Supplementary data

Thermally reversible and irreversible interstrand photocrosslinking of 5-chloro-2'-deoxy-4-thiouridine modified DNA oligonucleotides

Joanna Nowak-Karnowska, Karolina Zielińska, Jan Milecki and Bohdan Skalski

Table of Contents:

1) DHS	SYNTHESIS OF 5'- <i>O</i> -DIMETHOXYTRITYL-2'-DEOXY-3'- <i>O</i> -[(2-CYANOETHOXY),(N,N- OPROPYLAMINO)PHOSPHINO]-4-(2-CYANOETHYLTHIO)-5-CHLOROURIDINE (4)	1
5-CH	ILORO-3',5'-DI-O-ACETYL-2'-DEOXYURIDINE (1)	1
5-CH	ILORO-2'-DEOXY -5'-O-DIMETHOXYTRITYL-3'-O-T-BUTYLDIMETHYLSILYLURIDINE (2)	1
5-CH TRIA	ILORO-2'-DEOXY-5'- <i>O</i> -DIMETHOXYTRITYL-3'- <i>O-T</i> -BUTYLDIMETHYLSILYL-4-(1,2,4- AZOL-1-YL)URIDINE (3)	2
5'-O- DIIS	-DIMETHOXYTRITYL-2'-DEOXY-3'- <i>0</i> -[(2-CYANOETHOXY),(N,N- OPROPYLAMINO)PHOSPHINO]-4-(2-CYANOETHYLTHIO)-5-CHLOROURIDINE (4)	2
2)	METHODS	3
3)	SYNTHESIS OF OLIGONUCLEOTIDES 5 AND 6	3
4)	IRRADIATION EXPERIMENTS AND ISOLATION OF PHOTOCROSSLINK 8	3
5)	THERMAL INSTABILITY OF PHOTOCROSSLINK 7	4
7)	ENZYMATIC DIGESTION OF PHOTOCROSSLINK 8	6
8)	SPECTRA	7
9)	REFERENCES	7

1) Synthesis of 5'-O-dimethoxytrityl-2'-deoxy-3'-O-[(2-cyanoethoxy),(N,N-diisopropylamino)phosphino]-4-(2-cyanoethylthio)-5-chlorouridine (4)

5-Chloro-3',5'-di-O-acetyl-2'-deoxyuridine (1)

5-Chloro-3',5'-di-*O*-acetyl-2'-deoxyuridine was synthesized according to described procedure,^[1] starting from acetylated 2'-deoxyuridine (Sigma-Aldrich).

5-Chloro-2'-deoxy -5'-O-dimethoxytrityl-3'-O-t-butyldimethylsilyluridine (2)

5-Chloro-3',5'-di-*O*-acetyl-2'-deoxyuridine (1) (500 mg, 1.45 mmol) was treated with NH₃ (25%, 5 ml) in MeOH (10 ml) for 3h. After evaporation to dryness the product was purified by flash chromatography using a gradient of MeOH in CH₃Cl (eluting with 5% MeOH), TLC $R_f = 0.19$ (CH₃Cl: MeOH; 9:1).

5-Chloro-2'-deoxyuridine (368 mg, 1.4 mmol) was evaporated with pyridine and 20 ml of anhydrous pyridine was added followed by DMTCl (712 mg, 2.1 mmol). After 5h of stirring the mixture was evaporated to dryness and pure product (480 mg, 0.84 mmol) was received after purification by flash chromatography using a gradient of MeOH in CH₃Cl (eluting with 2.5% MeOH), TLC R_f = 0.3 (CH₃Cl: MeOH; 95:5).

5-Chloro-2'-deoxy-5'-O-dimethoxytrityluridine (250 mg, 0.44 mmol) and imidazole (125 mg, 1.84 mmol) were dried in vacuo for 2h. Anhydrous DMF (1 ml) and t-butyldimethylsilyl chloride (120 mg, 0.8 mmol) were added and reaction mixture was left overnight at rt.

