Supporting Information for

## Biocatalytic oxidation of alcohols using galactose oxidase and a manganese (III) activator for the synthesis of islatravir

Heather C. Johnson,\* Shaoguang Zhang, Anna Fryszkowska, Serge Ruccolo, Sandra A. Robaire, Artis Klapars, Niki R. Patel, Aaron M. Whittaker, Mark A. Huffman, Neil A. Strotman

Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065 USA

Email: heather.johnson@merck.com

## **Table of Contents**

| Table of Contents                                                                                     | 1  |
|-------------------------------------------------------------------------------------------------------|----|
| S1 Material and analytical methods                                                                    | 2  |
| S2 High throughput experimentation (HTE)                                                              | 2  |
| S3 Preparation of 2-ethynylglycerol solution                                                          | 10 |
| S4 Gram-scale biocatalytic oxidation                                                                  | 10 |
| S5 Subjection of Mn(OAc) <sub>3</sub> -containing streams to downstream enzymatic cascade             | 11 |
| S6 Procedure for activation period studies                                                            | 13 |
| S7 Initial rates vs K <sub>3</sub> [Mn(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> ] loading         | 14 |
| S8 Procedure for using Mn(OAc) <sub>3</sub> as an activator for alternative substrates/GOase variants | 14 |
| S9 UV-Vis studies                                                                                     | 53 |
| S10 GOase-1 purification by affinity chromatography                                                   | 53 |
| S11 References                                                                                        | 55 |

#### S1 Material and analytical methods

GOase-1 and GOase-2 refer to GALO-104 and GALO-105, respectively, which are the commercial names of these enzymes available for purchase from Codexis. These have been previously described as GOase Rd10bb and GOase Rd12bb, respectively.<sup>1</sup> GOase variants M<sub>1</sub> and M<sub>3-5</sub> were purchased from Prozomix. PANK-102, ACK-103, PPM-045, PNP-102 and DERA-103 were prepared by Codexis and are commercially available from Codexis.<sup>1</sup> Sucrose phosphorylase was prepared by Codexis as previously reported.<sup>1</sup> Bovine catalase (wild-type) was purchased from Sigma Aldrich, and horseradish peroxidase (HRP, wild type, purified, PEO-301) was obtained from Toyobo.

2-Ethynylglycerol was prepared as described previously.<sup>1</sup> The other alcohols were commercially available and used as received. The oxidants used for HTE screening were purchased from commercial sources, except K<sub>3</sub>[Mn(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>], which was synthesized using a literature procedure.<sup>2</sup> The enzymatic reactions were conducted using UPLC grade water, unless otherwise noted. NMR spectra were primarily obtained on a 400 MHz Bruker AVANCE III and 500 MHz Bruker UltraShield spectrometer. SFC (supercritical fluid chromatography) data were obtained on a Waters ACQUITY UPC<sup>2</sup> instrument. To enable the determination of the ee of 2-ethynylglyceraldehyde, the previously reported derivatization of the aldehyde with BnONH<sub>2</sub> was adapted.<sup>1</sup> An aliquot of the reaction mixture containing the desired 2-ethynylglyceraldehdye was added to a 5 g/L solution of BnONH<sub>2</sub>·HCl in MeOH, to form an oxime (Scheme S1). Following a 16 h age time, the oxime samples were analyzed by chiral SFC using a CHIRALPAK AD-3 column as previously described.<sup>1</sup> The side products (e.g. formic acid, 2-ethynylglyceric acid, unreacted 2-ethynylglycerol) were detected by <sup>1</sup>H NMR spectroscopy by sampling a measured aliquot of the reaction mixture into a solution of D<sub>2</sub>O containing maleic acid or <sup>1</sup>BuOH as internal standards. Note: some of the Mn-containing mixtures were filtered prior to NMR analysis to improve the peak shape.



Scheme S1 Derivatization of 2-ethynylglyceraldehyde for SFC analysis

## S2 High throughput experimentation (HTE)

HTE chemical oxidant screening procedure, 400 µL Assay.

*1)* Preparation of stock solutions. 300 mg GOase-1 was dissolved in 10 mL 1 mM CuSO<sub>4</sub> solution; 250 mg Bovine catalase was dissolved in 5 mL  $H_2O$ ; 50 mg HRP was dissolved in 2.5 mL  $H_2O$ ; 0.1 mmol chemical oxidant was dissolved or suspended in 0.6 mL  $H_2O$ .

2) HTE screening procedure. To a 96-well screening plate was added 120  $\mu$ L 1.0 M 2-ethynylglycerol solution (in 0.56 M sodium phosphate pH 7 buffer), 80  $\mu$ L GOase-1 solution and 40  $\mu$ L catalase solution. Finally, chemical oxidant solution and H<sub>2</sub>O were added (see Table S1 for details). The plate was sealed with a gas-permeable membrane, incubated with vigorous shaking (800 rpm). The reaction mixture was filtered. 20  $\mu$ L filtrate was subjected to oxime derivatization (Scheme S1) for chiral SFC analysis to determine ee. 50  $\mu$ L filtrate was sampled and mixed with maleic acid in D<sub>2</sub>O (0.5 wt%) or *tert*-butanol in D<sub>2</sub>O (1.0 v/v%) for quantitative <sup>1</sup>H NMR spectroscopy to determine assay yield.

#### Abbreviations used in table S2:

(4-PyMe<sup>+</sup>Cl<sup>-</sup>)4-Por Mn(III)Cl = Manganese(III) 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride) (CAS 125565-45-9)  $(NH_4)_5[Fe(C_6H_4O_7)_2] = Ammonium iron(III) citrate (CAS 1185-57-5)$ (Por)Fe(III)Cl = 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (CAS 16456-81-8) (Por)Mn(III)Cl = 5,10,15,20-Tetraphenyl-21H,23H-porphine manganese(III) chloride (CAS 32195-55-4) (R,R)-(Salen)MnCl (R,R)-(-)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-= cyclohexanediaminomanganese(III) chloride, R,R-Jacobsen's catalyst **BQ** = 1,4-benzoquinone  $C_6O_6K_2$  = Dipotassium rhodizonate  $CF_3CPO =$  trifluoromethylcyclopropyl peroxide **CPO** = cyclopropyl peroxide **Fe(III)** Pc Cl = Iron(III) phthalocyanine chloride **Iron(III)** phthalocyanine-4,4',4'',4'''-tetrasulfonic acid = Iron(III) phthalocyanine-4,4',4'',4'''tetrasulfonic acid, compound with oxygen monosodium salt hydrate

**K**<sub>2</sub>**ON**(**SO**<sub>3</sub>)<sub>2</sub> = Potassium nitrosodisulfonate

Mn(III) Pc Cl = Manganese(III) phthalocyanine chloride

Table S1. Volumes of oxidant stock solution and H<sub>2</sub>O in dosing procedure.

| Oxidant<br>Loading | Oxidant stock<br>solution (0.83 M) / µL | H₂O / µL |
|--------------------|-----------------------------------------|----------|
| 0%                 | 0                                       | 160      |
| 10%                | 12                                      | 148      |
| 50%                | 60                                      | 100      |
| 100%               | 120                                     | 40       |

 Table S2. Results of the screening of chemical oxidants.

