Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

### **Experimental Supporting Information**

### PhI(OAc)<sub>2</sub> and Iodine-Mediated Synthesis of N-Alkyl Sulfonamides Derived from Polycyclic Aromatic Hydrocarbon Scaffolds and Determination of Their Antibacterial and Cytotoxic Activities

Megan D. Hopkins, Garett L. Ozmer, Ryan C. Witt, Zachary C. Brandeburg, David A. Rogers, Claire E. Keating, Presley L. Petcoff, Robert J. Sheaff\* and Angus A. Lamar\*

Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, OK 74104, USA.

### robert-sheaff@utulsa.edu

#### angus-lamar@utulsa.edu

#### Index

| Materials and Instrumentation                                                          | S-1  |
|----------------------------------------------------------------------------------------|------|
| Preparation of 2,9-dibromo-9H-fluorene                                                 | S-2  |
| Preparation of 9-bromo-9H-thioxanthene                                                 | S-2  |
| Preparation of 9-bromo-2-iodo-9H-fluorene                                              | S-2  |
| Table S1 - Cell Viability Screening Figures and Tables – CellTiter-Blue, CellTiter-Glo | S-3  |
| Table S2 – In silico data                                                              | S-5  |
| Figure S3 – Calibration curve for LogP determination                                   | S-6  |
| Additional <i>in silico</i> data (BOILED Eggs)                                         | S-7  |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of Products <b>2-23</b>                 | S-15 |

**Materials and Instrumentation:** All solvents and reagents were purchased from commercial sources and used without further purification.  $I_2$  (99.99+%, metal basis) was purchased from Alfa Aesar. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian 400 MHz spectrometer in deuterated chloroform (CDCI<sub>3</sub>) or deuterated acetone ((CD<sub>3</sub>)<sub>2</sub>CO). Solvent residual peak used as internal reference (CDCI<sub>3</sub>: <sup>1</sup>H = 7.26 ppm, <sup>13</sup>C = 77.02 ppm; (CD<sub>3</sub>)<sub>2</sub>CO: <sup>1</sup>H = 2.05 ppm, <sup>13</sup>C = 29.84 ppm). Data are reported in the following order: chemical shifts ( $\delta$ ) are reported in ppm, and spin-spin coupling constants (*J*) are reported in Hz, while multiplicities are abbreviated by s (singlet), bs (broad singlet), d (doublet), bd (broad doublet), dd (doublet of doublets), t (triplet), bt (broad triplet), dt (doublet of triplets), td (triplet of doublets), and m (multiplet). A Nicolet iS50 FT-IR spectrometer with peaks reported in reciprocal centimeters (cm<sup>-1</sup>) was used for recording infrared spectra. Melting points (uncorrected) were recorded using a Mel-Temp II (Laboratory Devices, USA). HRMS were obtained using a Thermo Scientific Exactive spectrometer in positive ion electrospray mode (ESI-electrospray ionization).

### Procedure for the preparation of 2,9-dibromo-9H-fluorene<sup>1</sup>

To a stirred solution of fluorenone substrate (5 mmol; 1.30 g) in THF/H2O (2.25 mL, v:v = 9:1) was added NaBH<sub>4</sub> (3.5 mmol; 0.132 g) in one portion. The mixture was stirred at rt for 20 h. The reaction was then quenched with H<sub>2</sub>O (3 mL), extracted with Et<sub>2</sub>O (2 X 10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated to give 2-bromo-9H-fluoren-9-ol.

