8)	-0.0001(7)	-0.0019(7)
C8	0.0201(9)	0.0319(9)	0.0327(10)	-0.0081(8)	-0.0019(7)	0.0024(7)
C9	0.0300(10)	0.0372(10)	0.0347(11)	-0.0133(8)	-0.0022(8)	0.0024(8)
C10	0.0354(11)	0.0464(12)	0.0290(10)	-0.0099(9)	-0.0017(8)	0.0052(9)
C11	0.0313(11)	0.0379(11)	0.0323(11)	-0.0021(8)	0.0021(8)	0.0037(8)
C12	0.0246(10)	0.0317(10)	0.0360(11)	-0.0078(8)	-0.0017(8)	0.0017(8)
C13	0.0197(9)	0.0308(9)	0.0337(10)	-0.0089(8)	-0.0032(7)	0.0040(7)
C14	0.0226(9)	0.0298(9)	0.0327(10)	-0.0071(8)	-0.0008(7)	-0.0038(7)
C15	0.0248(10)	0.0311(10)	0.0408(12)	-0.0077(9)	-0.0031(8)	0.0002(8)
C16	0.0241(10)	0.0273(9)	0.0344(10)	-0.0061(8)	-0.0037(7)	0.0001(7)
C17	0.0273(10)	0.0365(10)	0.0422(11)	-0.0106(9)	0.0006(8)	-0.0007(8)
C18	0.0245(11)	0.0429(12)	0.0524(13)	-0.0074(10)	0.0042(9)	-0.0046(9)
C19	0.0327(12)	0.0395(11)	0.0574(14)	-0.0069(10)	-0.0053(10)	-0.0096(9)
C20	0.0473(13)	0.0392(11)	0.0486(13)	-0.0170(10)	-0.0074(10)	-0.0079(10)
C21	0.0355(11)	0.0395(11)	0.0392(11)	-0.0124(9)	0.0014(9)	-0.0044(9)
C22	0.0336(11)	0.0304(9)	0.0280(10)	-0.0065(8)	-0.0013(8)	-0.0012(8)
C23	0.0369(12)	0.0452(12)	0.0398(12)	-0.0155(10)	-0.0041(9)	-0.0053(9)
C24	0.0610(16)	0.0559(14)	0.0410(13)	-0.0214(11)	-0.0025(11)	-0.0153(12)
C25	0.0787(18)	0.0402(12)	0.0428(13)	-0.0191(10)	0.0061(12)	-0.0060(12)
C26	0.0623(16)	0.0448(13)	0.0509(14)	-0.0186(11)	-0.0024(11)	0.0132(11)
C27	0.0422(12)	0.0430(12)	0.0455(13)	-0.0157(10)	-0.0058(9)	0.0062(9)

The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Ζ	U_{eq} , Å ²
H2A	0.1137	0.0017	0.3546	0.042
H3A	-0.0796	-0.0105	0.4383	0.051
H3B	-0.1129	0.0588	0.3458	0.051
H4A	-0.0968	0.1591	0.4732	0.048
H4B	-0.2013	0.1867	0.4048	0.048
H5A	-0.0709	0.3633	0.3841	0.044
H5B	-0.0526	0.3147	0.3077	0.044
H9A	0.1013	0.5411	0.1795	0.044
H10A	0.1136	0.5060	0.0531	0.054
H11A	0.2031	0.3280	0.0416	0.053
H12A	0.2848	0.1770	0.1556	0.045
H17A	0.4086	0.4743	0.3735	0.038
H18A	0.4324	0.6630	0.3941	0.044
H19A	0.2590	0.7955	0.3805	0.053
H20A	0.0603	0.7383	0.3463	0.058
H21A	0.0359	0.5506	0.3244	0.049
H23A	0.3220	-0.0041	0.4447	0.045
H24A	0.4940	-0.1398	0.4715	0.055
H25A	0.6672	-0.1088	0.3777	0.056
H26A	0.6658	0.0557	0.2571	0.055
H27A	0.4933	0.1903	0.2299	0.047
H2B	0.5877	0.4658	0.8432	0.041
H3C	0.7024	0.2729	0.8935	0.049
H3D	0.6970	0.3142	0.7967	0.049
H4C	0.5715	0.1140	0.9124	0.053
H4D	0.6362	0.1199	0.8263	0.053
H5C	0.4565	0.2288	0.7582	0.045
H5D	0.4096	0.1011	0.8233	0.045
H9B	0.2013	0.3123	0.6549	0.040
H10B	0.2679	0.4796	0.5414	0.045
H11B	0.3623	0.6516	0.5587	0.043
H12B	0.3882	0.6635	0.6897	0.038
H17B	0.0254	0.2563	0.9284	0.043
H18B	-0.1321	0.1037	0.9542	0.050
H19B	-0.1300	-0.0323	0.8804	0.054
H20B	0.0309	-0.0188	0.7816	0.053
H21B	0.1909	0.1306	0.7571	0.046
H23B	0.4920	0.5588	0.9188	0.048
H24B	0.4772	0.7311	0.9608	0.061
H25B	0.2906	0.8460	0.9439	0.063
H26B	0.1136	0.7836	0.8880	0.062
H27B	0.1308	0.6180	0.8395	0.052

 Table 7.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

X-ray Data for Product 13d

Table 1.	Crystallographic Experimental Details
----------	---------------------------------------

A. Crystal Data	
formula	C ₂₇ H ₂₁ NO
formula weight	375.45
crystal dimensions (mm)	0.34 imes 0.21 imes 0.06
crystal system	monoclinic
space group	$P2_1/n$ (an alternate setting of $P2_1/c$ [No. 14])
unit cell parameters ^a	
<i>a</i> (Å)	14.8685 (8)
<i>b</i> (Å)	8.0336 (4)
<i>c</i> (Å)	16.4560 (9)
β (deg)	93.1431 (7)
$V(Å^3)$	1962.67 (18)
Ζ	4

$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.271
$\mu (\mathrm{mm}^{-1})$	0.077