Saturated NaHCO₃ was added and the mixture was extracted with ethyl acetate, organic layer was washed with H_2O , dried with MgSO₄ and evaporated. Product **2** was purified by flash chromatography (eluting in CH₃Cl) (240 mg, 0.36 mmol), TLC $R_f = 0.57$ (CH₃Cl: MeOH; 95:5).

¹H NMR (CDCl₃): 8.04 (s, 1H); 7.26-7.41 (m, 9H); 6.85 (m, 4H); 6.27 (t, 1H); 4.48 (m, 1H); 4.01 (m, 1H); 3.79 (s, 6H); 3.38 (m, 2H); 2.38 (m, 1H); 2.28 (m, 1H); 0.84 (s, 9H); 0.04 (s, 3H); 0.03 (s, 3H); HRMS (ESI) *m/z* calcd for $C_{36}H_{43}CIN_2O_7SiNa$ ([M+Na]⁺) 701.2426, found 701.2439.

5-Chloro-2'-deoxy-5'-*O*-dimethoxytrityl-3'-*O*-*t*-butyldimethylsilyl-4-(1,2,4-triazol-1-yl)uridine (3)

1,2,4-Triazole (5.83 mg, 8.44 mmol) was dried in vacuo for 3 h. Dry acetonitrile was added (1.75 ml) followed by triethylamine (1.95 ml) and flask was cooled in ice. Phosphoryl chloride (0.2 ml) was added and after stirring for 10 min at 0°C, compound **2** (350 mg, 0.52 mmol) in solution 1:2 of acetonitrile and pyridine (5 ml) was added and reaction mixture was left at rt overnight. Water (0.5 ml) was added and after 30 min mixture was evaporated, satd NaHCO₃ was added and residue was extracted with ethyl acetate. Organic layer was washed with H₂O, dried with MgSO₄ and evaporated to give product **3** (350 mg), TLC R_f = 0.5 (CH₃Cl: MeOH; 9:1).

¹H NMR (CDCl₃): 9.16 (s, 1H); 8.66 (s, 1H); 8.16 (s, 1H); 7.23-7.40 (m, 9H); 6.85 (m, 4H); 6.22 (t, 1H); 4.48 (m, 1H); 4.16 (m, 1H); 3.77 (s, 6H); 3.38 (m, 2H); 2.38 (m, 1H); 2.19 (m, 1H); 0.84 (s, 9H); 0.04 (s, 3H); 0.03 (s, 3H).

5'-O-dimethoxytrityl-2'-deoxy-3'-*O*-[(2-cyanoethoxy),(N,Ndiisopropylamino)phosphino]-4-(2-cyanoethylthio)-5-chlorouridine (4)

Compound **3** (330 mg) was dissolved in dry acetonitrile (1.5 ml), 2-cyanoethanethiol (0.4 ml) and DIPEA (0.24 ml) were added and reaction mixture was left at rt for 1.5 h. After evaporation, CH_2Cl_2 was added and solution was washed with 0.5 M KH₂PO₄ and evaporated. Product **3_1** was purified by flash chromatography (eluting in CH₃Cl) (328 mg), TLC R_f = 0.65 (CH₃Cl: MeOH; 95:5).

¹H NMR (CDCl₃): 8.23 (s, 1H); 7.26-7.32 (m, 9H); 6.85 (m, 4H); 6.25 (t, 1H); 4.48 (m, 1H); 4.03 (m, 1H); 3.79 (s, 6H); 3.38 (m, 2H); 2.82 (m, 2H); 2.94 (m, 2H); 2.20 (m, 2H); 0.83 (s, 9H); 0.032 (s, 3H); 0.030 (s, 3H).

Product (328 mg, 0.44 mmol) was treated with $Et_3N \times 3HF$ (0.275 ml) and was left for 3h. Pure product **3_2** (180 mg, 0.28 mmol) was received after purification by flash chromatography using a gradient of MeOH in CH₃Cl (eluting with 1% MeOH), TLC R_f = 0.32 (CH₃Cl: MeOH; 95:5).