**2-bromo-9H-fluoren-9-ol**: White solid. M.p. 146-148 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.70 (s, 1H), 7.56 (dd,  $J_1$  = 7.4 Hz ,  $J_2$  = 1.6 Hz, 2H), 7.46 (m, 2H), 7.35 (td,  $J_1$  = 7.4 X (2) Hz,  $J_2$  = 1.2 Hz, 1H), 7.31 (td,  $J_1$  = 7.4 X (2) Hz,  $J_2$  = 1.2 Hz, 1H), 5.46 (br s, 1H), 2.73 (br s, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.6, 145.2, 139.0, 138.9, 132.1, 129.3, 128.6, 128.2, 125.2, 121.5, 121.3, 120.1, 74.9 ppm. IR (neat): v = 3279, 1464, 1028, 759 cm<sup>-1</sup>. HRMS (ESI): calculated for C<sub>13</sub>H<sub>8</sub>Br<sub>1</sub> [M-H<sub>2</sub>O]<sup>+</sup> requires *m/z* 242.98094, found *m/z* 242.98358.

To a stirred solution of 2-bromo-9H-fluoren-9-ol (2.5 mmol; 0.653 g) in DCM (5 mL) at rt was added PBr<sub>3</sub> (1.33 mmol; 0.126 mL). The mixture was stirred at rt for 1h. The reaction was then quenched with sat. aqueous NaHCO<sub>3</sub> (10 mL), extracted with DCM (2 X 10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated to give final brominated product.

**2,9-dibromo-9H-fluorene**: White solid. M.p. 122-124 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.71 (t,  $J_1$  = 1.2 X (2) Hz, 1H), 7.57 (m, 1H), 7.53 (dd,  $J_1$  = 5.9 Hz,  $J_2$  = 1.6 Hz, 1H), 7.41 (m, 2H), 7.31 (dtd,  $J_1$  = 12.9 Hz,  $J_2$  = 7.4 X (2) Hz, 2H), 5.83 (s, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.1, 143.8, 138.7, 132.3, 129.6, 129.4, 128.5, 126.4, 121.7, 121.6, 120.4, 44.9 ppm. IR (neat): v = 2967, 1447, 1409, 1181, 1058, 819, 732, 647, 462 cm<sup>-1</sup>. HRMS (ESI): calculated for C<sub>13</sub>H<sub>7</sub>Br<sub>2</sub> [M-H]<sup>-</sup> requires *m/z* 320.891446, found *m/z* 320.88831.

### Procedure for the preparation of 9-bromo-9H-thioxanthene

To an oven-dried round bottom flask was added thioxanthone (2 mmol; 0.425 g) and THF (20 mL). The reaction flask was purged with argon and equipped with an argon balloon. The mixture was placed in an ice bath with stirring. A 1M LAH/THF solution (4 mL) was added dropwise. Once added, the reaction was removed from the ice bath and stirred at rt for 2 hours. Once the reaction was completed, it was quenched with water and extracted with 3 X 15 mL of EtOAc. The combined organic layers were washed with brine, dried over  $Na_2SO_4$  and the solvent removed.

**9H-thioxanthen-9-ol**:<sup>2</sup> White solid. M.p. 102-104 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.62 (dd,  $J_1$  = 7.0 Hz,  $J_2$  = 1.6 Hz, 2H), 7.49 (dd,  $J_1$  = 7.8 Hz,  $J_2$  = 1.2 Hz, 2H), 7.30 (m, 4H), 5.56 (d,  $J_1$  = 5.9 Hz, 1H), 2.39 (d,  $J_1$  = 6.7 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  136.5, 132.0, 127.7, 127.2, 126.9, 126.7, 72.1 ppm. IR (neat): v = 3224, 3054, 1454, 1197, 1043, 734 cm<sup>-1</sup>. HRMS (ESI): calculated for C<sub>13</sub>H<sub>9</sub>S<sub>1</sub> [M-H<sub>2</sub>O]<sup>+</sup> requires *m/z* 197.04250, found *m/z* 197.04439.

9H-Thioxanthen-9-ol (1 mmol; 0.214 g) was dissolved in glacial acetic acid (3 mL) and 48% HBr (0.136 mL) was added. The reaction was heated at 50 °C for 5 hours. After reaction time, the mixture was quenched with 1-3 mL H<sub>2</sub>O and extracted with 3 X 5 mL EtOAc. The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to yield brominated product.