| Oxidant                                                                                           | Loading | Absolute Peak<br>Area (S) | Absolute Peak<br>Area (R) | Absolute Peak<br>Area (R+S) | ee    |
|---------------------------------------------------------------------------------------------------|---------|---------------------------|---------------------------|-----------------------------|-------|
| (4-PyMe <sup>+</sup> Cl <sup>-</sup> )4-Por Mn(III)Cl                                             | 10%     | 0                         | 3842                      | 3842                        | N.A.  |
| (4-PyMe <sup>+</sup> Cl <sup>-</sup> )4-Por Mn(III)Cl                                             | 50%     | 10352                     | 153280                    | 163633                      | 87.3% |
| (HOCH <sub>2</sub> CH <sub>2</sub> S) <sub>2</sub>                                                | 10%     | 0                         | 0                         | 0                           | N.A.  |
| (HOCH <sub>2</sub> CH <sub>2</sub> S) <sub>2</sub>                                                | 50%     | 0                         | 4884                      | 4884                        | N.A.  |
| $(Me_2NCS_2)_2$                                                                                   | 10%     | 0                         | 0                         | 0                           | N.A.  |
| $(Me_2NCS_2)_2$                                                                                   | 50%     | 0                         | 0                         | 0                           | N.A.  |
| (NH <sub>4</sub> ) <sub>2</sub> Ce(NO <sub>3</sub> ) <sub>6</sub>                                 | 10%     | 18551                     | 197509                    | 216060                      | 82.8% |
| (NH <sub>4</sub> ) <sub>2</sub> Ce(NO <sub>3</sub> ) <sub>6</sub>                                 | 50%     | 0                         | 0                         | 0                           | N.A.  |
| (NH <sub>4</sub> ) <sub>2</sub> Ce(NO <sub>3</sub> ) <sub>6</sub>                                 | 100%    | 0                         | 0                         | 0                           | N.A.  |
| (NH <sub>4</sub> ) <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                     | 10%     | 37546                     | 472232                    | 509778                      | 85.3% |
| (NH <sub>4</sub> ) <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                     | 50%     | 33221                     | 302652                    | 335873                      | 80.2% |
| (NH <sub>4</sub> ) <sub>2</sub> S <sub>2</sub> O <sub>8</sub>                                     | 100%    | 26860                     | 177719                    | 204580                      | 73.7% |
| (NH <sub>4</sub> ) <sub>3</sub> Fe(oxalate) <sub>3</sub>                                          | 10%     | 5380                      | 7922                      | 13302                       | 19.1% |
| (NH <sub>4</sub> ) <sub>3</sub> Fe(oxalate) <sub>3</sub>                                          | 50%     | 36134                     | 433646                    | 469779                      | 84.6% |
| (NH <sub>4</sub> ) <sub>5</sub> [Fe(C <sub>6</sub> H <sub>4</sub> O <sub>7</sub> ) <sub>2</sub> ] | 10%     | 5006                      | 21972                     | 26978                       | 62.9% |
| (NH <sub>4</sub> ) <sub>5</sub> [Fe(C <sub>6</sub> H <sub>4</sub> O <sub>7</sub> ) <sub>2</sub> ] | 50%     | 0                         | 111377                    | 111377                      | N.A.  |
| (NH <sub>4</sub> ) <sub>5</sub> [Fe(C <sub>6</sub> H <sub>4</sub> O <sub>7</sub> ) <sub>2</sub> ] | 100%    | 5366                      | 9533                      | 14899                       | 28.0% |
| (PhSeO) <sub>2</sub> O                                                                            | 10%     | 0                         | 23994                     | 23994                       | N.A.  |
| (PhSeO) <sub>2</sub> O                                                                            | 50%     | 8491                      | 82861                     | 91352                       | 81.4% |
| (Por)Fe(III)Cl                                                                                    | 10%     | 0                         | 27579                     | 27579                       | N.A.  |
| (Por)Fe(III)Cl                                                                                    | 50%     | 0                         | 0                         | 0                           | N.A.  |
| (Por)Mn(III)Cl                                                                                    | 10%     | 0                         | 26955                     | 26955                       | N.A.  |
| (Por)Mn(III)Cl                                                                                    | 50%     | 4961                      | 66814                     | 71775                       | 86.2% |
| (R,R)-(Salen)MnCl                                                                                 | 10%     | 0                         | 40032                     | 40032                       | N.A.  |
| (R,R)-(Salen)MnCl                                                                                 | 50%     | 11784                     | 137725                    | 149509                      | 84.2% |
| (Salen)Mn(III)Cl                                                                                  | 10%     | 0                         | 39991                     | 39991                       | N.A.  |
| (Salen)Mn(III)Cl                                                                                  | 50%     | 4458                      | 60004                     | 64462                       | 86.2% |
| 0.25 $Fe_4[Fe(CN)_6]_3$                                                                           | 10%     | 0                         | 38637                     | 38637                       | N.A.  |
| 0.25 Fe <sub>4</sub> [Fe(CN) <sub>6</sub> ] <sub>3</sub>                                          | 50%     | 0                         | 15625                     | 15625                       | N.A.  |
| $0.5 \operatorname{Na_2Cr_2O_7}$                                                                  | 10%     | 0                         | 0                         | 0                           | N.A.  |
| 0.5 Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                                | 50%     | 9678                      | 92197                     | 101876                      | 81.0% |
| 0.5 Fe <sub>2</sub> (oxalate) <sub>3</sub>                                                        | 10%     | 0                         | 10319                     | 10319                       | N.A.  |
| 0.5 Fe <sub>2</sub> (oxalate) <sub>3</sub>                                                        | 50%     | 0                         | 0                         | 0                           | N.A.  |
| 0.5 Fe <sub>2</sub> (oxalate) <sub>3</sub>                                                        | 100%    | 0                         | 0                         | 0                           | N.A.  |
| 2,6-Cl <sub>2</sub> indophenol Na                                                                 | 10%     | 8880                      | 55477                     | 64357                       | 72.4% |

