Live-Cell Imaging of Nucleolus and Mapping Mitochondrial Viscosity with a Dual Function Fluorescent Probe

Tarushyam Mukherjee^a, Virupakshi Soppina^b, Richert Ludovic^c, Yves Mély^c, Andrey S. Klymchenko^c, Mayeul Collot^c, and Sriram Kanvah^a

a. Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India e-mail: sriram@iitgn.ac.in, kanvah@gmail.com.

b. Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.

c. Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.

Some recently studied Fluorophores	Synthetic	Key Features	General
N N N N N N N N N N N N N N N N N N N	Three step synthesis	10 fold intensity enhancement Viscosity (ethanol- glycerol mixtures) ¹	Application Mitochondrial viscosity measurement H ₂ S sensing
	Two step synthesis	37 times enhancement viscous solution ²	Mitochondrial viscosity measurement
	Multi-step synthesis	40 folds intensity in 100% Glycerol ³	Mitochondrial viscosity measurement
N+	3 steps	Viscosity increment 66 times in high viscous solution ⁴	Mitochondrial viscosity measurement Role in inflammation
	3 steps	Viscosity increments, (~7-8 folds) ⁵	Mitochondrial viscosity H_2O_2 detection

Table S1: Current state of art. (Mitochondria/ dual imaging)

	3 steps	22 fold intensity ⁶	Mitochondrial viscosity
PF ₆	3 steps	No viscosity study ⁷	nucleolus and mitochondria imaging
(Current Study)	2 steps	155 fold viscosity enhancement	Mitochondrial and nucleolus imaging Two-photon compatability
1.			

Table S1a: Viscosity values of water-glycerol mixtures used in our experiments^{8, 9}] This can
be calculated using the website:
http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html

Glycerol percentage	Viscosity value (cP) at 30 °C
0	0.79
20	1.52
40	3.492
60	10.304
80	49.694
100	597.92

Supporting Information

Fig. S1. Lifetime decay curve for the probe, Mito-Nucleo-VS in homogenous glycerol and water media (the arrow marked showed the significance difference between the two lifetimes)

pH dependence

Fig. S2. Effect of pH on the emission spectra of the probe, Mito-Nucleo-VS. **Cell Viability Experiment (MTT Assay)**

Fig. S3. Assessment of Mito-Nucleo-VS's cytotoxicity at various concentrations using the MTT test. Cells without the treatment of probe is considered as negative control set (0 μ M). The changes in % cell viability between the sets of negative control and at imaging concentration (1 μ M) found to be non-significant (after 24 h of probe incubation).

Probe binding to mitochondria (Mitochondrial membrane potential impairment experiment)

Fig. S4 (A) Cell incubated with Mito-Nucleo-VS probe without CCCP, (B) Cells treated with CCCP prior to the probe incubation

Fig. S5 (A) Cell incubated with 5 μ M staurosporine for 1.5 h prior to Mito-Nucleo-VS probe, (B) Cells treated with Mito-Nucleo-VS probe alone

Probe's sensitivity towards mitochondrial viscosity during inflammation

Fig. S6 (A) Cell incubated with 10 μ g/mL LPS for 10 hours prior to Mito-Nucleo-VS probe, (B) Cells treated with Mito-Nucleo-VS probe alone

Comparison between neutral and cationic derivative for nucleolus binding

Fig. S7 Grayscale single plane image of (A) Cell incubated with 1 (neutral derivative of Mito-Nucleo-VS), (B) Cells treated with Mito-Nucleo-VS probe

Fig. S8 Grayscale montage of different z-axis planes of (A) Cell incubated with 1 (neutral derivative of Mito-Nucleo-VS) and (B) Cells treated with Mito-Nucleo-VS probe

Fig. S9 Lambda scanning to showcase the impact of nystatin on mitochondrial viscosity dependent intensity changes (excitation wavelength: 561 nm, Emission scan: 570-640 nm on the xy λz scan, no of cells (n) = 25]

Lowering LPS concentration for the inflammation related probe's response

Fig. S10 Effect on inflammation on mitochondrial viscosity (A. HeLa cell without treatment of LPS, B. HeLa cells were treated with 1.5 μ g/mL LPS for 1.5 hour);[no of cells (n) = 40]

Spectral Characterization

Fig. S10. ¹H and ¹³C NMR and HRMS spectra of Mito-Nucleo-VS. [Theoretical mass (m/z): 316.1808, Obtained mass (m/z): 316.1798]

References

- 1. S.-J. Li, Y.-F. Li, H.-W. Liu, D.-Y. Zhou, W.-L. Jiang, J. Ou-Yang and C.-Y. Li, *Anal. Chem.*, 2018, **90**, 9418-9425.
- 2. S. J. Park, B. K. Shin, H. W. Lee, J. M. Song, J. T. Je and H. M. Kim, *Dyes Pigm.*, 2020, **174**, 108080.
- 3. Z. Yang, Y. He, J.-H. Lee, N. Park, M. Suh, W.-S. Chae, J. Cao, X. Peng, H. Jung and C. Kang, *J. Am. Chem. Soc.*, 2013, **135**, 9181-9185.
- 4. B. Chen, C. Li, J. Zhang, J. Kan, T. Jiang, J. Zhou and H. Ma, *Chem. Comm.*, 2019, **55**, 7410-7413.
- 5. S. Li, P. Wang, W. Feng, Y. Xiang, K. Dou and Z. Liu, *Chem. Comm.*, 2020, **56**, 1050-1053.
- 6. M. Peng, J. Yin and W. Lin, *New J. Chem.*, 2019, **43**, 16945-16949.
- 7. Y. Y. Chris, W. Zhang, R. T. K. Kwok, C. W. T. Leung, J. W. Y. Lam and B. Z. Tang, *J. Mater. Chem. B*, 2016, **4**, 2614-2619.
- 8. N.-S. Cheng, Ind. Eng. Chem. Res., 2008, 47, 3285-3288.
- 9. A. Volk and C. J. Kähler, *Exp. Fluids*, 2018, **59**, 75.