**9-bromo-9H-thioxanthene**:<sup>3</sup> Tan solid. M.p. 153-156 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.61 (dd,  $J_1$  = 8.0 Hz,  $J_2$  = 1.0 Hz, 1H), 7.57 (m, 2H), 7.45 (m, 2H), 7.30 (dd,  $J_1$  = 6.7 Hz,  $J_2$  = 1.6 Hz, 1H), 7.18 (m, 2H), 3.84 (s, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.3, 136.2, 133.8, 132.3, 129.9, 129.2, 127.9, 126.9, 126.6, 126.5, 126.3, 126.0, 39.2 ppm. IR (neat): v = 3050, 2917, 2849, 1641, 1588, 1440, 729 cm<sup>-1</sup>.

#### Procedure for the preparation of 9-bromo-2-iodo-9H-fluorene

2-lodofluorene (0.5 mmol; 0.146 g) and NBS (0.55 mmol; 0.0979 g) were added in  $CCl_4$  (6.5 mL) and the mixture was refluxed overnight with benzoyl peroxide (0.004g) as initiator. After cooling, the succinimide formed was filtered. The mixture was washed with NaHCO<sub>3</sub> (1M; 20 mL) and brine (20 mL). The organic phase was dried over MgSO<sub>4</sub>. The crude was purified via recrystallization from hexanes.

**9-bromo-2-iodo-9H-fluorene**:<sup>4</sup> Pale yellow solid. M.p. 122-125 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ = 7.98 (s, 1H), 7.72 (dd,  $J_1$  = 8.0 Hz,  $J_2$  = 1.4 Hz, 1H), 7.64 (m, 2H), 7.41 (d,  $J_1$  = 8.2 Hz, 2H), 7.37 (m, 1H), 5.93 (s, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 146.2, 143.6, 139.4, 138.8, 138.2, 135.4, 129.4, 128.7, 126.3, 121.8, 120.4, 92.9, 44.8 ppm. IR (neat): v = 2965, 1715, 1446, 1403, 1179, 820, 732, 663 cm<sup>-1</sup>. HRMS (ESI): calculated for C<sub>13</sub>H<sub>7</sub>Br<sub>1</sub>I<sub>1</sub> [M-H]<sup>-</sup> requires *m/z* 368.87759, found *m/z* 368.87436.



Figure S1. Cell viability screening of compounds 2-23 (50 µM), 24 h, CellTiter-Blue assay (Promega).



Figure S2. Cell viability screening of compounds 2-23 (50 µM), 24 h, CellTiter-Glo assay (Promega).