¹H NMR (CDCl₃): 8.14 (s, 1H); 7.26-7.40 (m, 9H); 6.84 (m, 4H); 6.19 (t, 1H); 4.52 (m, 1H); 4.14 (m, 1H); 3.79 (s, 6H); 3.40 (m, 4H); 2.89 (m, 2H); 2.85 (m, 1H); 2.45 (m, 1H).

Product (180 mg, 0.28 mmol) was dried in vacuo for 3 h. Anhydrous, freshly distilled THF (2 ml) was added in argon atmosphere followed by DIPEA (40µl) and chlorophosphine (2-cyanoethyl N,N-diisopropylchlorophosphoramidite) (25 µl). After 3h reaction was completed and methanol (0.5 ml), triethylamine (0.5 ml) and CH₂Cl₂ (30 ml) were added. Solution was washed with satd NaHCO₃, brine, dried over MgSO₄ and evaporated. Products (two diastereoizomers) were purified by flash chromatography using a gradient of CH₂Cl₂ (20-40%) in cyclohexane containing 2% of triethylamine (eluting with 25-30% CH₂Cl₂), TLC R_f = 0.42 (4a), 0.48 (4b) (CH₃Cl: MeOH; 95:5). Yield 175 mg (0.21 mmole) of 4.

³¹P NMR(CDCl3): 151.16, 150.60; HRMS (ESI) m/z calcd for C₄₂H₄₉ClN₅O₇PSNa ([M+Na]⁺) 856.2676, found 856.2675.

2) Methods

High-performance liquid chromatography (HPLC) was performed with an Agilent 1200 system with a binary gradient-forming module and diode-array UV–Vis and fluorescence detectors.

Steady-state photochemical irradiation experiments were carried out in 1 cm \times 1 cm rectangular fluorescence cell with stirring bar on a standard optical bench system equipped with an Coherent Genesis CX-355-100 cw laser and with the temperature-controlled cell holder (Quantum Northwest, model TC125).

The melting curves and absorption spectra were measured on a JASCO V750 spectrophotometer equipped with a temperature controller. The melting temperatures were determined from the maximum of first derivative of the melting curves. Heating and cooling curves were registered and calculated T_m values were in agreement within 2°C. The range of temperature of the measurement was 10-90°C, with step 0.5°C /min.

3) Synthesis of oligonucleotides 5 and 6

Syntheses were performed on DNA/RNA Synthesizer H-6 (K&A Laborgeraete) applying 0.2 µmol protocol and commercial CPG supports.

Oligonucleotide **5** was synthesized using previously published method.^[2] Oligonucleotide **6** was synthesized using standard phosphoramidite chemistry protocol.

High-performance liquid chromatography (HPLC) was performed with an Agilent 1200 system with a binary gradient-forming module and diode-array UV–Vis and fluorescence detectors.

Oligodeoxynucleotides were purified by reversed phase HPLC (Waters XBridge OST C18 Column, 2.5µm, 10 x 50 mm, 40°C with mobile phases: A = 0.01M CH₃COONH₄, B = 0.01M CH₃COONH₄/ acetonitrile, 50/50, v/v, with a diode array detector monitoring at 260 nm) using the following solvent gradient: 0% to 10%B in 10 minutes, flow rate: 1 ml/min. The residue was evaporated and dissolved in 0.7 ml H₂O and passed through a NAP 25 column to remove CH₃COONH₄. The column was washed with 0.1M phosphate buffer (pH=7) and 7 fractions of 1.2 ml were collected and checked by UV. Fraction 3-5 containing oligomer were combined.

4) Irradiation experiments and isolation of photocrosslink 8

Oligonucleotide **5** was subjected to hybridization with small excess of **6** (1.2eq), (A₂₆₀ of **5**+**6** =2.3), by heating to 90°C and slow cooling to room temperature in an aqueous phosphate buffer (pH 7.0). Irradiations near UV light were carried out under aerobic conditions at 15°C with 80mW optical laser power. The progress of the reaction was monitored by absorption and fluorescence spectra (the reaction was carried out until no changes in spectra were noticed (120 min)) and by HPLC (all analyses were performed on a Agilent Poroshell 120 EC-C18 Column, 2.7µm, 4.6 × 150 mm, 40°C, eluted with 0.1M TEAA, using a linear gradient of 5%-15% of acetonitrile over 20 min, flow rate: 0.5 ml/min).