| 2,6-Cl <sub>2</sub> indophenol Na            | 50%  | 5368   | 6916   | 12284  | 12.6%  |
|----------------------------------------------|------|--------|--------|--------|--------|
| 2-Butanone Peroxide                          | 10%  | 25894  | 231462 | 257356 | 79.9%  |
| 2-Butanone Peroxide                          | 50%  | 0      | 0      | 0      | N.A.   |
| $3Na_2WO_4 \cdot 9WO_3$                      | 10%  | 0      | 0      | 0      | N.A.   |
| $3Na_2WO_4 \cdot 9WO_3$                      | 50%  | 0      | 7407   | 7407   | N.A.   |
| 4-AcNH-TEMPO                                 | 10%  | 0      | 34347  | 34347  | N.A.   |
| 4-AcNH-TEMPO                                 | 50%  | 0      | 28206  | 28206  | N.A.   |
| 4-AcNH-TEMPO                                 | 100% | 0      | 40411  | 40411  | N.A.   |
| 4-OH-TEMPO                                   | 10%  | 0      | 34656  | 34656  | N.A.   |
| 4-ОН-ТЕМРО                                   | 50%  | 0      | 25911  | 25911  | N.A.   |
| 4-ОН-ТЕМРО                                   | 100% | 0      | 18632  | 18632  | N.A.   |
| AgNO <sub>3</sub>                            | 10%  | 31772  | 429377 | 461149 | 86.2%  |
| AgNO <sub>3</sub>                            | 50%  | 0      | 0      | 0      | N.A.   |
| BQ                                           | 10%  | 4732   | 9706   | 14438  | -5.0%  |
| BQ                                           | 50%  | 24897  | 3197   | 28095  | -77.2% |
| BQ                                           | 100% | 48338  | 4289   | 52627  | -83.7% |
| BzOOBz                                       | 10%  | 5454   | 4260   | 9714   | -12.3% |
| BzOOBz                                       | 50%  | 26192  | 240725 | 266917 | 80.4%  |
| $C_6O_6K_2$                                  | 10%  | 6504   | 5934   | 12438  | -4.6%  |
| $C_6O_6K_2$                                  | 50%  | 0      | 0      | 0      | N.A.   |
| CF <sub>3</sub> CPO                          | 10%  | 16674  | 236628 | 253303 | 86.8%  |
| CF <sub>3</sub> CPO                          | 50%  | 12379  | 143000 | 155379 | 84.1%  |
| СН <sub>3</sub> СОООН                        | 10%  | 5816   | 52761  | 58576  | 80.1%  |
| СН <sub>3</sub> СОООН                        | 50%  | 0      | 0      | 0      | N.A.   |
| Co(acac) <sub>3</sub>                        | 10%  | 0      | 14141  | 14141  | N.A.   |
| Co(acac) <sub>3</sub>                        | 50%  | 0      | 13506  | 13506  | N.A.   |
| Co(III)(dmgH) <sub>2</sub> (py)Cl            | 10%  | 0      | 46752  | 46752  | N.A.   |
| Co(III)(dmgH) <sub>2</sub> (py)Cl            | 50%  | 0      | 0      | 0      | N.A.   |
| Co(III)(en) <sub>3</sub> Cl <sub>3</sub>     | 10%  | 0      | 16406  | 16406  | N.A.   |
| Co(III)(en) <sub>3</sub> Cl <sub>3</sub>     | 50%  | 0      | 14518  | 14518  | N.A.   |
| CoF <sub>3</sub>                             | 10%  | 14899  | 158689 | 173588 | 82.8%  |
| CoF <sub>3</sub>                             | 50%  | 21805  | 228757 | 250562 | 82.6%  |
| СРО                                          | 10%  | 4094   | 49579  | 53673  | 84.7%  |
| СРО                                          | 50%  | 0      | 58739  | 58739  | N.A.   |
| CrO <sub>2</sub>                             | 10%  | 0      | 12811  | 12811  | N.A.   |
| CrO <sub>2</sub>                             | 50%  | 13959  | 161007 | 174966 | 84.0%  |
| CsI <sub>3</sub>                             | 10%  | 8822   | 55054  | 63876  | 72.4%  |
| CsI <sub>3</sub>                             | 50%  | 0      | 0      | 0      | N.A.   |
| CsI <sub>3</sub>                             | 100% | 0      | 0      | 0      | N.A.   |
| Cumene OOH                                   | 10%  | 0      | 0      | 0      | N.A.   |
| Cumene OOH                                   | 50%  | 17591  | 179039 | 196631 | 82.1%  |
| Dess-Martin                                  | 10%  | 0      | 34451  | 34451  | N.A.   |
| Dess-Martin                                  | 50%  | 141448 | 0      | 141448 | -N.A.  |
| Dichloroisocyanuric sodium                   | 10%  | 0      | 9794   | 9794   | N.A.   |
| Dichloroisocyanuric sodium                   | 50%  | 0      | 9077   | 9077   | N.A.   |
| Dichloroisocyanuric sodium                   | 100% | 0      | 9568   | 9568   | N.A.   |
| Fc <sup>+</sup> BF <sub>4</sub> <sup>-</sup> | 10%  | 0      | 0      | 0      | N.A.   |
| Fc <sup>+</sup> BF <sub>4</sub> <sup>-</sup> | 50%  | 0      | 9781   | 9781   | N.A.   |
| Fc <sup>+</sup> PF <sub>6</sub> <sup>-</sup> | 10%  | 7611   | 64405  | 72016  | 78.9%  |

| Fc <sup>+</sup> PF <sub>6</sub> -                             | 50%   | 0     | 0      | 0      | N.A.   |
|---------------------------------------------------------------|-------|-------|--------|--------|--------|
| Fe(acac) <sub>3</sub>                                         | 10%   | 6713  | 18594  | 25307  | 46.9%  |
| Fe(acac) <sub>3</sub>                                         | 50%   | 6831  | 13820  | 20651  | 33.8%  |
| Fe(III) Pc Cl                                                 | 10%   | 8980  | 0      | 8980   | -N.A.  |
| Fe(III) Pc Cl                                                 | 50%   | 23835 | 218254 | 242089 | 80.3%  |
| Fe(OEt) <sub>3</sub>                                          | 10%   | 0     | 28840  | 28840  | N.A.   |
| Fe(OEt) <sub>3</sub>                                          | 50%   | 0     | 26307  | 26307  | N.A.   |
| Fe(OTs) <sub>3</sub>                                          | 10%   | 0     | 67759  | 67759  | N.A.   |
| Fe(OTs) <sub>3</sub>                                          | 50%   | 17024 | 210428 | 227452 | 85.0%  |
| Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>               | 10%   | 0     | 17492  | 17492  | N.A.   |
| Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>               | 50%   | 0     | 0      | 0      | N.A.   |
| Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>               | 100%  | 0     | 5761   | 5761   | N.A.   |
| Fe <sub>3</sub> O <sub>4</sub>                                | 10%   | 0     | 23731  | 23731  | N.A.   |
| Fe <sub>3</sub> O <sub>4</sub>                                | 50%   | 0     | 13791  | 13791  | N.A.   |
| FeF <sub>3</sub>                                              | 10%   | 7352  | 60822  | 68174  | 78.4%  |
| FeF <sub>3</sub>                                              | 50%   | 0     | 33856  | 33856  | N.A.   |
| FePO <sub>4</sub>                                             | 10%   | 0     | 26972  | 26972  | N.A.   |
| FePO <sub>4</sub>                                             | 50%   | 0     | 0      | 0      | N.A.   |
| FK 102 Co(III) TFSI                                           | 10%   | 11135 | 128732 | 139866 | 84.1%  |
| FK 102 Co(III) TFSI                                           | 50%   | 0     | 17190  | 17190  | N.A.   |
| FK 269 Co(III) TFSI                                           | 10%   | 0     | 4129   | 4129   | N.A.   |
| FK 269 Co(III) TFSI                                           | 50%   | 16228 | 262909 | 279137 | 88.4%  |
| H <sub>2</sub> O <sub>2</sub>                                 | 10%   | 0     | 29524  | 29524  | N.A.   |
| H <sub>2</sub> O <sub>2</sub>                                 | 50%   | 0     | 25916  | 25916  | N.A.   |
| hemin                                                         | 10%   | 0     | 19310  | 19310  | N.A.   |
| hemin                                                         | 50%   | 0     | 174287 | 174287 | N.A.   |
| hemin                                                         | 100%  | 0     | 12762  | 12762  | N.A.   |
| HgCl <sub>2</sub>                                             | 10%   | 10166 | 67373  | 77539  | 73.8%  |
| HgCl <sub>2</sub>                                             | 50%   | 35147 | 421111 | 456258 | 84.6%  |
| IBX py                                                        | 10%   | 30540 | 88698  | 119238 | 48.8%  |
| IBX py                                                        | 50%   | 0     | 17711  | 17711  | N.A.   |
| Iron(III) phthalocyanine-                                     | 10%   | 250/3 | 298477 | 323520 | 8/ 5%  |
| 4,4',4'',4'''-tetrasulfonic acid                              | 1070  | 25045 | 270477 | 525520 | 04.570 |
| 1ron(111) pnthalocyanine-<br>4 4' 4'' 4'''-tetrasulfonic acid | 50%   | 12636 | 147472 | 160109 | 84.2%  |
| Iron(III) phthalocyanine-                                     | 1000/ | 0     | 14079  | 14079  | NT A   |
| 4,4',4'',4'''-tetrasulfonic acid                              | 100%  | 0     | 14978  | 14978  | N.A.   |
| K <sub>2</sub> IrCl <sub>6</sub>                              | 10%   | 13160 | 90899  | 104058 | 74.7%  |
| K <sub>2</sub> IrCl <sub>6</sub>                              | 50%   | 17757 | 84361  | 102118 | 65.2%  |
| K <sub>2</sub> IrCl <sub>6</sub>                              | 100%  | 75233 | 54903  | 130137 | -15.6% |
| K <sub>2</sub> MnO <sub>4</sub>                               | 10%   | 8962  | 79064  | 88026  | 79.6%  |
| K <sub>2</sub> MnO <sub>4</sub>                               | 50%   | 0     | 0      | 0      | N.A.   |
| $K_2ON(SO_3)_2$                                               | 10%   | 0     | 25187  | 25187  | N.A.   |
| $K_2ON(SO_3)_2$                                               | 50%   | 0     | 0      | 0      | N.A.   |
| K <sub>2</sub> PtCl <sub>6</sub>                              | 10%   | 0     | 26769  | 26769  | N.A.   |
| K <sub>2</sub> PtCl <sub>6</sub>                              | 50%   | 3795  | 55047  | 58842  | 87.1%  |
| $K_2S_2O_8$                                                   | 10%   | 0     | 0      | 0      | N.A.   |
| $K_2S_2O_8$                                                   | 50%   | 39878 | 365388 | 405266 | 80.3%  |
| K <sub>3</sub> Fe(CN) <sub>6</sub>                            | 10%   | 18380 | 200108 | 218489 | 83.2%  |
| K <sub>3</sub> Fe(CN) <sub>6</sub>                            | 50%   | 10500 | 110953 | 121452 | 82.7%  |
| K <sub>3</sub> Fe(CN) <sub>6</sub>                            | 100%  | 0     | 44508  | 44508  | N.A.   |