|           | Cell Lines (Values are shown as Percent of DMSO Control) |              |               |              |                    |  |  |  |  |
|-----------|----------------------------------------------------------|--------------|---------------|--------------|--------------------|--|--|--|--|
| Compounds | HDF                                                      | H293         | HeLa          | PC3          | BxPC3              |  |  |  |  |
| DMSO      | 100 ± 3.4%                                               | 100.0 ± 4.7% | 100.0 ± 10.8% | 100.0 ± 1.0% | 100.0 ± 8.2%       |  |  |  |  |
| 2         | 93.2 ± 3.6%                                              | 90.4 ± 1.7%  | 102.7 ± 6.2%  | 88.2 ± 1.8%  | 76.1 ± 5.1%        |  |  |  |  |
| 3         | 69.9 ± 1.6%                                              | 79.3 ± 3.0%  | 77.5 ± 0.0%   | 67.7 ± 2.8%  | 83.1 ± 1.4%        |  |  |  |  |
| 4         | 85.6 ± 6.0%                                              | 83.3 ± 2.6%  | 93.8 ± 1.1%   | 90.8 ± 1.4%  | 95.2 ± 3.2%        |  |  |  |  |
| 5         | 87.7 ± 6.1%                                              | 79.6 ± 6.0%  | 85.8 ± 4.5%   | 77.4 ± 0.0%  | 79.2 ± 11.3%       |  |  |  |  |
| 6         | 63.4 ± 0.6%                                              | 93.4 ± 0.9%  | 84.8 ± 2.7%   | 86.5 ± 3.4%  | 87.4 ± 1.5%        |  |  |  |  |
| 7         | 76.1 ± 1.6%                                              | 79.5 ± 3.7%  | 77.5 ± 7.9%   | 80.2 ± 1.5%  | 107.4 ± 8.5%       |  |  |  |  |
| 8         | 83.8 ± 2.7%                                              | 82.9 ± 3.2%  | 86.6 ± 1.5%   | 79.3 ± 3.6%  | 88.3 ± 4.7%        |  |  |  |  |
| 9         | 94.9 ± 0.1%                                              | 86.8 ± 3.6%  | 93.5 ± 2.3%   | 82.7 ± 11.6% | 91.3 ± 2.0%        |  |  |  |  |
| 10        | 72.8 ± 3.5%                                              | 78.7 ± 6.1%  | 86.7 ± 1.3%   | 77.4 ± 2.1%  | 88.3 ± 5.3%        |  |  |  |  |
| 11        | 87.1 ± 1.6%                                              | 78.8 ± 5.1%  | 88.9 ± 2.3%   | 78.6 ± 5.1%  | 89.8 ± 3.0%        |  |  |  |  |
| 12        | 101.3 ± 5.3%                                             | 78.6 ± 1.8%  | 90.7 ± 2.3%   | 85.2 ± 7.3%  | 127.3 ± 9.7%       |  |  |  |  |
| 13        | 97.2 ± 9.6                                               | 76.6 ± 9.8%  | 101.0 ± 3.8%  | 89.2 ± 1.7%  | 113.5 ± 5.3%       |  |  |  |  |
| 14        | 113.2 ± 2.2%                                             | 74.8 ± 3.6%  | 42.5 ± 0.7%   | 81.7 ± 4.6%  | 87.6 ± 12.4%       |  |  |  |  |
| 15        | 144.8 ± 5.0%                                             | 85.9 ± 1.7%  | 91.9 ± 7.3%   | 75.2 ± 2.4%  | 140.2 ± 1.2%       |  |  |  |  |
| 16        | 56.9 ± 5.2%                                              | 66.3 ± 2.0%  | 90.3 ± 2.7%   | 79.0 ± 5.2%  | 69.2 ± 2.8%        |  |  |  |  |
| 17        | 10.5 ± 1.3%                                              | 1.9 ± 0.1%   | 12.1 ± 0.0%   | 5.9 ± 0.2%   | <b>3.2 ± 0.9%</b>  |  |  |  |  |
| 18        | 108.1 ± 3.6%                                             | 90.3 ± 1.8%  | 94.2 ± 5.2%   | 74.3 ± 3.0%  | 87.4 ± 3.8%        |  |  |  |  |
| 19        | 97.5 ± 4.7%                                              | 86.5 ± 2.2%  | 109.0 ± 2.7%  | 95.8 ± 0.9%  | 110.8 ± 6.1%       |  |  |  |  |
| 20        | 59.9 ± 6.4%                                              | 64.8 ± 1.2%  | 80.6 ± 0.3%   | 76.1 ± 0.1%  | 66.5 ± 6.9%        |  |  |  |  |
| 21        | 19.0 ± 0.3%                                              | 16.0 ± 1.3%  | 48.7 ± 8.6%   | 63.0 ± 11.4% | <b>39.4 ± 0.5%</b> |  |  |  |  |
| 22        | 16.9 ± 0.8%                                              | 64.3 ± 8.1%  | 9.8 ± 1.0%    | 67.3 ± 0.4%  | 66.5 ± 1.5%        |  |  |  |  |
| 23        | 117.6 ± 4.9%                                             | 88.6 ± 11.8% | 91.9 ± 0.0%   | 82.3 ± 2.3%  | 81.1 ± 5.5%        |  |  |  |  |