B. Data Collection and Refinement Conditions	
diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation $(\lambda [Å])$	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-80
scan type	ω scans (0.3°) (15 s exposures)
data collection 2θ limit (deg)	52.89
total data collected	14714 (-18 $\leq h \leq 18$, -10 $\leq k \leq 10$, -20 $\leq l \leq 20$)
independent reflections	4038 (<i>R</i> _{int} = 0.0358)
number of observed reflections (NO)	$3140 \ [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods/dual space (SHELXD ^C)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	1.0000-0.9012
data/restraints/parameters	4038 / 0 / 262
goodness-of-fit (S) ^e [all data]	1.078
final R indices ^f	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0562
wR_2 [all data]	0.1652
largest difference peak and hole	0.779 and -0.282 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 5004 reflections with $4.96^{\circ} < 2\theta < 51.46^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

 ${}^{e}S = [\Sigma w(F_0{}^2 - F_c{}^2)^2/(n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2(F_0{}^2) + (0.0809P)^2 + 0.8151P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $f_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Atom	x	У	Ζ	U_{eq} , Å ²
0	0.12733(8)	0.16615(15)	0.48272(7)	0.0285(3)*
Ν	0.39612(14)	-0.1294(3)	0.52544(13)	0.0578(6)*
C1	0.30903(14)	0.2916(3)	0.38548(12)	0.0396(5)*
C2	0.39145(17)	0.3671(4)	0.42596(15)	0.0568(7)*
C3	0.40635(14)	0.3337(3)	0.51482(13)	0.0430(5)*
C4	0.32413(14)	0.2703(3)	0.55586(12)	0.0377(5)*
C5	0.28197(13)	0.1245(3)	0.50916(11)	0.0345(4)*
C6	0.18588(12)	0.0624(2)	0.53356(11)	0.0283(4)*
C7	0.17075(14)	-0.1058(2)	0.49067(12)	0.0353(4)*
C8	0.16660(15)	-0.2675(3)	0.51641(14)	0.0425(5)*
C9	0.15235(15)	-0.3918(3)	0.45727(14)	0.0437(5)*
C10	0.14280(15)	-0.3515(3)	0.37498(14)	0.0428(5)*
C11	0.14471(13)	-0.1846(2)	0.34977(13)	0.0358(4)*
C12	0.15831(13)	-0.0651(2)	0.40817(11)	0.0330(4)*
C13	0.16217(12)	0.1243(2)	0.40351(10)	0.0276(4)*
C14	0.25940(12)	0.1805(2)	0.42192(11)	0.0319(4)*
C15	0.34703(14)	-0.0185(3)	0.51652(12)	0.0406(5)*
C16	0.16781(12)	0.0759(2)	0.62189(11)	0.0297(4)*
C17	0.09843(13)	0.1729(3)	0.64883(12)	0.0359(4)*
C18	0.08543(15)	0.1849(3)	0.73168(13)	0.0441(5)*
C19	0.14030(15)	0.1001(3)	0.78776(13)	0.0444(5)*
C20	0.20952(16)	0.0020(3)	0.76106(13)	0.0448(5)*
C21	0.22303(14)	-0.0100(3)	0.67895(12)	0.0393(5)*
C22	0.10887(13)	0.2045(2)	0.33437(11)	0.0311(4)*
C23	0.02467(14)	0.2724(3)	0.34571(13)	0.0402(5)*
C24	-0.02312(16)	0.3499(3)	0.28124(16)	0.0528(6)*
C25	0.01247(19)	0.3604(3)	0.20600(15)	0.0569(7)*
C26	0.09520(19)	0.2892(3)	0.19322(14)	0.0532(6)*
C27	0.14311(16)	0.2091(3)	0.25732(12)	0.0417(5)*

 Table 2.
 Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$.

Atom1	Atom2	Distance	Atom1	Atom2	Distance
0	C6	1.440(2)	C10	C11	1.405(3)
0	C13	1.468(2)	C11	C12	1.366(3)
Ν	C15	1.156(3)	C12	C13	1.525(3)
C1	C2	1.491(3)	C13	C14	1.529(3)
C1	C14	1.323(3)	C13	C22	1.496(2)
C2	C3	1.491(3)	C16	C17	1.385(3)
C3	C4	1.517(3)	C16	C21	1.395(3)
C4	C5	1.518(3)	C17	C18	1.391(3)
C5	C6	1.585(3)	C18	C19	1.378(3)
C5	C14	1.524(3)	C19	C20	1.386(3)
C5	C15	1.502(3)	C20	C21	1.380(3)
C6	C7	1.535(3)	C22	C23	1.388(3)
C6	C16	1.496(2)	C22	C27	1.392(3)
C7	C8	1.369(3)	C23	C24	1.391(3)
C7	C12	1.399(3)	C24	C25	1.375(4)
C8	C9	1.402(3)	C25	C26	1.383(4)
C9	C10	1.392(3)	C26	C27	1.397(3)

Table 3. Selected Interatomic Distances (A)

Table 4.	Selected	Interatomic Angles	(deg)
----------	----------	--------------------	-------

Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
0	C13	98.74(12)	0	C13	C12	99.65(13)
C1	C14	122.50(19)	0	C13	C14	97.61(13)
C2	C3	116.04(18)	0	C13	C22	112.27(14)
C3	C4	114.65(18)	C12	C13	C14	108.79(15)
C4	C5	110.76(16)	C12	C13	C22	116.60(15)
C5	C6	117.87(16)	C14	C13	C22	118.66(15)
C5	C14	108.22(16)	C1	C14	C5	121.78(17)
C5	C15	107.64(16)	C1	C14	C13	130.86(18)
C5	C14	100.16(14)	C5	C14	C13	104.87(15)
C5	C15	108.93(16)	Ν	C15	C5	177.2(2)
C5	C15	114.15(16)	C6	C16	C17	121.88(17)
C6	C5	101.27(14)	C6	C16	C21	119.18(16)
C6	C7	100.00(14)	C17	C16	C21	118.93(18)
C6	C16	112.81(14)	C16	C17	C18	119.92(19)
C6	C7	105.77(15)	C17	C18	C19	120.9(2)
C6	C16	115.82(15)	C18	C19	C20	119.41(19)
C6	C16	118.71(15)	C19	C20	C21	120.0(2)
C7	C8	134.51(19)	C16	C21	C20	120.82(19)
C7	C12	104.39(15)	C13	C22	C23	120.73(17)
C7	C12	121.09(19)	C13	C22	C27	119.94(18)
C8	C9	118.0(2)	C23	C22	C27	119.32(18)
C9	C10	120.87(19)	C22	C23	C24	120.0(2)
C10	C11	120.44(19)	C23	C24	C25	120.6(2)
C11	C12	117.90(19)	C24	C25	C26	120.1(2)
C12	C11	121.69(18)	C25	C26	C27	119.8(2)
C12	C13	106.19(16)	C22	C27	C26	120.2(2)
C12	C13	132.12(18)				
	Atom2 O C1 C2 C3 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	Atom2Atom3OC13C1C14C2C3C3C4C4C5C5C6C5C14C5C15C5C15C5C15C5C15C6C5C6C7C6C16C6C16C7C8C7C12C7C12C8C9C9C10C11C12C12C11C12C13C12C13	Atom2Atom3AngleOC13 $98.74(12)$ C1C14 $122.50(19)$ C2C3 $116.04(18)$ C3C4 $114.65(18)$ C4C5 $110.76(16)$ C5C6 $117.87(16)$ C5C14 $108.22(16)$ C5C15 $107.64(16)$ C5C14 $100.16(14)$ C5C15 $108.93(16)$ C5C15 $101.27(14)$ C6C7 $100.00(14)$ C6C7 $100.00(14)$ C6C16 $112.81(14)$ C6C7 $105.77(15)$ C6C16 $118.71(15)$ C7C12 $104.39(15)$ C7C12 $104.39(15)$ C7C12 $120.87(19)$ C10C11 $120.44(19)$ C11C12 $117.90(19)$ C12C13 $132.12(18)$	Atom2Atom3AngleAtom1OC13 $98.74(12)$ OC1C14 $122.50(19)$ OC2C3 $116.04(18)$ OC3C4 $114.65(18)$ C12C4C5 $110.76(16)$ C12C5C6 $117.87(16)$ C14C5C14 $108.22(16)$ C1C5C15 $107.64(16)$ C1C5C14 $100.16(14)$ C5C5C15 $108.93(16)$ NC5C15 $101.27(14)$ C6C6C5 $101.27(14)$ C6C6C7 $100.00(14)$ C17C6C16 $112.81(14)$ C16C6C7 $105.77(15)$ C17C6C16 $118.71(15)$ C19C7C8 $134.51(19)$ C16C7C12 $104.39(15)$ C13C7C12 $120.87(19)$ C23C9C10 $120.87(19)$ C23C11C12 $117.90(19)$ C24C12C13 $106.19(16)$ C22C12C13 $106.19(16)$ C22C12C13 $132.12(18)$ C25	Atom2Atom3AngleAtom1Atom2OC13 $98.74(12)$ OC13C1C14 $122.50(19)$ OC13C2C3 $116.04(18)$ OC13C3C4 $114.65(18)$ C12C13C4C5 $110.76(16)$ C12C13C5C6 $117.87(16)$ C14C13C5C14 $108.22(16)$ C1C14C5C15 $107.64(16)$ C1C14C5C15 $107.64(16)$ C1C14C5C15 $108.93(16)$ NC15C5C15 $101.27(14)$ C6C16C6C7 $100.00(14)$ C17C16C6C7 $100.00(14)$ C17C16C6C16 $112.81(14)$ C16C17C6C7 $105.77(15)$ C17C18C6C16 $118.71(15)$ C19C20C7C12 $104.39(15)$ C13C22C7C12 $120.87(19)$ C23C24C11C12 $17.90(19)$ C23C24C11C12 $17.90(19)$ C24C25C12C13 $132.12(18)$ C27C27	Atom2Atom3AngleAtom1Atom2Atom3OC13 $98.74(12)$ OC13C12C1C14 $122.50(19)$ OC13C14C2C3 $116.04(18)$ OC13C22C3C4 $114.65(18)$ C12C13C14C4C5 $110.76(16)$ C12C13C22C5C6 $117.87(16)$ C14C13C22C5C14 $108.22(16)$ C1C14C13C5C15 $107.64(16)$ C1C14C13C5C15 $107.64(16)$ C1C14C13C5C15 $107.64(16)$ NC15C5C5C15 $108.93(16)$ NC15C5C5C15 $114.15(16)$ C6C16C17C6C5 $101.27(14)$ C6C16C21C6C16 $112.81(14)$ C16C17C18C6C7 $100.00(14)$ C17C16C21C6C16 $115.82(15)$ C18C19C20C6C16 $115.82(15)$ C18C19C20C7C12 $104.39(15)$ C13C22C27C8C9 $118.0(2)$ C23C24C25C10C11 $120.44(19)$ C23C24C25C11C12 $17.90(19)$ C24C25C26C12C13 $106.19(16)$ C22C27C26