The reaction mixture was concentrated to small volume and photocrosslink **8** was separated by reversed phase HPLC (Agilent Poroshell 120 EC-C18 Column, 2.7µm, 4.6 x 150 mm, 40°C) with mobile phases: A = 0.1M CH₃COONH₄/ acetonitrile, 95/5, v/v, B = 0.1M CH₃COONH₄/ acetonitrile, 50/50, v/v with a diode array detector monitoring at 260 nm using the following solvent gradient: 0% to 15%B in 25 minutes, flow rate: 0.5 ml/min. The residue was evaporated and passed through Waters XBridge OST C18 Column, 2.5µm, 10 x 50 mm, 40°C, with mobile phases: A = 0.01M phosphate buffer (pH = 7), B = acetonitrile/water, 80/20, v/v with a diode array detector monitoring at 260 nm using the following solvent gradient: 0% to 20%B in 12 minutes, flow rate: 1.5 ml/min to remove CH₃COONH₄.

5) Thermal instability of photocrosslink 7

Figure 1 Changes in absorption spectra of duplex ODN **5**/6 after 4.5 min of irradiation and during next 48 hours in room temperature (inset). Conditions: 25°C, 0.1 M phosphate buffer, pH 7.0.

Figure 2 Changes in the absorption spectra of duplex ODN **5/6** after 4.5 min of irradiation and during heating in 60°C for following 60 min. Conditions: 60°C, 0.1 M phosphate buffer, pH 7.0.

Figure 3 HPLC analysis of the reaction mixture containing ODN **5** and ODN **6** after 30 min of irradiation (80 mW, 355 nm, 15 °C), the inset shows HPLC analysis after 30 min of irradiation and 1h of heating of irradiated solution at 60°C.

Table 1 Are	a of peaks	obtained	in HPLC	analyzes
-------------	------------	----------	---------	----------

•	Area of peak at 260 nm		
	5	<u>6</u>	7 (without heating)
Before irradiation	3226	4029	0
After 4.5 min of irradiation and 1h in 60°C	2701	3209	3436
After 30 min of irradiation and 1h in 60°C	1626	1888	2108

Figure 4 Thermal reversion of interstrand photo-cross-linked DNA oligonucleotide 7 to starting oligonucleotides **5**+**6**. Conditions: 25°C, 0.1 M phosphate buffer, pH 7.0.

6) Melting temperature measurements

Figure 5 Melting profiles of duplex ODN 5/6 before (solid line) and after (dotted line) irradiation (photocrosslink 8). Conditions: $2 \mu M$ duplex, 0.1M phosphate buffer, pH=7.0.

7) Enzymatic digestion of photocrosslink 8

0.2 OD of photocrosslink **8** in 150 μ l of buffer (10mM KH₂PO₄, 10mM MgCl₂, pH=7) was digested with alkaline phosphatase bovine intestinal mucosa (27 DEA units, Sigma-Aldrich, BioUltra) and phosphodiesterase I from Crotalus adamanteus venom (0.0055 units, Sigma-Aldrich, Purified) for 20h at 37°C.

Figure 6 HPLC analysis of photocrosslink **8** after digestion (Agilent Poroshell 120 EC-C18 Column, 2.7 μ m, 4.6 x 150 mm, 40°C) with mobile phases: A = 0.1M CH₃COONH₄/ acetonitrile, 95/5, v/v, B = 0.1M CH₃COONH₄/ acetonitrile, 50/50, v/v with a diode array detector monitoring at 260 nm using the following solvent gradient : 0% to 15%B in 10 minutes, than to 100%B in 10 minutes, flow rate: 0.7 ml/min.