**Table S1.** Cell viability results from screening of compounds **2-23** (50  $\mu$ M), 24 h, CellTiter-Glo assay (Promega). Compound "hits" (<50% percent of DMSO control) are shown in red.

| Cmp | MW  | TPSA <sup>a</sup> | cLogP <sup>b</sup> | cLogP <sup>c</sup> | Solby <sup>d</sup> | Log Kp <sup>e</sup> | Drug    | Drug-likeness (Number of violations) <sup>f</sup> |       |      | Drug score <sup>g</sup> |      |
|-----|-----|-------------------|--------------------|--------------------|--------------------|---------------------|---------|---------------------------------------------------|-------|------|-------------------------|------|
| d   |     |                   | (calc)             | (expmtl)           |                    |                     | Lipinsk | Ghose                                             | Veber | Egan | Muegge                  |      |
|     |     |                   |                    |                    |                    |                     | i       |                                                   |       |      |                         |      |
| 2   | 368 | 100.4             | 2.52               | 3.69               | -4.04              | -6.06               | 0       | 0                                                 | 0     | 0    | 0                       | 0.38 |
| 3   | 335 | 54.6              | 3.70               | 3.96               | -5.1               | -5.40               | 0       | 0                                                 | 0     | 0    | 0                       | 0.10 |
| 4   | 351 | 63.8              | 3.37               | 3.57               | -4.77              | -5.78               | 0       | 0                                                 | 0     | 0    | 0                       | 0.11 |
| 5   | 356 | 54.6              | 3.89               | 4.30               | -5.49              | -5.34               | 0       | 0                                                 | 0     | 0    | 0                       | 0.09 |
| 6   | 389 | 54.6              | 4.42               | 4.48               | -5.53              | -5.36               | 0       | 1                                                 | 0     | 1    | 0                       | 0.08 |
| 7   | 339 | 54.6              | 3.67               | 3.70               | -5.07              | -5.62               | 0       | 0                                                 | 0     | 0    | 0                       | 0.11 |
| 8   | 321 | 54.6              | 3.24               | 3.49               | -4.75              | -5.58               | 0       | 0                                                 | 0     | 0    | 0                       | 0.11 |
| 9   | 366 | 100.4             | 2.79               | 3.59               | -5.21              | -5.97               | 0       | 0                                                 | 0     | 0    | 0                       | 0.11 |
| 10  | 356 | 54.6              | 3.88               | 4.29               | -5.49              | -5.34               | 0       | 0                                                 | 0     | 0    | 0                       | 0.09 |
| 11  | 339 | 54.6              | 3.67               | 3.77               | -5.07              | -5.62               | 0       | 0                                                 | 0     | 0    | 0                       | 0.11 |
| 12  | 356 | 54.6              | 3.88               | 3.67               | -5.49              | -5.34               | 0       | 0                                                 | 0     | 0    | 0                       | 0.09 |
| 13  | 339 | 54.6              | 3.59               | 3.38               | -5.07              | -5.62               | 0       | 0                                                 | 0     | 0    | 0                       | 0.11 |
| 14  | 357 | 54.6              | 3.94               | 3.67               | -5.38              | -5.65               | 0       | 1                                                 | 0     | 0    | 0                       | 0.10 |
| 15  | 357 | 54.6              | 3.96               | 3.13               | -5.38              | -5.65               | 0       | 1                                                 | 0     | 0    | 0                       | 0.10 |
| 16  | 357 | 54.6              | 3.96               | 4.16               | -5.38              | -5.65               | 0       | 1                                                 | 0     | 0    | 0                       | 0.10 |
| 17  | 411 | 54.6              | 4.80               | 4.43               | -6.32              | -5.77               | 1       | 1                                                 | 0     | 1    | 0                       | 0.08 |
| 18  | 425 | 54.6              | 4.91               | 5.17               | -6.96              | -4.87               | 1       | 1                                                 | 0     | 1    | 1                       | 0.04 |
| 19  | 259 | 54.6              | 2.15               | 1.80               | -4.51              | -6.31               | 0       | 0                                                 | 0     | 0    | 0                       | 0.14 |
| 20  | 435 | 54.6              | 4.50               | 4.99               | -6.32              | -5.33               | 1       | 1                                                 | 0     | 1    | 1                       | 0.11 |
| 21  | 482 | 54.6              | 4.54               | 5.08               | -6.5               | -5.65               | 1       | 2                                                 | 0     | 0    | 1                       | 0.12 |
| 22  | 388 | 79.9              | 4.25               | 2.15               | -5.19              | -5.22               | 0       | 1                                                 | 0     | 0    | 0                       | 0.46 |
| 23  | 383 | 89.1              | 3.65               | 0.86               | -4.47              | -5.66               | 0       | 0                                                 | 0     | 0    | 0                       | 0.57 |