Table 5.	Torsional Angles	(deg)
----------	------------------	-------

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C13	0	C6	C5	55.47(15)	C7	C6	C16	C21	67.4(2)
C13	0	C6	C7	-52.98(15)	C6	C7	C8	C9	-179.2(2)
C13	0	C6	C16	179.91(14)	C12	C7	C8	C9	2.0(3)
C6	0	C13	C12	51.30(15)	C6	C7	C12	C11	178.55(17)
C6	0	C13	C14	-59.33(15)	C6	C7	C12	C13	-2.3(2)
C6	0	C13	C22	175.38(14)	C8	C7	C12	C11	-2.3(3)
C14	C1	C2	C3	-10.4(4)	C8	C7	C12	C13	176.82(19)
C2	C1	C14	C5	1.5(3)	C7	C8	C9	C10	0.0(3)
C2	C1	C14	C13	160.7(2)	C8	C9	C10	C11	-1.8(3)
C1	C2	C3	C4	-16.4(3)	C9	C10	C11	C12	1.5(3)
C2	C3	C4	C5	50.5(3)	C10	C11	C12	C7	0.5(3)
C3	C4	C5	C6	-169.25(17)	C10	C11	C12	C13	-178.40(19)
C3	C4	C5	C14	-56.7(2)	C7	C12	C13	0	-29.89(18)
C3	C4	C5	C15	67.2(2)	C7	C12	C13	C14	71.63(19)
C4	C5	C6	Ο	88.40(19)	C7	C12	C13	C22	-150.89(17)
C4	C5	C6	C7	-167.69(16)	C11	C12	C13	0	149.1(2)
C4	C5	C6	C16	-34.0(2)	C11	C12	C13	C14	-109.3(2)
C14	C5	C6	Ο	-28.59(17)	C11	C12	C13	C22	28.1(3)
C14	C5	C6	C7	75.31(17)	Ο	C13	C14	C1	-121.7(2)
C14	C5	C6	C16	-150.97(16)	0	C13	C14	C5	40.11(17)
C15	C5	C6	0	-148.65(15)	C12	C13	C14	C1	135.3(2)
C15	C5	C6	C7	-44.75(19)	C12	C13	C14	C5	-62.84(18)
C15	C5	C6	C16	88.97(19)	C22	C13	C14	C1	-1.1(3)
C4	C5	C14	C1	32.5(3)	C22	C13	C14	C5	160.69(16)
C4	C5	C14	C13	-131.44(16)	0	C13	C22	C23	-15.1(2)
C6	C5	C14	C1	156.43(19)	Ο	C13	C22	C27	165.94(16)
C6	C5	C14	C13	-7.47(18)	C12	C13	C22	C23	99.0(2)
C15	C5	C14	C1	-87.4(2)	C12	C13	C22	C27	-80.0(2)
C15	C5	C14	C13	108.73(18)	C14	C13	C22	C23	-127.84(19)
0	C6	C7	C8	-144.4(2)	C14	C13	C22	C27	53.2(2)
0	C6	C7	C12	34.50(18)	C6	C16	C17	C18	-178.48(19)
C5	C6	C7	C8	110.7(3)	C21	C16	C17	C18	0.7(3)
C5	C6	C7	C12	-70.33(18)	C6	C16	C21	C20	178.72(19)
C16	C6	C7	C8	-21.4(3)	C17	C16	C21	C20	-0.5(3)
C16	C6	C7	C12	157.55(16)	C16	C17	C18	C19	-0.6(3)
0	C6	C16	C17	3.0(2)	C17	C18	C19	C20	0.2(3)
0	C6	C16	C21	-176.13(16)	C18	C19	C20	C21	0.0(3)
C5	C6	C16	C17	119.1(2)	C19	C20	C21	C16	0.1(3)
C5	C6	C16	C21	-60.1(2)	C13	C22	C23	C24	178.48(19)
C7	C6	C16	C17	-113.4(2)	C27	C22	C23	C24	-2.5(3)

 Table 5.
 Torsional Angles (continued)

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C13	C22	C27	C26	-177.57(19)	C23	C24	C25	C26	1.9(4)
C23	C22	C27	C26	3.4(3)	C24	C25	C26	C27	-1.0(4)
C22	C23	C24	C25	-0.1(3)	C25	C26	C27	C22	-1.7(3)