| K <sub>3</sub> Mn(CN) <sub>6</sub>                               | 10%  | 0     | 0      | 0      | N.A.   |
|------------------------------------------------------------------|------|-------|--------|--------|--------|
| K <sub>3</sub> Mn(CN) <sub>6</sub>                               | 50%  | 8518  | 44730  | 53248  | 68.0%  |
| KClO <sub>3</sub>                                                | 10%  | 0     | 31025  | 31025  | N.A.   |
| KClO <sub>3</sub>                                                | 50%  | 6918  | 99018  | 105936 | 86.9%  |
| KIO <sub>3</sub>                                                 | 10%  | 0     | 9986   | 9986   | N.A.   |
| KIO <sub>3</sub>                                                 | 50%  | 12505 | 224420 | 236925 | 89.4%  |
| KIO <sub>4</sub>                                                 | 10%  | 0     | 6755   | 6755   | N.A.   |
| KIO <sub>4</sub>                                                 | 50%  | 18809 | 10193  | 29001  | -29.7% |
| KMnO <sub>4</sub>                                                | 10%  | 24702 | 215227 | 239930 | 79.4%  |
| KMnO <sub>4</sub>                                                | 50%  | 5753  | 5176   | 10930  | -5.3%  |
| Lauroyl peroxide                                                 | 10%  | 0     | 28548  | 28548  | N.A.   |
| Lauroyl peroxide                                                 | 50%  | 6370  | 59537  | 65908  | 80.7%  |
| LiMn <sub>2</sub> O <sub>4</sub>                                 | 10%  | 4131  | 49248  | 53378  | 84.5%  |
| LiMn <sub>2</sub> O <sub>4</sub>                                 | 50%  | 16205 | 301519 | 317724 | 89.8%  |
| LiMnO <sub>2</sub>                                               | 10%  | 0     | 0      | 0      | N.A.   |
| LiMnO <sub>2</sub>                                               | 50%  | 0     | 9536   | 9536   | N.A.   |
| m-CPBA                                                           | 10%  | 0     | 27916  | 27916  | N.A.   |
| m-CPBA                                                           | 50%  | 0     | 0      | 0      | N.A.   |
| MeReO <sub>3</sub>                                               | 10%  | 0     | 0      | 0      | N.A.   |
| MeReO <sub>3</sub>                                               | 50%  | 0     | 0      | 0      | N.A.   |
| Mn(acac) <sub>3</sub>                                            | 10%  | 19435 | 203835 | 223269 | 82.6%  |
| Mn(acac) <sub>3</sub>                                            | 50%  | 0     | 0      | 0      | N.A.   |
| Mn(III) Pc Cl                                                    | 10%  | 12984 | 97169  | 110152 | 76.4%  |
| Mn(III) Pc Cl                                                    | 50%  | 7089  | 30747  | 37836  | 62.5%  |
| Mn(OAc) <sub>2</sub>                                             | 10%  | 13970 | 110070 | 124040 | 77.5%  |
| Mn(OAc) <sub>2</sub>                                             | 50%  | 13382 | 95158  | 108540 | 75.3%  |
| Mn(OAc) <sub>3</sub>                                             | 10%  | 51923 | 731670 | 783593 | 86.7%  |
| Mn(OAc) <sub>3</sub>                                             | 50%  | 19575 | 205626 | 225201 | 82.6%  |
| Mn(OAc) <sub>3</sub>                                             | 100% | 15929 | 148849 | 164779 | 80.7%  |
| Mn(oxalate)                                                      | 10%  | 7565  | 43280  | 50844  | 70.2%  |
| Mn(oxalate)                                                      | 50%  | 28851 | 300284 | 329136 | 82.5%  |
| Mn <sub>2</sub> O <sub>3</sub>                                   | 10%  | 9006  | 56483  | 65490  | 72.5%  |
| Mn <sub>2</sub> O <sub>3</sub>                                   | 50%  | 6846  | 28636  | 35482  | 61.4%  |
| MnF <sub>3</sub>                                                 | 10%  | 36474 | 498590 | 535064 | 86.4%  |
| MnF <sub>3</sub>                                                 | 50%  | 6392  | 6361   | 12753  | -0.2%  |
| MnO <sub>2</sub>                                                 | 10%  | 19249 | 206432 | 225681 | 82.9%  |
| MnO <sub>2</sub>                                                 | 50%  | 23393 | 305432 | 328824 | 85.8%  |
| MnO <sub>2</sub>                                                 | 100% | 28314 | 346099 | 374413 | 84.9%  |
| MnO <sub>2</sub> 99.9%                                           | 10%  | 0     | 31622  | 31622  | N.A.   |
| MnO <sub>2</sub> 99.9%                                           | 50%  | 11357 | 199031 | 210388 | 89.2%  |
| MnO <sub>2</sub> activated                                       | 10%  | 0     | 5596   | 5596   | N.A.   |
| MnO <sub>2</sub> activated                                       | 50%  | 11967 | 204692 | 216659 | 89.0%  |
| MnSO <sub>4</sub>                                                | 10%  | 11701 | 83771  | 95472  | 75.5%  |
| MnSO <sub>4</sub>                                                | 50%  | 21364 | 188827 | 210191 | 79.7%  |
| Na <sub>2</sub> CO <sub>3</sub> 1.5H <sub>2</sub> O <sub>2</sub> | 10%  | 5330  | 0      | 5330   | -N.A.  |
| Na <sub>2</sub> CO <sub>3</sub> 1.5H <sub>2</sub> O <sub>2</sub> | 50%  | 9950  | 0      | 9950   | -N.A.  |
| Na <sub>2</sub> MoO <sub>4</sub>                                 | 10%  | 0     | 0      | 0      | N.A.   |
| Na <sub>2</sub> MoO <sub>4</sub>                                 | 50%  | 0     | 0      | 0      | N.A.   |
| $Na_2S_2O_8$                                                     | 10%  | 6651  | 0      | 6651   | -N.A.  |

| $Na_2S_2O_8$                                       | 50%  | 40926 | 365507 | 406433 | 79.9% |
|----------------------------------------------------|------|-------|--------|--------|-------|
| Na <sub>2</sub> WO <sub>4</sub>                    | 10%  | 0     | 0      | 0      | N.A.  |
| Na <sub>2</sub> WO <sub>4</sub>                    | 50%  | 13140 | 233157 | 246297 | 89.3% |
| Na <sub>3</sub> PO <sub>4</sub> ·12WO <sub>3</sub> | 10%  | 0     | 39794  | 39794  | N.A.  |
| Na <sub>3</sub> PO <sub>4</sub> ·12WO <sub>3</sub> | 50%  | 0     | 4034   | 4034   | N.A.  |
| $Na_4W_{10}O_{32}$                                 | 10%  | 3510  | 43260  | 46770  | 85.0% |
| $Na_4W_{10}O_{32}$                                 | 50%  | 0     | 0      | 0      | N.A.  |
| NaBO <sub>3</sub>                                  | 10%  | 25036 | 247678 | 272714 | 81.6% |
| NaBO <sub>3</sub>                                  | 50%  | 5809  | 13399  | 19208  | 39.5% |
| NaBrO <sub>3</sub>                                 | 10%  | 0     | 47224  | 47224  | N.A.  |
| NaBrO <sub>3</sub>                                 | 50%  | 0     | 37169  | 37169  | N.A.  |
| NaBrO <sub>3</sub>                                 | 100% | 0     | 25431  | 25431  | N.A.  |
| NaClO <sub>2</sub>                                 | 10%  | 4696  | 5732   | 10428  | 9.9%  |
| NaClO <sub>2</sub>                                 | 50%  | 24381 | 0      | 24381  | -N.A. |
| NaClO <sub>2</sub>                                 | 100% | 0     | 0      | 0      | N.A.  |
| NaClO <sub>4</sub>                                 | 10%  | 28700 | 368970 | 397670 | 85.6% |
| NaClO <sub>4</sub>                                 | 50%  | 0     | 23393  | 23393  | N.A.  |
| NaFe(EDTA)                                         | 10%  | 0     | 0      | 0      | N.A.  |
| NaFe(EDTA)                                         | 50%  | 0     | 14748  | 14748  | N.A.  |
| NaONO <sub>2</sub>                                 | 10%  | 0     | 28888  | 28888  | N.A.  |
| NaONO <sub>2</sub>                                 | 50%  | 0     | 10483  | 10483  | N.A.  |
| NaVO <sub>3</sub>                                  | 10%  | 0     | 7637   | 7637   | N.A.  |
| NaVO <sub>3</sub>                                  | 50%  | 0     | 0      | 0      | N.A.  |
| NaVO <sub>3</sub>                                  | 100% | 0     | 0      | 0      | N.A.  |
| NH <sub>4</sub> Fe(SO <sub>4</sub> ) <sub>2</sub>  | 10%  | 0     | 12966  | 12966  | N.A.  |
| NH <sub>4</sub> Fe(SO <sub>4</sub> ) <sub>2</sub>  | 50%  | 28107 | 323002 | 351108 | 84.0% |
| NiO <sub>2</sub>                                   | 10%  | 0     | 9289   | 9289   | N.A.  |
| NiO <sub>2</sub>                                   | 50%  | 8287  | 75278  | 83564  | 80.2% |
| nPr <sub>4</sub> RuO <sub>4</sub>                  | 10%  | 35308 | 398582 | 433890 | 83.7% |
| nPr <sub>4</sub> RuO <sub>4</sub>                  | 50%  | 8997  | 0      | 8997   | -N.A. |
| Oxone                                              | 10%  | 0     | 27664  | 27664  | N.A.  |
| Oxone                                              | 50%  | 0     | 0      | 0      | N.A.  |
| Ph <sub>3</sub> COOH                               | 10%  | 6049  | 5185   | 11235  | -7.7% |
| Ph <sub>3</sub> COOH                               | 50%  | 38284 | 450777 | 489061 | 84.3% |
| PhI(OAc) <sub>2</sub>                              | 10%  | 0     | 0      | 0      | N.A.  |
| PhI(OAc) <sub>2</sub>                              | 50%  | 0     | 0      | 0      | N.A.  |
| PhSSPh                                             | 10%  | 0     | 13075  | 13075  | N.A.  |
| PhSSPh                                             | 50%  | 6844  | 74674  | 81518  | 83.2% |
| PyH <sup>+</sup> Br <sub>3</sub> <sup>-</sup>      | 10%  | 0     | 0      | 0      | N.A.  |
| PyH <sup>+</sup> Br <sub>3</sub> <sup>-</sup>      | 50%  | 0     | 19966  | 19966  | N.A.  |
| Ru(NH <sub>3</sub> ) <sub>6</sub> Cl <sub>3</sub>  | 10%  | 0     | 0      | 0      | N.A.  |
| $Ru(NH_3)_6Cl_3$                                   | 50%  | 0     | 44702  | 44702  | N.A.  |
| RuCl <sub>3</sub>                                  | 10%  | 0     | 0      | 0      | N.A.  |
| RuCl <sub>3</sub>                                  | 50%  | 0     | 7815   | 7815   | N.A.  |
| TBA oxone                                          | 10%  | 0     | 0      | 0      | N.A.  |
| TBA oxone                                          | 50%  | 0     | 0      | 0      | N.A.  |
| tBuONO                                             | 10%  | 0     | 0      | 0      | N.A.  |
| tBuONO                                             | 50%  | 5976  | 85326  | 91302  | 86.9% |
| tBuOOAc                                            | 10%  | 0     | 291826 | 291826 | N.A.  |

| tBuOOAc                            | 50%  | 22442  | 237940 | 260382 | 82.8% |
|------------------------------------|------|--------|--------|--------|-------|
| tBuOOBz                            | 10%  | 14557  | 200822 | 215379 | 86.5% |
| tBuOOBz                            | 50%  | 0      | 39487  | 39487  | N.A.  |
| tBuOOH                             | 10%  | 24924  | 284263 | 309187 | 83.9% |
| tBuOOH                             | 50%  | 37342  | 253442 | 290784 | 74.3% |
| tBuOOH                             | 100% | 21019  | 206974 | 227993 | 81.6% |
| tBuOOtBu                           | 10%  | 5143   | 25378  | 30521  | 66.3% |
| tBuOOtBu                           | 50%  | 7213   | 22629  | 29842  | 51.7% |
| tBuOOtBu                           | 100% | 5438   | 28409  | 33848  | 67.9% |
| Urea H <sub>2</sub> O <sub>2</sub> | 10%  | 19236  | 168490 | 187726 | 79.5% |
| Urea H <sub>2</sub> O <sub>2</sub> | 50%  | 6961   | 27557  | 34519  | 59.7% |
| VO(acac) <sub>2</sub>              | 10%  | 25191  | 288911 | 314102 | 84.0% |
| VO(acac) <sub>2</sub>              | 50%  | 0      | 0      | 0      | N.A.  |
| VOSO4                              | 10%  | 0      | 9746   | 9746   | N.A.  |
| VOSO4                              | 50%  | 0      | 10472  | 10472  | N.A.  |
| VOSO4                              | 100% | 0      | 13824  | 13824  | N.A.  |
| WO <sub>3</sub>                    | 10%  | 129047 | 111290 | 240337 | -7.4% |
| WO <sub>3</sub>                    | 50%  | 0      | 0      | 0      | N.A.  |
| ZnO <sub>2</sub>                   | 10%  | 17143  | 234055 | 251198 | 86.4% |
| ZnO <sub>2</sub>                   | 50%  | 0      | 0      | 0      | N.A.  |

 Table S3. Results of the screening of selected chemical oxidants.