a) TPSA = Topological polar surface area; calculated by SwissADME. b) Calculated by SwissADME (average of 5 calculations – iLOGP; XLOGP3; WLOGP; MLOGP; SILICOS-IT). c) Experimentally obtained. d) Solubility (Log S) calculated by OSIRIS. e) Indicates skin permeation in cm/s; calculated by SwissADME. f) Calculated by SwissADME. g) Calculated by OSIRIS.

Table S2. Drug-likeness and physicochemical properties of compounds 2-23 as predicted by OSIRIS and SwissADME.

| Reference Compounds |        |                    |        |         |        |  |  |  |
|---------------------|--------|--------------------|--------|---------|--------|--|--|--|
| Compound            | Tr     | T0 (ethyl acetate) | k      | log(k)  | log(P) |  |  |  |
| Nitrobenzene        | 4.528  | 3.809              | 0.1888 | -0.7240 | 1.9    |  |  |  |
| Toluene             | 6.93   | 3.814              | 0.8170 | -0.0878 | 2.7    |  |  |  |
| Naphthalene         | 8.466  | 3.827              | 1.2122 | 0.0836  | 3.6    |  |  |  |
| Biphenyl            | 11.637 | 3.83               | 2.0384 | 0.3093  | 4.0    |  |  |  |
| Bibenzyl            | 18.179 | 3.831              | 3.7452 | 0.5735  | 4.8    |  |  |  |
| DDT                 | 41.243 | 3.827              | 9.7768 | 0.9902  | 6.5    |  |  |  |



Figure S3. Calibration curve and raw data for calculation of LogP values of known calibration compounds.<sup>5</sup>

### In Silico Predicted Properties (obtained using SwissADME):<sup>6</sup>

For a description of BOILED Egg, see reference 7.



SMILES: [O-][N+](=O)C1=CC=C(C=C1)S(=O)(=O)NC1C2C=CC=CC2C2=C1C=CC=C2

Figure S4. BOILED EGG and graphical physicochemical property summary of product 2.



```
SMILES: CC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2
```

Figure S5. BOILED EGG and graphical physicochemical property summary of product 3.



SMILES: COC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S6. BOILED EGG and graphical physicochemical property summary of product 4.



## SMILES: CIC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S7. BOILED EGG and graphical physicochemical property summary of product 5.



# SMILES: FC(F)(F)C1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S8. BOILED EGG and graphical physicochemical property summary of product 6.



SMILES: FC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S9. BOILED EGG and graphical physicochemical property summary of product 7.



# SMILES: O=S(=O)(NC1C2=C(C=CC=C2)C2=C1C=CC=C2)C1=CC=CC=C1

Figure S10. BOILED EGG and graphical physicochemical property summary of product 8.



## SMILES: [O-][N+](=O)C1=CC(=CC=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S11. BOILED EGG and graphical physicochemical property summary of product 9.



# SMILES: CIC1=CC(=CC=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S12. BOILED EGG and graphical physicochemical property summary of product 10.



# SMILES: FC1=CC(=CC=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S13. BOILED EGG and graphical physicochemical property summary of product 11.



### SMILES: CIC1=CC=CC=C1S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S14. BOILED EGG and graphical physicochemical property summary of product 12.