U11	U22	U33	U23	<i>U</i> ₁₃	<i>U</i> ₁₂
0.0301(7)	0.0298(7)	0.0256(7)	0.0026(5)	0.0023(5)	0.0055(5)
0.0525(12)	0.0685(14)	0.0526(12)	0.0030(10)	0.0043(9)	0.0301(11)
0.0389(11)	0.0471(12)	0.0327(10)	0.0052(9)	0.0018(8)	-0.0050(9)
0.0483(13)	0.0734(18)	0.0483(14)	0.0130(12)	-0.0008(11)	-0.0271(12)
0.0353(11)	0.0512(13)	0.0425(12)	-0.0106(10)	0.0023(9)	-0.0094(9)
0.0405(11)	0.0391(11)	0.0331(10)	-0.0047(8)	-0.0005(8)	-0.0044(9)
0.0297(10)	0.0460(12)	0.0280(10)	-0.0019(8)	0.0018(7)	-0.0034(8)
0.0284(9)	0.0292(9)	0.0272(9)	0.0019(7)	0.0013(7)	0.0052(7)
0.0431(11)	0.0285(10)	0.0345(10)	-0.0004(8)	0.0028(8)	0.0033(8)
0.0465(12)	0.0362(11)	0.0451(12)	0.0050(9)	0.0041(9)	-0.0035(9)
0.0490(12)	0.0237(10)	0.0583(14)	0.0008(9)	0.0026(10)	-0.0003(9)
0.0459(12)	0.0297(10)	0.0527(13)	-0.0087(9)	0.0035(10)	-0.0004(9)
0.0360(10)	0.0349(10)	0.0367(11)	-0.0053(8)	0.0024(8)	0.0000(8)
0.0356(10)	0.0296(10)	0.0335(10)	-0.0013(8)	0.0009(8)	0.0028(8)
0.0308(9)	0.0272(9)	0.0250(9)	-0.0017(7)	0.0031(7)	0.0009(7)
0.0303(9)	0.0383(10)	0.0272(9)	-0.0009(8)	0.0022(7)	0.0009(8)
0.0386(11)	0.0489(13)	0.0344(11)	-0.0028(9)	0.0028(8)	0.0031(10)
0.0309(9)	0.0318(9)	0.0267(9)	0.0014(7)	0.0033(7)	-0.0015(8)
0.0372(10)	0.0392(11)	0.0317(10)	0.0002(8)	0.0047(8)	0.0042(8)
0.0455(12)	0.0505(13)	0.0376(11)	-0.0050(9)	0.0135(9)	0.0021(10)
0.0523(13)	0.0536(13)	0.0281(10)	-0.0001(9)	0.0090(9)	-0.0100(10)
0.0510(12)	0.0525(13)	0.0308(10)	0.0105(9)	0.0018(9)	-0.0001(10)
0.0413(11)	0.0435(12)	0.0332(10)	0.0060(9)	0.0038(8)	0.0070(9)
0.0367(10)	0.0263(9)	0.0297(9)	0.0009(7)	-0.0041(7)	-0.0059(8)
0.0362(11)	0.0391(11)	0.0442(11)	0.0042(9)	-0.0066(9)	-0.0026(9)
0.0460(13)	0.0485(13)	0.0617(16)	0.0068(11)	-0.0181(11)	0.0008(10)
0.0695(17)	0.0483(14)	0.0493(14)	0.0121(11)	-0.0296(12)	-0.0081(12)
0.0749(17)	0.0532(14)	0.0300(11)	0.0048(10)	-0.0102(11)	-0.0141(12)
0.0526(13)	0.0426(12)	0.0295(10)	0.0000(9)	-0.0015(9)	-0.0044(10)
	U_{11} 0.0301(7) 0.0525(12) 0.0389(11) 0.0483(13) 0.0353(11) 0.0405(11) 0.0297(10) 0.0297(10) 0.0284(9) 0.0431(11) 0.0465(12) 0.0490(12) 0.0459(12) 0.0360(10) 0.0356(10) 0.0308(9) 0.0308(9) 0.0308(9) 0.0303(9) 0.0372(10) 0.0372(10) 0.0455(12) 0.0523(13) 0.0510(12) 0.0413(11) 0.0367(10) 0.0362(11) 0.0460(13) 0.0749(17) 0.0526(13)	U_{11} U_{22} $0.0301(7)$ $0.0298(7)$ $0.0525(12)$ $0.0685(14)$ $0.0389(11)$ $0.0471(12)$ $0.0483(13)$ $0.0734(18)$ $0.0353(11)$ $0.0512(13)$ $0.0405(11)$ $0.0391(11)$ $0.0297(10)$ $0.0460(12)$ $0.0297(10)$ $0.0460(12)$ $0.0297(10)$ $0.0460(12)$ $0.0297(10)$ $0.0460(12)$ $0.0297(10)$ $0.0460(12)$ $0.0445(12)$ $0.0292(9)$ $0.0445(12)$ $0.0297(10)$ $0.0465(12)$ $0.0297(10)$ $0.0465(12)$ $0.0297(10)$ $0.0459(12)$ $0.0297(10)$ $0.0360(10)$ $0.0349(10)$ $0.0356(10)$ $0.0296(10)$ $0.038(9)$ $0.0272(9)$ $0.0308(9)$ $0.0272(9)$ $0.0303(9)$ $0.0383(10)$ $0.0386(11)$ $0.0489(13)$ $0.039(9)$ $0.0318(9)$ $0.0372(10)$ $0.0392(11)$ $0.0455(12)$ $0.0505(13)$ $0.0523(13)$ $0.0536(13)$ $0.0510(12)$ $0.0263(9)$ $0.0367(10)$ $0.0263(9)$ $0.0362(11)$ $0.0485(13)$ $0.0695(17)$ $0.0483(14)$ $0.0749(17)$ $0.0532(14)$ $0.0526(13)$ $0.0426(12)$	U_{11} U_{22} U_{33} $0.0301(7)$ $0.0298(7)$ $0.0256(7)$ $0.0525(12)$ $0.0685(14)$ $0.0526(12)$ $0.0389(11)$ $0.0471(12)$ $0.0327(10)$ $0.0483(13)$ $0.0734(18)$ $0.0483(14)$ $0.0353(11)$ $0.0512(13)$ $0.0425(12)$ $0.0405(11)$ $0.0391(11)$ $0.0331(10)$ $0.0297(10)$ $0.0460(12)$ $0.0280(10)$ $0.0297(10)$ $0.0460(12)$ $0.0280(10)$ $0.0297(10)$ $0.0460(12)$ $0.0272(9)$ $0.0431(11)$ $0.0285(10)$ $0.0345(10)$ $0.0465(12)$ $0.0362(11)$ $0.0451(12)$ $0.0490(12)$ $0.0297(10)$ $0.0527(13)$ $0.0360(10)$ $0.0349(10)$ $0.0367(11)$ $0.0356(10)$ $0.0296(10)$ $0.0335(10)$ $0.0308(9)$ $0.0272(9)$ $0.0250(9)$ $0.0303(9)$ $0.0383(10)$ $0.0272(9)$ $0.0386(11)$ $0.0489(13)$ $0.0344(11)$ $0.0309(9)$ $0.0318(9)$ $0.0267(9)$ $0.0372(10)$ $0.0392(11)$ $0.0376(11)$ $0.0523(13)$ $0.0536(13)$ $0.0281(10)$ $0.0455(12)$ $0.0505(13)$ $0.0376(11)$ $0.0510(12)$ $0.0525(13)$ $0.0308(10)$ $0.0413(11)$ $0.0435(12)$ $0.0322(10)$ $0.0367(10)$ $0.0263(9)$ $0.0297(9)$ $0.0362(11)$ $0.0485(13)$ $0.0617(16)$ $0.0695(17)$ $0.0483(14)$ $0.0493(14)$ $0.0749(17)$ $0.0532(14)$ $0.0300(11)$ $0.0526(13)$ $0.0426(12)$ <	U_{11} U_{22} U_{33} U_{23} $0.0301(7)$ $0.0298(7)$ $0.0256(7)$ $0.0026(5)$ $0.0525(12)$ $0.0685(14)$ $0.0526(12)$ $0.0030(10)$ $0.0389(11)$ $0.0471(12)$ $0.0327(10)$ $0.0052(9)$ $0.0483(13)$ $0.0734(18)$ $0.0483(14)$ $0.0130(12)$ $0.0353(11)$ $0.0512(13)$ $0.0425(12)$ $-0.0106(10)$ $0.0405(11)$ $0.0391(11)$ $0.0331(10)$ $-0.0047(8)$ $0.0297(10)$ $0.0460(12)$ $0.0280(10)$ $-0.0019(8)$ $0.0284(9)$ $0.0292(9)$ $0.0272(9)$ $0.0019(7)$ $0.0431(11)$ $0.0285(10)$ $0.0345(10)$ $-0.0004(8)$ $0.0465(12)$ $0.0362(11)$ $0.0451(12)$ $0.0008(9)$ $0.04459(12)$ $0.0297(10)$ $0.0527(13)$ $-0.0087(9)$ $0.0360(10)$ $0.0349(10)$ $0.0367(11)$ $-0.0053(8)$ $0.0356(10)$ $0.0296(10)$ $0.0335(10)$ $-0.0013(8)$ $0.0308(9)$ $0.0272(9)$ $-0.0009(8)$ $0.0386(11)$ $0.0489(13)$ $0.0344(11)$ $0.0308(9)$ $0.0272(9)$ $-0.0009(8)$ $0.039(9)$ $0.0318(9)$ $0.0267(9)$ $0.0014(7)$ $0.039(9)$ $0.0318(9)$ $0.0267(9)$ $0.0014(7)$ $0.039(11)$ $0.0392(11)$ $0.0376(11)$ $-0.0000(9)$ $0.0523(13)$ $0.0525(13)$ $0.0376(11)$ $-0.0000(9)$ $0.0510(12)$ $0.0525(13)$ $0.038(10)$ $0.0105(9)$ $0.0460(13)$ $0.0485(12)$ $0.032(10)$ $0.0009(7)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6. Anisotropic Displacement Parameters (U_{ij} , Å²)