Figure 7 Comparison of UV absorption spectra of fragments APA, APT, AP containing photoadduct P[3] with spectrum of undigested fragment of photocrosslink 8 (orange).

8) Spectra

¹H and ³¹P NMR spectra were recorded on Varian 300 MHz Mercury system in CH₃Cl. All chemical shifts are reported in parts per million relative to TMS (¹H) or 85% H₃PO₄ (³¹P).

The MALDI-TOF MS analyses were performed using the MALDI-TOF MS instrument model Autoflex II equipped with a reflectron (resolution about 5000 at m/z 1000), on a MALDI metal target plate (Bruker, Bremen, Germany). The instrument was equipped with a SmartBeam laser and operated under FlexControl. Spectra were calibrated in FlexAnalysis using the Protein Calibration Standard I from Bruker and 3-hydroxypicolinic acid was used as matrix.

High resolution ESI mass spectra (HRMS) were obtained using Impact HD mass spectrometer (Q-TOF type instrument equipped with electrospray ion source; Bruker Daltonics, Germany). The sample solutions (DCM:MeOH) were infused into the ESI source by a syringe pump (direct inlet) at the flow rate of 3 μ L/min. The instrument was operated under the following optimized settings: end plate voltage 500 V; capillary voltage 4.2 kV; nebulizer pressure 0.3 bar; dry gas (nitrogen) temperature 200 °C; dry gas flow rate 4 L/min. The spectrometer was previously calibrated with the standard tune mixture.

9) References

[1] J. Asakura, M. J. Robins, J. Org. Chem. 1990, 55, 4928-4933.

[2] J. Milecki, J. Nowak, B. Skalski, S. Franzen, Bioorgan. Med. Chem. 2011, 19, 6098-6106.

[3] J. Nowak-Karnowska, Z. Chebib, J. Milecki, S. Franzen, B. Skalski, *ChemBioChem* 2014, 15, 2045 – 2049.

Figure 8 ESI MS spectrum of 2.

Figure 9 ESI MS spectrum of 2 (zoom around m/z 701).

Display Report

Analysis Info

Analysis Name D:\Data\Gosia\2021\J. Nowak-Karnowska\21.01.05\JNK 10_21.01.05_1.d Method Tune_pos_mid.m Sample Name Comment **JNK 10**

Instrument impact HD 1819696.00156

Acquisition Par	rameter				
Source Type Focus	ESI	Ion Polarity Set Capillary	Positive 4200 V	Set Nebulizer Set Dry Heater	0.3 Bar 200 °C
Scan Begin	200 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1000 m/z	Set Charging Voltage	2000 V	Set Divert Valve	Source
		Set Corona	0 nA	Set APCI Heater	0°C

Display Report Analysis Info Analysis Name D:\Data\Gosia\2021\J. Nowak-Karnowska\21.01.05\JNK 10_21.01.05_1.d Method Tune_pos_mid.m Sample Name Comment **JNK 10** Instrument impact HD 1819696.00156 Acquisition Parameter Source Type Focus Scan Begin Scan End Ion Polarity Set Capillary Set End Plate Offset Set Charging Voltage Set Corona Positive 4200 V -500 V 2000 V Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Set APCI Heater 0.3 Bar 200 °C 4.0 l/min Source 0 °C ESI Active 200 m/z 1000 m/z 0 nA Intens. x10⁵ +MS, 0.0-0.2min #2-11 856.2675 3 2 857.2703 1 859.2679 860.2686 851.2485 861.2696 1 0-856 858 860 852 854 862 864 866 m/z

Figure 11 ESI MS spectrum of 4 (zoom around m/z 856).

Figure 13 Maldi TOF spectrum of photocrosslink **8**. MW=6662.7 (6662.4 calcd for [M+H]⁺)

Figure 14 ¹H NMR spectrum of 2.

Figure 15 ¹H NMR spectrum of 3.

Figure 16 ¹H NMR spectrum of 3_1.

Figure 17 ¹H NMR spectrum of 3_2.

Figure 18 ³¹P NMR spectrum of 4a.

Figure 19³¹P NMR spectrum of 4b.