Figure S15. BOILED EGG and graphical physicochemical property summary of product 13.



# SMILES: FC1=CC=C(C(F)=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S16. BOILED EGG and graphical physicochemical property summary of product 14.



# SMILES: FC1=CC=CC(F)=C1S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S17. BOILED EGG and graphical physicochemical property summary of product 15.



Figure S18. BOILED EGG and graphical physicochemical property summary of product 16.



### SMILES: FC1=C(F)C(F)=C(C(F)=C1F)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S19. BOILED EGG and graphical physicochemical property summary of product 17.



# SMILES: CIC1=CC(CI)=C(C(CI)=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=CC=C2

Figure S20. BOILED EGG and graphical physicochemical property summary of product 18.



Figure S21. BOILED EGG and graphical physicochemical property summary of product 19.



### SMILES: CIC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=C(Br)C=C2

Figure S22. BOILED EGG and graphical physicochemical property summary of product 20.



## SMILES: CIC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(C=CC=C2)C2=C1C=C(I)C=C2

Figure S23. BOILED EGG and graphical physicochemical property summary of product 21.



## SMILES: CIC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(SC3=C1C=CC=C3)C=CC=C2

Figure S24. BOILED EGG and graphical physicochemical property summary of product 22.



# SMILES: COC1=CC=C(C=C1)S(=O)(=O)NC1C2=C(SC3=C1C=CC=C3)C=CC=C2

Figure S25. BOILED EGG and graphical physicochemical property summary of product 23.

### **References:**

1. Yang, W.; Chen, C.; Chan, K. S. Hydrodebromination of Allylic and Benzylic Bromides with Water Catalyzed by a Rhodium Porphyrin Complex. *Dalt. Trans.* **2018**, *47* (37), 12879–12883. <u>https://doi.org/10.1039/c8dt02168f</u>.

2. George, S. R. D.; Elton, T. E.; Harper, J. B. Electronic Effects on the Substitution Reactions of Benzhydrols and Fluorenyl Alcohols. Determination of Mechanism and Effects of Antiaromaticity. *Org. Biomol. Chem.* **2015**, *13* (43), 10745–10750. <u>https://doi.org/10.1039/c5ob01637a.</u>

3. Guangwen, L.; Jianping, L.; Guocheng, N. Synthetic Method of Xanthene-9-Formic Acid. CN107353275A, June 12, 2017.

4. Yi, C.; Tian, W.; Song, B.; Zheng, Y.; Qi, Z.; Qi, Q.; Sun, Y. A New Turn-off Fluorescent Chemosensor for Iron (III) Based on New Diphenylfluorenes with Phosphonic Acid. *J. Lumin.* **2013**, *141*, 15–22. https://doi.org/10.1016/j.jlumin.2013.03.017.

5. OECD Test No. 117: Partition Coefficient (n-octanol/water), HPLC Method, 2004.

6. Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports* **2017**, *7* (1), 42717.

7. Daina, A.; Zoete, V., A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. *ChemMedChem* **2016**, *11* (11), 1117-1121.

#### **Product Characterization:**

All products were isolated according to general procedure unless otherwise noted and display the characterizational data shown below.



Figure S26. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 2.



Figure S27. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 3.



Figure S28. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 4.



Figure S29. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 5.



Figure S30. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 6.



Figure S31. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 7.



Figure S32. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 8.



Figure S33. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 9.



Figure S34. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **10**.



**Figure S35.** <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **11**.



Figure S36. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 12.



**Figure S37.** <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **13**.

S26



**Figure S38.** <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **14**.

S27



Figure S39. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 15.



**Figure S40.** <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **16**.



**Figure S41.** <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **17**.



Figure S42. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 18.



Figure S43. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **19**.



Figure S44. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 20.



Figure S45. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 21.



**Figure S46.** <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product **22**.

S35



Figure S47. <sup>1</sup>H NMR and <sup>13</sup>C NMR of Product 23.