The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Z	U_{eq} , Å ²
H1	0.2915	0.3246	0.3315	0.047
H2A	0.3885	0.4891	0.4178	0.068
H2B	0.4445	0.3259	0.3982	0.068
H3A	0.4270	0.4377	0.5421	0.052
H3B	0.4552	0.2506	0.5227	0.052
H4A	0.2794	0.3611	0.5588	0.045
H4B	0.3418	0.2350	0.6121	0.045
H8	0.1732	-0.2947	0.5726	0.051
H9	0.1492	-0.5050	0.4736	0.052
H10	0.1349	-0.4375	0.3356	0.051
H11	0.1368	-0.1557	0.2939	0.043
H17	0.0598	0.2312	0.6108	0.043
H18	0.0381	0.2524	0.7498	0.053
H19	0.1308	0.1087	0.8442	0.053
H20	0.2477	-0.0569	0.7993	0.054
H21	0.2705	-0.0775	0.6611	0.047
H23	-0.0004	0.2659	0.3975	0.048
H24	-0.0808	0.3960	0.2892	0.063
H25	-0.0198	0.4165	0.1628	0.068
H26	0.1194	0.2949	0.1410	0.064
H27	0.1992	0.1576	0.2483	0.050

 Table 7.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

X-ray Data for Product 16a

 Table 1.
 Crystallographic Experimental Details

A. Crystal Data	
formula	C ₂₃ H ₂₉ NO ₂
formula weight	351.47
crystal dimensions (mm)	$0.36 \times 0.27 \times 0.26$
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
unit cell parameters ^a	
a (Å)	15.4338(3)
<i>b</i> (Å)	8.3344(2)
<i>c</i> (Å)	16.0463(3)
β (deg)	110.5183(8)
$V(Å^3)$	1933.12(7)
Ζ	4
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.208
$\mu (\mathrm{mm}^{-1})$	0.593
B. Data Collection and Refinement Conditions	
diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	Cu K α (1.54178) (microfocus source)
temperature (°C)	-80
scan type	ω and ϕ scans (1.0°) (5 s exposures)
data collection 2θ limit (deg)	149.93
total data collected	$66578 (-19 \le h \le 19, -9 \le k \le 10, -19 \le l \le 19)$
independent reflections	$3902 (R_{int} = 0.0480)$
number of observed reflections (NO)	$3560 [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	intrinsic phasing (SHELXT-2014 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2017 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9621-0.7950
data/restraints/parameters	3902 / 0 / 239
goodness-of-fit (S) ^e [all data]	1.103
final R indices	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0430
wR_2 [all data]	0.1286
largest difference peak and hole	0.183 and -0.213 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 9802 reflections with $6.12^{\circ} < 2\theta < 148.34^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

(continued)

 Table 1.
 Crystallographic Experimental Details (continued)

^cSheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8. (SHELXT-2014)

^dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8. (SHELXL-2017)

 ${}^{e}S = [\Sigma w(F_0{}^2 - F_c{}^2)^2/(n - p)]^{1/2} (n = \text{number of data}; p = \text{number of parameters varied}; w = [\sigma^2(F_0{}^2) + (0.0673P)^2 + 0.4530P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $f_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Atom	x	У	Z	U_{eq} , Å ²
01	0.71104(5)	0.37267(10)	0.68193(5)	0.0344(2)*
O2	0.53163(9)	-0.12043(17)	0.69359(9)	0.0693(4)*
Ν	0.64683(7)	0.11503(13)	0.65666(7)	0.0359(3)*
C1	0.78813(8)	0.34536(14)	0.75709(7)	0.0313(3)*
C2	0.84835(8)	0.22543(14)	0.76283(7)	0.0309(3)*
C3	0.92586(8)	0.18042(16)	0.84794(8)	0.0359(3)*
C4	0.93700(10)	-0.00132(17)	0.85492(9)	0.0436(3)*
C5	0.95663(11)	-0.0698(2)	0.77551(9)	0.0513(4)*
C6	0.88951(9)	-0.00518(17)	0.68988(9)	0.0410(3)*
C7	0.83861(8)	0.12677(15)	0.68487(8)	0.0322(3)*
C8	0.76949(8)	0.18703(14)	0.59835(8)	0.0322(3)*
H8	0.7525(9)	0.0988(17)	0.5553(9)	0.032(3)
С9	0.80872(9)	0.32148(17)	0.55623(8)	0.0397(3)*
C10	0.73538(10)	0.38577(17)	0.47183(9)	0.0443(3)*
C11	0.65370(11)	0.45178(17)	0.49318(9)	0.0472(3)*
C12	0.61212(9)	0.32224(17)	0.53497(8)	0.0408(3)*
C13	0.68338(8)	0.24444(14)	0.61675(8)	0.0325(3)*
C21	0.79393(8)	0.46500(14)	0.82682(8)	0.0335(3)*
C22	0.71454(10)	0.51525(16)	0.84195(9)	0.0411(3)*
C23	0.71993(12)	0.62699(18)	0.90769(10)	0.0509(4)*
C24	0.80441(12)	0.68916(16)	0.95970(9)	0.0516(4)*
C25	0.88332(12)	0.64203(17)	0.94491(9)	0.0500(4)*
C26	0.87858(10)	0.53197(16)	0.87855(9)	0.0423(3)*
C31	0.63129(10)	-0.04054(16)	0.61192(9)	0.0424(3)*
C32	0.60945(13)	-0.1643(2)	0.67040(13)	0.0620(4)*
C33	0.54912(12)	0.0305(3)	0.73736(11)	0.0661(5)*
C34	0.56526(10)	0.1582(2)	0.67802(10)	0.0510(4)*

 Table 2.
 Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$.