| Ovidant                                      | Looding | Absolute  | ee               | AY                      | Conversion              |
|----------------------------------------------|---------|-----------|------------------|-------------------------|-------------------------|
| Oxidant                                      | Loaung  | Peak Area | (R:S)            | (by <sup>1</sup> H NMR) | (by <sup>1</sup> H NMR) |
| HRP                                          |         | 582354    | 88.2%            | 46%                     | 62%                     |
| MnF <sub>3</sub>                             | 10%     | 535064    | 86.4%            | 43%                     | 59%                     |
| Mn(OAc) <sub>3</sub>                         | 10%     | 583593    | 86.7%            | 48%                     | 56%                     |
| $Na_2S_2O_8$                                 | 10%     | 469779    | 84.6%            | 31%                     | 48%                     |
| FK 102 Co(III) TFSI                          | 50%     | 397670    | 85.6%            | 37%                     | 46%                     |
| tBuOOAc                                      | 50%     | 260382    | 82.8%            | 36%                     | 46%                     |
| Ph3C-OOH                                     | 50%     | 489061    | 84.3%            | 31%                     | 42%                     |
| $(\mathbf{NH}_4)_2\mathbf{S}_2\mathbf{O}_8$  | 10%     | 509778    | 85.3%            | 39%                     | 41%                     |
| Fe(III) Pc-tetrasulfonic                     | 10%     | 323520    | 84.5%            | 21%                     | 40%                     |
| aciu Ina sait<br>Mn(acac)                    | 500/    | 461140    | 86 70/           | 200/                    | 400/                    |
|                                              | 100%    | 274412    | 80.270<br>84.00/ | 2870                    | 40/8                    |
| MIIO <sub>2</sub><br>Iaaobson's Mn salon     | 100%    | 574415    | 04.970           | 1970                    | 30%                     |
| catalyst                                     | 50%     | 253303    | 86.8%            | 31%                     | 36%                     |
| PhMe <sub>2</sub> C-OOH                      | 10%     | 351108    | 84.0%            | 22%                     | 33%                     |
| tBuOOH                                       | 10%     | 309187    | 83.9%            | 19%                     | 31%                     |
| K <sub>2</sub> PtCl <sub>6</sub>             | 10%     | 131002    | 80.6%            | 12%                     | 30%                     |
| Mn <sub>2</sub> O <sub>3</sub>               | 50%     | 272714    | 81.6%            | 20%                     | 29%                     |
| Mn(OAc) <sub>2</sub>                         | 50%     | 257356    | 79.9%            | 24%                     | 27%                     |
| KMnO <sub>4</sub>                            | 10%     | 239930    | 79.4%            | 13%                     | 26%                     |
| (PhCOO) <sub>2</sub>                         | 50%     | 266917    | 80.4%            | 17%                     | 23%                     |
| Fc <sup>+</sup> PF <sub>6</sub> <sup>-</sup> | 50%     | 314102    | 84.0%            | 21%                     | 23%                     |

| CoF <sub>3</sub>                   | 50% | 250562 | 82.6% | 16% | 21% |
|------------------------------------|-----|--------|-------|-----|-----|
| Fe(III) Pc Cl                      | 50% | 242089 | 80.3% | 16% | 20% |
| K <sub>3</sub> Fe(CN) <sub>6</sub> | 10% | 218489 | 83.2% | 17% | 17% |
| Mn(III) Pc Cl                      | 50% | 187726 | 79.5% | 12% | 16% |
| FeF <sub>3</sub>                   | 50% | 173588 | 82.8% | 13% | 15% |
| K <sub>2</sub> IrCl <sub>6</sub>   | 10% | 28982  | 74.7% | 8%  | 10% |
| 4-OH-TEMPO                         | 10% | 34656  | 65.5% | 6%  | 6%  |
| None                               |     | 30695  | 72.0% | 3%  | 4%  |

## S3 Preparation of 2-ethynylglycerol solution

For the oxidation reactions reported in this manuscript, a stock solution of 2-ethynylglycerol in sodium phosphate buffer was used. First, the 2-ethynylglycerol was first prepared as a monosodium salt. 2-ethynylglycerol (153 g) was dissolved in 600 mL isopropylalcohol. A 25% solution of sodium methanolate (2 eq.) was added dropwise over 1 hour under N<sub>2</sub>. The resulting thick beige slurry was aged for a further 1 hour. Then, the slurry was filtered, and the cake washed twice with isopropylalcohol, then twice with 2-MeTHF, then dried under an N<sub>2</sub> flow. <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O):  $\delta$  3.67, d, J = 11 Hz (2H);  $\delta$  3.62, d, J = 11 Hz (2H).

The dried sodium salt (27.7 g) was dissolved in 150 mL water. The pH was adjusted to pH 7.0 using orthophosphoric acid. The total volume was adjusted to 200 mL with water. This yields a 1 M solution of 2ethynyl glycerol in 0.56 M sodium phosphate. This stock solution was stored for use directly in the biocatalytic oxidation reactions.

### S4 Gram-scale biocatalytic oxidation

GOase-2 (225 mg), bovine catalase (250 mg) were each hydrated with 5 mL water and slowly shaken until dissolved. 125 uL of a 0.1 M aqueous solution of CuSO<sub>4</sub> was added to the GOase solution. The activator, if used, was also hydrated with 5 mL water (HRP, 100 mg, 6 wt%) or Mn(OAc)<sub>3</sub> (69 mg for 2 mol%). In a 100 mL EasyMax vessel equipped with an overhead stirrer, sparger and flow controller, water (22 mL) was added with antifoam 204 (20  $\mu$ L). The reaction mixture was sparged with air at 50 standard cubic centimeters per minute (sccm) and stirred at 100 rpm, and the temperature set to 20 °C. The enzyme solutions were added to the vessel (GOase, then activator, then catalase). 12.9 mL of the 1 M stock solution of ethynylglycerol/buffer was added to the reaction mixture. The reaction was stirred at 600 rpm. Throughout the reaction, a pH meter dosing unit added aliquots of 5 N NaOH to maintain a pH 7.0. Periodic samples were taken using an attached EasySampler: 20  $\mu$ L of the reaction mixture was diluted into 1.6 mL

of a 5 g/L BnONH<sub>2</sub>·HCl solution in MeOH to quench and derivatize the aldehyde. These samples were analyzed by chiral SFC to determine aldehyde yield and conversion.

#### Comparison of impurities profiles on scale-up

Using the above conditions with 10 mol% Mn(OAc)<sub>3</sub> vs 6 wt% HRP, *ca.* 10% of 2-ethynylglyceric acid was observed with both activators (conversion measured by <sup>1</sup>H NMR spectroscopy), although less formic acid was observed with Mn(OAc)<sub>3</sub> than HRP (2.9% *vs* 5%, respectively).

## S5 Subjection of Mn(OAc)<sub>3</sub>-containing streams to downstream enzymatic cascade

#### **Phosphorylation step**

The immobilization and reaction procedures followed those described in reference 1, except acetate kinase was not immobilized here.



*Immobilization of pantothenate kinase on IMAC resin:* Immobilization of Nuvia IMAC Ni-charged resin (3 mL based on settled volume) was added to a filter funnel and washed three times with water ( $3 \times 15$  mL) holding for ten minutes at each wash. The resin was washed one time with binding buffer ( $3 \times 15$  mL; 500 mM sodium chloride, 50 mM sodium phosphate, 15 mM imidazole, pH 8.0). In a 50 mL falcon tube evolved pantothenate kinase (PANK-102) (0.750 g) lyophilized powder was dissolved in 30 mL binding buffer. The washed resin was charged to the tube and the solution was rotated on rotary mixer for 18 h at room temperature. The resin was filtered and washed four times with binding buffer ( $4 \times 15$  mL) and three times with potassium PIPES buffer ( $2 \times 15$  mL, 50 mM, pH 6.5) and used directly in the reaction. The contents were slurried to 20 mL with 35 mM PIPES solution (pH 6.5) and 10 mL was transferred to two separate 15 mL falcon tubes. The contents were allowed to settle at 4 °C. The contents of one falcon tube were utilized in the subsequent reaction.

*Synthesis of (R)-2-ethynylglyceraldehyde 3-phosphate:* To a 50 mL reactor (*R*)-2-ethynylglyceraldehyde solution (29.3 mL of a 258 mM aqueous solution, 7.56 mmol), aqueous magnesium chloride solution (1 M, 0.33 mL, 0.3 mmol), acetyl phosphate diammonium salt (89 wt%, 1.849 g, 9.45 mmol), and adenosine triphosphate disodium salt hydrate (ATP, 42 mg, 0.076 mmol) were added. The pH was adjusted to 6.4 using 5 N KOH, and resin prepared with immobilized PANK-102 was added. Acetate kinase (ACK-103)

lyophilized powder (5 mg) was added. The reaction was stirred for 20 hours with pH maintained at 6.4 using 5 N KOH. After 20 hours, the reaction was judged to be complete (96% conversion) by LC (Figure S1) following the derivatization procedure in reference 1. The resin was filtered and the filtrate was collected. The aqueous filtrate provided (R)-2-ethynylglyceraldehyde 3-phosphate solution for further reaction in API step.



Figure S1 LC chromatogram of phosphorylation reaction (2.773 mins = pdt, 3.289 mins = SM).

**API Step** 



The procedure described in reference 1 was followed. A solution of (*R*)-2-ethynylglyceraldehyde 3phosphate (0.115 M, 2.38 mmol, 20.7 mL) was added to a 50 mL glass vessel equipped with overhead stirring. Triethanolamine (0.206 g, 1.38 mmol) was added and the pH of the solution was adjusted to 7.65 with 250  $\mu$ L of 8 M KOH, before charging manganese dichloride tetrahydrate (72.2 mg, 0.365 mmol) and sucrose (2.85 g, 8.33 mmol). The pH of the solution was adjusted to 7.52 using 150  $\mu$ L of 8 M KOH and the 4 enzymes were added while stirring at 300 rpm: DERA-103 (5.0 mg, 1 wt% vs (*R*)-2ethynylglyceraldehyde 3-phosphate); PPM-045 (90 mg, 18 wt% vs (*R*)-2-ethynylglyceraldehyde 3phosphate); PNP-102 (20 mg, 4 wt% vs (*R*)-2-ethynylglyceraldehyde 3-phosphate); SP-WT (10 mg, 2 wt% vs (*R*)-2-ethynylglyceraldehyde 3-phosphate). Once the enzymes dissolved, 2-fluoroadenine (292 mg, 1.90 mmol) was added as a slurry in 16.5 mL in DI water. The temperature of the reaction was increased to 35 °C, and acetaldehyde (40% in isopropyl alcohol; 0.485 mL, 3.57 mmol) was added, before adjusting the pH to 7.58 with 200  $\mu$ L of 5 M KOH. The reactor was sealed, and the suspension was stirred at 35 °C for 20 h, at which time the LCMS indicated 98% conversion of 2-fluoroadenine. The suspension was cooled to 5 °C for 60 min and filtered, rinsing with cold water (5 mL x 3). The off-white solid was suction dried in air to give MK-8591 monohydrate (0.509 g, 1.64 mmol, 86% yield vs 2-fluoroadenine, 69% yield vs (R)-2-ethynylglyceraldehyde 3-phosphate). All analytical data match those previously reported.<sup>3</sup>



Figure S2 <sup>1</sup>H NMR spectrum of islatravir.

### S6 Procedure for activation period studies

Reactions probing the activation period using Mn(III) additives were conducted in Whatman polypropylene 24 well 10 mL plates on a Eppendorf ThermoMixer C. For a typical reaction, the reaction volume was 2 mL. The temperature of the ThermoMixer was set to 25 °C. Stock solutions of catalase (50 mg / mL) and GOase (45 mg / ml) were prepared in water. To the reaction wells, 1080  $\mu$ L water was added, followed by 200  $\mu$ L of each of the GOase and catalase stock solutions. The block was set to shake at 800 rpm. To the shaking wells, 3  $\mu$ L of 0.1 M CuSO<sub>4</sub> solution was added to each reaction well. 516  $\mu$ L of the substrate/buffer solution was added. The required amount of Mn(OAc)<sub>3</sub> (e.g. 2.77 mg Mn(OAc)<sub>3</sub>·2H<sub>2</sub>O for 2 mol%), or other activator, was added to the relevant wells directly as a solid. The reaction was profiled by sampling 10  $\mu$ L aliquots into 800 uL of a 5 g/L solution of BnONH<sub>2</sub>·HCl in MeOH to obtain the yield and ee of

aldehyde *via* SFC (see derivatization procedure above). Final conversions were obtained by NMR spectroscopy. The enzyme stock solutions were freshly prepared before each reaction.

## S7 Initial rates vs K<sub>3</sub>[Mn(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>] loading

Figure S3 shows similar initial rates across a range of loadings from 1 to 10 mol% K<sub>3</sub>Mn(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>.



**Figure S3** Initial period for desymmetrizing oxidation of 2-ethynylglycerol (0.258 M) using  $K_3Mn(C_2O_4)_3$  at loadings of 1, 2, 4 and 10 mol% as activators for GOase-2 (14 wt%). Catalase loading = 14 wt%.

# S8 Procedure for using Mn(OAc)<sub>3</sub> as an activator for alternative substrates/GOase variants

Reactions were conducted in Whatman polypropylene 24 well 10 mL plates on a Eppendorf ThermoMixer C. The volume of reactions was 2 mL, and most reactions (furfuryl alcohol, 5-(hydroxymethyl)furfural, benzyl alcohol, 4-chlorobenzylalcohol and 4-methoxybenzylalcohol) used 15 mg/mL substrate loading. Cinnamyl alcohol was conducted at 7.5 mg/mL substrate. The temperature of the ThermoMixer was set to 25 °C. The required GOase variant was prepared as a stock solution, and 0.1 M CuSO<sub>4</sub> was added to the stock (0.55  $\mu$ mol CuSO<sub>4</sub> added per mg GOase in the stock). To the reaction wells, water was added (volume calculated such that the total reaction volume after all subsequent stock solution additions is 2 mL), then 200 uL of a 1 M solution of pH 7.0 sodium phosphate buffer. Next, GOase stock solution (amount depends upon loading) and catalase stock solution (14 wt% relative to substrate) were added to the reaction wells. The plate was shaken at 800 rpm. The required amount of Mn(OAc)<sub>3</sub> (5 mol% relative to substrate) was added to the relevant wells directly as a solid. HRP was added as a stock solution (9 mg / mL stock solution; 3 wt% added to the reaction relative to the substrate). The substrate (e.g. 30 mg) was added as a 150 mg/mL

solution in water or DMSO (for solubility purposes). For each substrate, the reactions with no activator, HRP or Mn(OAc)<sub>3</sub> were run in parallel. The enzyme stock solutions were freshly prepared before each reaction. The plate was sealed with an oxygen permeable membrane, and shook at 800 rpm at 25 °C. For entries 2-6, the reactions were profiled at selected time points by sampling aliquots into NMR tubes containing 500  $\mu$ L D<sub>2</sub>O with maleic acid as an internal standard. 50  $\mu$ L d<sub>6</sub>-DMSO was added to improve the solubility when necessary. For entry 1, due to peaks overlapping with maleic acid, 100 uL of each reaction mixture was sampled into a vial containing preweighed trimethoxybenzene (TMB) as an alternative internal standard, and the mixture diluted in d<sub>6</sub>-DMSO. Overoxidation to the carboxylic acids was not observed. NMR spectra are shown in Figures S4-S22. 'Entry' refers to the entry in Table 1 in the main text, and SM (#) and product (\*) and other peaks (*e.g* solvent) are labeled in the first and/or second spectrum of the series. Fufural (entry 1),<sup>4</sup> benzaldehyde (entry 3),<sup>5</sup> 4-anisaldehyde (entry 4),<sup>5</sup> 4-chlorobenzaldehyde (entry 5)<sup>6</sup> and cinnamaldehyde (entry 6)<sup>7</sup> were assigned by comparison with literature data. 2,5-furandicarboxaldehyde (entry 2) was assigned by comparison with an authentic commercial sample in D<sub>2</sub>O with H<sub>2</sub>O and maleic acid (Figure S7).

Control experiments were undertaken with each substrate to test for background oxidation under the aerobic conditions. For each substrate, three reactions were conducted: 1) no additive 2) 5 mol% CuSO<sub>4</sub> and 3) 5 mol% Mn(OAc)<sub>3</sub>. Each substrate was dissolved in 0.1 M pH 7.0 sodium phosphate buffer, the additive (if used) was added, and the plate was sealed with an oxygen permeable membrane, and shook at 800 rpm at 25 °C for the desired reaction time (similar to the times in Table 1 in the main text): furfuryl alcohol, 24 h; 5-hydroxymethylfurfural, 18 h; benzyl alcohol, 3 h; 4-methoxybenzyl alcohol, 18 h; 4-chlorobenzyl alcohol, 18 h; cinnamyl alcohol, 3h. The reactions were sampled for NMR spectroscopy by sampling 200 uL of the reaction mixture into 500 uL d<sub>6</sub>-DMSO containing trimethoxybenzene (TMB) as internal standard. No evidence for oxidation under these conditions was observed by NMR spectroscopy (Figures S23 – S40).



**igure S4** Table 1 Entry 1, no activator. # = SM, \* = product.



**Figure S5** Table 1 Entry 1,  $Mn(OAc)_{3}$  \* = product.



**Figure S6** Table 1 Entry 1, HRP. \* = product.



Figure S7 2,5-furandicarboxaldehyde (entry 2 product), purchased from Sigma Aldrich, in water (4.8 ppm) with maleic acid additive



**Figure S8** Table 1 Entry 2, no activator. # = SM, \* = product.



**Figure S9** Table 1 Entry 2, Mn(OAc)<sub>3</sub>. # = SM, \* = product.



**Figure S10** Table 1 Entry 2, HRP. # = SM, \* = product.



**Figure S11** Table 1 Entry 3, no activator. # = SM, \* = product.



**Figure S12** Table 1 Entry 3, Mn(OAc)<sub>3</sub>. # = SM, \* = product.



**Figure S13** Table 1 Entry 3, HRP. # = SM, \* = product.



**Figure S14** Table 1 Entry 4, no activator. # = SM, \* = product.



**Figure S15** Table 1 Entry 4, Mn(OAc)<sub>3</sub>. \* = product.



**Figure S16** Table 1 Entry 4, HRP. \* = product.



**Figure S17** Table 1 Entry 5, no activator. # = SM, \* = product.



**Figure S18** Table 1 Entry 5, Mn(OAc)<sub>3</sub>. # = SM, \* = product.



**Figure S19** Table 1 Entry 5, HRP. # = SM, \* = product.



**Figure S20** Table 1 Entry 6, no activator. # = SM, \* = product.



**Figure S21** Table 1 Entry 6, Mn(OAc)<sub>3</sub>. \* = product.



**Figure S22** Table 1 Entry 6, HRP. \* = product.



**Figure S23** Control experiment for entry 1. # = SM.



**Figure S24** Control experiment for entry 1. # = SM.



**Figure S25** Control experiment for entry 1. # = SM.



**Figure S26** Control experiment for entry 2. # = SM.



**Figure S27** Control experiment for entry 2. # = SM.



**Figure S28** Control experiment for entry 2. # = SM.



**Figure S29** Control experiment for entry 3. # = SM.



**Figure S30** Control experiment for entry 3. # = SM.



**Figure S31** Control experiment for entry 3. # = SM.



**Figure S32** Control experiment for entry 4. # = SM.



**Figure S33** Control experiment for entry 4. # = SM.



**Figure S34** Control experiment for entry 4. # = SM.



**Figure S35** Control experiment for entry 5. # = SM.



**Figure S36** Control experiment for entry 5. # = SM.



**Figure S37** Control experiment for entry 5. # = SM.



**Figure S38** Control experiment for entry 6. # = SM.



**Figure S39** Control experiment for entry 6. # = SM.



**Figure S40** Control experiment for entry 6. # = SM.

#### **S9 UV-Vis studies**

The UV-Vis system used to record spectra consists in an OceanInsight DH-2000-BAL light source directly connected to an OceanInsight SQUARE ONE cuvette holder using threaded joints. The cuvette holder was directly connected to an OceanInsight FLAME-S-UV-VIS spectrometer. The spectra were recorded using OceanView 2. The exposure time was automatically adjusted to be under the saturation limit of the spectrometer. 10 scans were averaged to produce a spectrum. A background of the light source and a dark were taken before each experiment.

The buffer of the purified GOase-1 solution (section S10) was exchanged with 0.1M NaPi buffer, pH 7 using a 30 kDa molecular weight cut-off filter. The GOase concentration was checked using the absorption at 280 nm ( $\epsilon_{280} = 126\ 488\ \text{cm}^{-1}$ .M<sup>-1</sup> for GOase<sub>Rd10BB</sub>) The GOase-1 solution was prepared by transferring 100 µL of a solution of GOAse buffer exchanged with NaPi, pH 7 (concentration: 404 mM) in a fused quartz Thorlabs sub-micro cuvette with a light path of 10 mm (Part #: CV10Q100S) containing 98 µL of NaPi buffer and the resulting solution was mixed using a pipette. 2 µL of 50 mM CuSO<sub>4</sub> stock was added and the final mixture was mixed by repeated pipetting. The final concentration of species in solution is 202 µM GOase, 0.5 mM Cu. The solution was aged for 1.5h after addition of CuSO<sub>4</sub>.



Figure S41 UV-Vis spectra of apo-GOase-1 (---), in-situ generated copper-bound GOasesemi (---),

## S10 GOase-1 purification by affinity chromatography

Purification of the proteins was performed by Evotec, USA. 4L *E. coli* culture expressing copper-free GOase-1 was lysed, clarified by resuspending into Buffer A. The suspension was clarified by centrifugation, loaded on the column and eluted with the buffer gradient, as described below.

#### Abbreviations

HEPES - (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid IMAC – immobilized metal-ion affinity chromatography SEC – size-exclusion chromatography

#### **Purification steps: IMAC/SEC**

Mass: observed: 69,485 Da; calculated.: 69498 Da

Column: 25 mL His Trap FF

Buffer A: 50 mM HEPES pH 7.5, 300mM NaCl, 10mM Imidazole Buffer B: 50 mM HEPES pH 7.5, 300mM NaCl, 500mM Imidazole Gradient: 0% B over 15 CV, 0-100% B over 5 CV, 0% B for 10 CV Pool: B10-F3; ,19.9mg/mL x 100 mL = 1395 mg



**Figure S42** IMAC purification of GOase-1 **SEC-purification** 

Column: 26/600 S200 SEC Buffer:50 mM HEPES pH 7.5 Sample:6 X 15 mL injection Pool: 1,06 mg, aliquots of 25 mg/mL were stored at -80 °C



Figure S43 MS and SDS analysis of the purified GOase-1

## S11 References

M. A. Huffman, A Fryszkowska, O. Alvizo, M. Borra-Garske, K. R. Campos, K. A. Canada, P. N. Devine, D. Duan, J. H. Forstater, S. T. Grosser, H. M. Halsey, G. J. Hughes, J. Jo, L. A. Joyce, J. N. Kolev, J. Liang, K. M. Maloney, B. F. Mann, N. M. Marshall, M. McLaughlin, J. C. Moore, G. S. Murphy, C. C. Nawrat, J. Nazor, S. Novick, N. R. Patel, A. Rodriguez-Granillo, S. A. Robaire, E. C. Sherer, M. D. Truppo, A. M. Whittaker, D. Verma, L. Xiao, Y. Xu, H. Yang, *Science* 2019, *366* (6470), 1255–1259.

- (2) G. H. Cartledge, W. P. Ericks J. Am. Chem. Soc. 1936, 58 (10), 2061-2065.
- (3) M. McLaughlin, J. Kong, K. M. Belyk, B. Chen, A. W. Gibson, S. P. Keen, D. R. Lieberman, E. M. Milczek, J. C. Moore, D. Murray, F. Peng, J. Qi, R. A. Reamer, Z. J. Song, L. Tan, L. Wang, M. J. Williams Org. Lett. 2017, 19 (4), 926–929
- (4) S. Lima, M. M. Antunes, A. Fernandes, M. Pillinger, M. F. Riberio, A. A. Valente App. Catal. A-Gen. 2010, 388, 141-148
- (5) L. Jiang, J. Ming, L. Wang, Y. Jiang, L. Ren, Z, Wang, W. Cheng, Green Chem., 2020, 22, 1156-1163
- (6) A. Poeschl, D. M. Mountford Org. Biomol. Chem., 2014, 12, 7150-7158
- (7) M. Stephan, J. Panther, F. Wilbert, P. Ozog, T. J. J. Müller Eur. J. Org. Chem. 2020, 2086–2092