Atom1	Atom2	Distance	Atom1	Atom2	Distance
01	C1	1.3842(14)	C8	C9	1.5381(17)
01	C13	1.4510(14)	C8	C13	1.5354(16)
O2	C32	1.424(2)	C8	H8	0.980(14)
O2	C33	1.420(2)	C9	C10	1.5258(18)
Ν	C13	1.4646(16)	C10	C11	1.521(2)
Ν	C31	1.4606(17)	C11	C12	1.526(2)
Ν	C34	1.4608(17)	C12	C13	1.5299(16)
C1	C2	1.3458(17)	C21	C22	1.3944(18)
C1	C21	1.4778(16)	C21	C26	1.3954(18)
C2	C3	1.5139(15)	C22	C23	1.3876(19)
C2	C7	1.4601(16)	C23	C24	1.379(2)
C3	C4	1.5241(19)	C24	C25	1.377(2)
C4	C5	1.5203(19)	C25	C26	1.3878(19)
C5	C6	1.5011(19)	C31	C32	1.510(2)
C6	C7	1.3375(18)	C33	C34	1.506(2)
C7	C8	1.5097(16)			

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C1	01	C13	116.92(9)	C8	C9	C10	111.23(10)
C32	O2	C33	108.97(12)	C9	C10	C11	110.04(11)
C13	Ν	C31	117.44(10)	C10	C11	C12	110.65(11)
C13	Ν	C34	114.65(11)	C11	C12	C13	112.96(11)
C31	Ν	C34	109.11(10)	01	C13	Ν	106.75(9)
01	C1	C2	122.94(10)	01	C13	C8	108.20(9)
01	C1	C21	110.74(10)	01	C13	C12	104.33(9)
C2	C1	C21	126.32(11)	Ν	C13	C8	110.28(10)
C1	C2	C3	123.65(11)	Ν	C13	C12	114.57(10)
C1	C2	C7	119.90(10)	C8	C13	C12	112.19(10)
C3	C2	C7	116.41(10)	C1	C21	C22	120.72(11)
C2	C3	C4	110.22(10)	C1	C21	C26	121.06(11)
C3	C4	C5	111.21(12)	C22	C21	C26	118.22(12)
C4	C5	C6	110.88(11)	C21	C22	C23	120.78(13)
C5	C6	C7	123.52(12)	C22	C23	C24	120.28(14)
C2	C7	C6	121.99(11)	C23	C24	C25	119.62(13)
C2	C7	C8	115.33(10)	C24	C25	C26	120.58(14)
C6	C7	C8	122.65(11)	C21	C26	C25	120.49(14)
C7	C8	C9	112.73(10)	Ν	C31	C32	109.56(12)
C7	C8	C13	107.88(9)	O2	C32	C31	112.31(14)
C7	C8	H8	109.1(8)	O2	C33	C34	110.99(13)
C9	C8	C13	110.98(10)	Ν	C34	C33	108.76(14)
C9	C8	H8	106.6(8)				

 Table 4.
 Selected Interatomic Angles (deg)

Table 5.	Torsional	Angles	(deg)
----------	-----------	--------	-------

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C13	01	C1	C2	15.13(16)	C3	C4	C5	C6	-48.56(17)
C13	01	C1	C21	-165.38(9)	C4	C5	C6	C7	18.1(2)
C1	01	C13	Ν	70.33(12)	C5	C6	C7	C2	3.7(2)
C1	01	C13	C8	-48.36(13)	C5	C6	C7	C8	-178.21(13)
C1	01	C13	C12	-167.99(10)	C2	C7	C8	C9	80.52(13)
C33	O2	C32	C31	-57.80(19)	C2	C7	C8	C13	-42.37(13)
C32	O2	C33	C34	59.97(19)	C6	C7	C8	C9	-97.66(14)
C31	Ν	C13	01	-168.06(10)	C6	C7	C8	C13	139.45(12)
C31	Ν	C13	C8	-50.74(13)	C7	C8	C9	C10	-176.78(10)
C31	Ν	C13	C12	76.98(14)	C13	C8	C9	C10	-55.64(13)
C34	Ν	C13	01	61.84(12)	C7	C8	C13	O1	60.27(12)
C34	Ν	C13	C8	179.17(10)	C7	C8	C13	Ν	-56.15(12)
C34	Ν	C13	C12	-53.12(14)	C7	C8	C13	C12	174.83(10)
C13	Ν	C31	C32	170.44(12)	C9	C8	C13	O1	-63.68(12)
C34	Ν	C31	C32	-56.93(15)	C9	C8	C13	Ν	179.89(9)
C13	Ν	C34	C33	-166.63(11)	C9	C8	C13	C12	50.87(13)
C31	Ν	C34	C33	59.30(14)	C8	C9	C10	C11	59.48(15)
01	C1	C2	C3	-171.87(10)	C9	C10	C11	C12	-58.15(15)
01	C1	C2	C7	5.80(18)	C10	C11	C12	C13	54.43(15)
C21	C1	C2	C3	8.72(19)	C11	C12	C13	O1	65.94(13)
C21	C1	C2	C7	-173.61(11)	C11	C12	C13	Ν	-177.70(10)
01	C1	C21	C22	39.77(15)	C11	C12	C13	C8	-50.96(14)
01	C1	C21	C26	-139.53(12)	C1	C21	C22	C23	179.68(12)
C2	C1	C21	C22	-140.76(13)	C26	C21	C22	C23	-1.00(19)
C2	C1	C21	C26	39.94(18)	C1	C21	C26	C25	-178.82(12)
C1	C2	C3	C4	141.23(12)	C22	C21	C26	C25	1.86(19)
C7	C2	C3	C4	-36.51(14)	C21	C22	C23	C24	-0.5(2)
C1	C2	C7	C6	-171.78(12)	C22	C23	C24	C25	1.2(2)
C1	C2	C7	C8	10.02(16)	C23	C24	C25	C26	-0.4(2)
C3	C2	C7	C6	6.05(17)	C24	C25	C26	C21	-1.2(2)
C3	C2	C7	C8	-172.15(10)	Ν	C31	C32	O2	56.98(17)
C2	C3	C4	C5	58.16(15)	O2	C33	C34	Ν	-61.69(17)

Å ²)

Atom	<i>U</i> ₁₁	U22	U33	U ₂₃	<i>U</i> ₁₃
	U_{12}				
01	0.0314(4)	0.0355(4)	0.0313(4)	-0.0040(3)	0.0049(3)0.0027(3)
O2	0.0673(7)	0.0807(9)	0.0687(8)	-0.0103(6)	0.0346(6)
	-0.0364(7)	()			
Ν	0.0288(5)	0.0434(6)	0.0340(5)	-0.0046(4)	0.0092(4)
	-0.0064(4)				
C1	0.0291(5)	0.0332(6)	0.0289(6)	-0.0008(4)	0.0067(4)
	-0.0038(4)				
C2	0.0265(5)	0.0340(6)	0.0310(6)	-0.0012(4)	0.0086(4)
	-0.0033(4)	. ,			
C3	0.0307(6)	0.0429(7)	0.0308(6)	0.0007(5)	0.0067(5)0.0003(5)
C4	0.0443(7)	0.0460(7)	0.0384(7)	0.0057(5)	0.0120(6)0.0129(6)
C5	0.0493(8)	0.0573(9)	0.0437(8)	0.0001(6)	0.0120(6)0.0222(7)
C6	0.0374(6)	0.0482(7)	0.0363(6)	-0.0051(5)	0.0115(5)0.0087(5)
C7	0.0260(5)	0.0378(6)	0.0322(6)	-0.0026(5)	0.0095(4)
	-0.0019(4)				
C8	0.0301(6)	0.0342(6)	0.0305(6)	-0.0034(5)	0.0084(4)
	-0.0025(4)				
C9	0.0395(6)	0.0438(7)	0.0361(6)	-0.0012(5)	0.0138(5)
	-0.0062(5)				
C10	0.0560(8)	0.0405(7)	0.0356(7)	0.0015(5)	0.0152(6)
	-0.0033(6)				
C11	0.0573(8)	0.0428(7)	0.0357(7)	0.0040(6)	0.0091(6)0.0082(6)
C12	0.0345(6)	0.0489(7)	0.0323(6)	-0.0003(5)	0.0033(5)0.0054(5)
C13	0.0292(5)	0.0357(6)	0.0286(6)	-0.0036(5)	0.0053(4)
	-0.0010(5)				
C21	0.0399(6)	0.0275(5)	0.0310(6)	0.0021(4)	0.0097(5)
	-0.0003(5)				
C22	0.0435(7)	0.0366(6)	0.0413(7)	-0.0013(5)	0.0125(5)0.0059(5)
C23	0.0669(9)	0.0414(7)	0.0458(8)	-0.0001(6)	0.0214(7)0.0162(7)
C24	0.0842(11)	0.0301(6)	0.0347(7)	-0.0021(5)	0.0137(7)0.0084(7)
C25	0.0647(9)	0.0356(7)	0.0390(7)	-0.0046(5)	0.0048(6)
	-0.0077(6)				
C26	0.0458(7)	0.0365(7)	0.0402(7)	-0.0046(5)	0.0096(6)
	-0.0070(5)				
C31	0.0426(7)	0.0415(7)	0.0419(7)	-0.0040(6)	0.0132(5)
	-0.0080(6)				
C32	0.0672(10)	0.0554(9)	0.0659(10)	0.0055(8)	0.0263(8)

	-0.0161(8)				
C33	0.0552(9)	0.0973(14)	0.0539(9)	-0.0205(9)	0.0295(8)
	-0.0341(9)				
C34	0.0368(7)	0.0663(9)	0.0536(8)	-0.0184(7)	0.0206(6)
	-0.0129(6)				

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Ζ	U_{eq} , Å ²
H3A	0.911935	0.221683	0.899722	0.043
H3B	0.984375	0.230072	0.848608	0.043
H4A	0.988509	-0.029007	0.910321	0.052
H4B	0.879726	-0.050090	0.858032	0.052
H5A	1.020473	-0.041585	0.780163	0.062
H5B	0.951860	-0.188206	0.775799	0.062
H6	0.882825	-0.061025	0.636365	0.049
H9A	0.831494	0.410015	0.599556	0.048
H9B	0.861746	0.279582	0.541682	0.048
H10A	0.762351	0.471730	0.445949	0.053
H10B	0.714138	0.298513	0.427430	0.053
H11A	0.605976	0.491397	0.437913	0.057
H11B	0.674382	0.543267	0.534817	0.057
H12A	0.583924	0.238216	0.490014	0.049
H12B	0.562306	0.370314	0.552375	0.049
H22	0.656065	0.472472	0.806844	0.049
H23	0.665197	0.660810	0.916915	0.061
H24	0.808146	0.764063	1.005457	0.062
H25	0.941520	0.685228	0.980449	0.060
H26	0.933365	0.501997	0.868263	0.051
H31A	0.687249	-0.073151	0.599509	0.051
H31B	0.579176	-0.032634	0.554524	0.051
H32A	0.596963	-0.268553	0.638876	0.074
H32B	0.663981	-0.177973	0.725425	0.074
H33A	0.604215	0.022045	0.792324	0.079
H33B	0.495682	0.061024	0.754519	0.079
H34A	0.510609	0.166859	0.622690	0.061
H34B	0.575020	0.263268	0.708693	0.061

 Table 7.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms