Construction of fully substituted carbon centers containing a heteroatom and a CF₃ group *via p*-quinone methides generated *in situ*

Kyu Terashima,^a Tomoko Kawasaki-Takasuka,^a and Takashi Yamazaki^{*a}

a Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan. E-mail: tyamazak@cc.tuat.ac.jp

Index

General information2
General procedure for the reaction of 2 with amines, followed by deprotection (GP1)
General procedure for the reaction of 2 with amines, followed by TBS protection (GP2)3
General procedure for the reaction of 2 with amines in the presence of acid as the additive (GP3)
Table S1 Investigation of the reaction condition with 2aa and TsNH2
General procedure of reaction of amide or imide (GP4)16
Table S2 Optimisation of the reaction condition with thiol and 2aa
General procedure for the reaction with thiols (GP5)18
Deprotection of the TBS group in 4ak24
Reactions of 6aa with aniline or <i>p</i> -anisidine in the absence or presence of TBSOAc24
Control experiments
¹ H and ¹³ C NMR spectra29

General information

Most of reactions where an organic solvent was employed were performed under argon with magnetic stirring using a flame-dried glassware. Unless otherwise noted, materials were obtained from commercial suppliers including anhydrous THF, Et₂O, and CH₂Cl₂, and were used without further purification. DMSO was freshly dried over 4Å MS which was activated by irradiating with a microwave for 1 min and heating under vacuum for 1 h. The substrates **2aa-ea** and **2ab** were prepared following to our previous report¹.

Analytical thin-layer chromatography (TLC) was routinely used for monitoring reactions by generally using a mixture of hexane and ethyl acetate. Spherical neutral silica gel $(63-210 \ \mu m)$ was employed for usual column chromatography.

¹H (300.40 MHz), ¹³C (75.45 Hz), and ¹⁹F (282.65 Hz) NMR spectra were recorded in CDCl₃ unless otherwise noted, and chemical shifts were reported in parts per million (ppm), downfield from internal tetramethylsilane (Me₄Si: δ 0.00, for ¹H and ¹³C) or hexafluorobenzene (C₆F₆: δ –163.00 for ¹⁹F). Data were tabulated in the following order: number of protons or fluorines, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sept, septet; m, multiplet; b, broad peak), coupling constants in Hertz. In the case of ¹³C NMR, because it is difficult to observe perfluoroalkyl carbon atoms even after long time data acquisition due to multiple coupling, these data are not shown. Infrared (IR) spectra were reported in wave numbers (cm⁻¹). High resolution mass spectrometry was performed by the positive ionization mode. Melting points were measured by Differential Scanning Calorimetry.

General procedure for the reaction of 2 with amines, followed by deprotection (GP1)

To a test tube under an argon atmosphere were introduced **2aa** (0.1682 g, 0.4000 mmol), an amine (0.48 mmol) and 4.0 mL of DMSO. In some case, Li_2CO_3 (0.0014 g, 0.020 mmol, 5 mol%) was also added. This reaction mixture was stirred for appropriate time at 50 °C (see Table 2). After cooling to 30 °C, KF (0.0350 g, 0.602 mmol, 1.5 eq.) was added to the reaction mixture which was further stirred for 30 min at the same temperature. After addition of H₂O, the reaction mixture was extracted three times with Et₂O or AcOEt and the combined organic phase was dried over anhydrous Na₂SO₄. After filtration, evaporation of the volatiles afforded a crude material which was purified by silica gel column chromatography to furnish the desired product.

General procedure for the reaction of 2 with amines, followed by TBS protection (GP2)

Following to **GP1**, after cooling to 30 °C and quenched with H_2O , the mixture was extracted three times with AcOEt and the combined organic phase was washed with sat. NaCl aq. After drying over anhydrous Na₂SO₄, evaporation of the volatiles afforded a crude material which was introduced to a 30 mL round-bottomed flask containing a mixture of imidazole (0.0544 g, 0.799 mmol, 2.0 eq.) and CH_2Cl_2 (0.8 mL). To this solution was added TBSCl (0.0906 g, 0.601 mmol, 1.5 eq.) at 30 °C, and the mixture was stirred for 1 h at that temperature. After the reaction mixture was quenched with sat. NH₄Cl aq., usual workup afforded a crude product which was purified by column chromatography to give the desired product.

General procedure for the reaction of 2 with amines in the presence of acid as the additive (GP3)

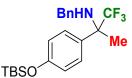
To a test tube were introduced *p*-TsOH \cdot H₂O (0.0038 g, 0.020 mmol, 5 mol%) or AcOH (0.0144 g, 0.240 mmol, 60 mol%), an amine (0.48 mmol) and 2.0 mL of DMSO. This reaction mixture was stirred for 5 min at 30 °C where, **2aa** (0.1682 g, 0.4000 mmol) in DMSO 2.0 mL was added, and the resultant mixture was stirred for appropriate time at 50 °C. After cooling to 30 °C, depending on the desired product, two types of procedures, deprotection or protection following to **GP1** or **GP2**, respectively, were selected. In both cases, after the whole mixture was quenched with H₂O, the resultant solution was extracted three times with AcOEt and the combined organic phase was successively washed with sat. NaHCO₃ and sat. NaCl aq. The usual workup and chromatographic separation afforded the desired products.

4-(2-Benzylamino-1,1,1-trifluoroprop-2-yl)phenol (3aa)

Following to **GP1**, benzylamine (0.0515 g, 0.0481 mmol) was used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **3aa** as a pale-yellow oil (0.0942 g, 0. 3189 mmol, 80%).

Rf = 0.33 (hexane: AcOEt = 4:1).

¹H NMR: δ 1.72 (s, 3H), 1.85 (brs, 1H), 3.56 (d, *J* = 12.6 Hz, 1H), 3.65 (d, *J* = 12.9 Hz, 1H), 4.84 (brs, 1H), 6.86 (d, *J* = 8.7 Hz, 2H), 7.21-7.41 (m, 5H), 7.52 (d, *J* = 8.4 Hz, 2H).


¹³C NMR: δ 21.1, 46.7, 62.8 (q, *J* = 25.5 Hz), 115.3, 126.7 (q, *J* = 286.3 Hz), 127.2, 128.1, 128.5, 129.1, 129.3, 139.7, 155.4.

¹⁹F NMR: δ –77.78 (s).

IR (CHCl₃) v 3340, 3066, 3033, 3010, 1614, 1515, 1455, 1381, 1278, 1156 cm⁻¹.

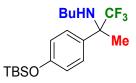
HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₆H₁₆F₃NO₂, 296.1262; Found, 296.1233.

2-Benzylamino-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4aa).

Following to **GP2**, benzylamine (0.0515 g, 0.0481 mmol) was used, and the crude product was purified by column chromatography (hexane: $CH_2Cl_2 = 4:1$) to give the desired product **4aa** as a colorless oil (0.1460 g, 0.3564 mmol, 89%).

Rf = 0.37 (hexane: $CH_2Cl_2 = 4:1$).

¹H NMR: δ 0.21 (s, 6H), 0.99 (s, 9H), 1.71 (s, 3H), 1.84 (s, 1H), 3.56 (d, *J* = 12.9 Hz, 1H), 3.64 (d, *J* = 12.9 Hz, 1H), 6.82-6.40 (m, 2H), 7.23-7.38 (m, 5H), 7.49 (d, *J* = 8.7 Hz, 2H).


¹³C NMR: δ –4.4, 18.2, 21.7 (q, *J* = 1.8 Hz), 25.6, 46.7, 62.8 (q, *J* = 25.4 Hz), 119.7, 127.07, 127.09 (q, *J* = 286.3 Hz), 128.0, 128.4, 128.8 (q, *J* = 1.3 Hz), 130.2, 140.3, 155.5.

¹⁹F NMR: δ –77.46 (s).

IR (CHCl₃) v 2957, 2931, 2886, 2858, 1607, 1510, 1472, 1270, 1150, 916 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₂₃H₃₀F₃NOSi, 409.2049; Found, 409.2021.

2-Butylamino-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4ab).

Following to **GP2**, butylamine (0.0357 g, 0.488 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 20:1 as an eluent to give the desired product **4ab** as a colorless oil (0.1310 g, 0.3488 mmol, 87%).

Rf = 0.37 (hexane: AcOEt = 20:1).

¹H NMR: δ 0.21 (s, 6H), 0.88 (t, *J* = 7.2 Hz, 1H), 0.98 (s, 9H), 1.26-1.49 (m, 4H), 1.63 (s, 3H), 2.33 (dt, *J* = 11.1, 7.2 Hz, 1H), 2.46 (dt, *J* = 11.1, 7.2 Hz, 1H), 6.79-6.84 (m, 2H), 7.38 (d, *J* = 8.7 Hz, 2H). ¹³C NMR: δ –4.4, 13.9, 18.1, 20.3, 21.1, 25.6, 31.9, 41.9, 62.5 (q, *J* = 25.5 Hz), 119.6, 127.1 (q, *J* = 286.4 Hz), 128.7, 130.5, 155.3.

¹⁹F NMR: δ –78.14 (s).

IR (CHCl₃) v 2959, 2931, 2859, 1608, 1511, 1463, 1268, 1157, 917, 840 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₉H₃₂F₃NOSi, 375.2205; Found, 375.2218.

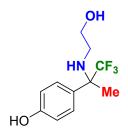
4-(1,1,1-Trifluoro-2-propalgylminoprop-2-yl)phenol (4ac)

Following to **GP2**, propalgylamine (0.0260 g, 0.472 mmol, 1.2 eq.) was used was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 4:1 as an eluent to give the desired product **4ac** as a slightly yellow oil (0.1230 g, 0.3874 mmol, 97%).

Following to **GP3**, cyclohexylamine (0.0260 g, 0.472 mmol, 1.2 eq.) and AcOH (0.0144 g, 0.240 mmol, 60 mol%) were used, and the same purification process to the crude product similarly afforded **4ac** (0.1160 g, 0.3676 mmol, 92%).

Rf = 0.22 (hexane: $CH_2Cl_2 = 4:1$).

¹H NMR: δ 0.21 (s, 6H), 0.98 (m, 6H) 1.62 (brs, 1H), 1.67 (s, 3H), 2.21 (t, *J* = 2.7 Hz, 1H), 3.25 (s, 2H), 6.81-6.86 (m, 2H), 7.40 (d, *J* = 8.4 Hz, 2H).


¹³C NMR: δ –4.4, 18.1, 21.2, 25.6, 32.2 62.8 (q, *J* = 26.0 Hz), 71.2, 82.1, 119.8, 126.7 (q, *J* = 285.7 Hz), 128.8, 129.1, 155.7.

¹⁹F NMR: δ –77.96 (s).

IR (CHCl₃) v 3308, 3018, 2958, 2931, 2858, 1608, 1512, 1270, 1157, 917 cm⁻¹.

HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₈H₂₇F₃NOSi, 358.1814; Found, 358.1820.

4-[1,1,1-Trifluoro-{2-(hydroxyethyl)amino}prop-2-yl)]phenol (3ad).

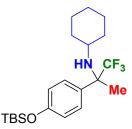
Following to **GP1**, ethanolamine (0.0293 g, 0.480 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 to 1:2 as an eluent to give the desired product **3ad** as a pale-yellow solid (0.0801 g, 0.321 mmol, 80%).

Following to **GP3**, ethanolamine (0.0291 g, 0.480 mmol, 1.2 eq.) and *p*-TsOH (0.0038 g, 0.0020 mmol, 5 mol%) were used, and the same purification process to the crude product similarly afforded **3ad** (0.0856 g, 0.343 mmol, 86%).

Rf = 0.47 (hexane: AcOEt = 1:2).

m.p.: 122.9 °C.

¹H NMR (acetone-*d*₆): δ 1.16 (s, 1H), 1.52 (s, 3H), 2.33 (dt, *J* = 10.8, 5.1 Hz, 1H), 2.46 (dt, *J* = 10.8, 5.1 Hz, 1H), 3.49 (q, *J* = 5.1 Hz, 2H), 3.59 (t, *J* = 5.1 Hz, 1H), 6.69-6.74 (m, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 8.33 (s, 1H).


¹³C NMR (acetone- d_6): δ 20.7, 45.1, 62.3, 62.9 (q, J = 24.9 Hz), 115.8, 128.2 (q, J = 284.9 Hz), 129.2, 130.0, 158.0.

¹⁹F NMR (acetone- d_6): δ –76.46 (s).

IR (KBr) v 3414, 3252, 2926, 2849, 1615, 1522, 1462, 1278, 1160, 1077 cm⁻¹.

HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₁H₁₅F₃NO₂, 250.1055; Found, 250.1050.

2-(Cyclohexylamino)-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4ae).

Following to **GP2**, cyclohexylamine (0.0476 g, 0.480 mmol, 1.2 eq.) was used was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 4:1 as an eluent to give the desired product

4ae as a colorless oil (0.0985 g, 0.248 mmol, 62%).

Following to **GP3**, cyclohexylamine (0.0476 g, 0.480 mmol, 1.2 eq.) and *p*-TsOH \cdot H₂O (0.0038 g, 0.020 mmol, 5 mol%) were used, and the same purification process to the crude product similarly afforded **4ae** (0.1410 g, 0.3511 mmol, 88%).

Rf = 0.33 (hexane: $CH_2Cl_2 = 3:1$).

¹H NMR: δ 0.21 (s, 6H), 0.92-1.19 (m, 6H) 0.99 (s, 9H), 1.59-1.71 (m, 4H), 1.67 (s, 3H), 1.76-1.81 (m, 1H), 2.34-2.42 (m, 1H), 6.78-6.83 (m, 2H), 7.42 (d, *J* = 8.4 Hz, 2H).

¹³C NMR: δ –4.4, 18.2, 21.5, 25.4, 25.5, 25.6, 25.7, 36.1, 36.6, 51.4, 62.6 (q, *J* = 25.5 Hz), 119.4, 127.1 (q, *J* = 288.0 Hz), 128.9, 132.0, 155.0.

¹⁹F NMR: δ –78.65 (s).

IR (CHCl₃) v 2931, 2857, 1608, 1511, 1471, 1270, 1156, 1076, 916, 840 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₂₁H₃₄F₃NOSi, 401.2362; Found, 401.2376.

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-(N-pyrrolidino)propane (4ag).

TBSO

Following to **GP2**, pyrrolidine (0.0342 g, 0.481 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 20:1 as an eluent to give the desired product **4ag** as a colorless oil (0.1261 g, 0.3376 mmol, 84%).

Rf = 0.71 (hexane: AcOEt = 10:1).

¹H NMR: δ 0.20 (s, 6H), 0.98 (s, 9H), 1.55 (s, 3H), 1.67-1.74 (m, 4H), 2.60-2.64 (m, 4H), 6.76-6.81 (m, 2H), 7.45 (d, *J* = 8.7 Hz, 2H).

¹³C NMR: δ –4.4, 13.6, 18.2, 23.8, 25.6, 46.7 (q, *J* = 1.3 Hz), 64.5 (q, *J* = 24.9 Hz), 119.3, 127.3 (q, *J* = 288.8 Hz), 128.8, 132.6, 155.2.

¹⁹F NMR: δ –72.80 (s).

IR (CHCl₃) v 2958, 2632, 2858, 1607, 1509, 1472, 1267, 1150, 916, 840 cm⁻¹.

HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₉H₃₀F₃NOSi, 373.2049; Found, 373.2074.

4-{1,1,1-Trifluoro-(N-morpholino)prop-2-yl}phenol (3ah).

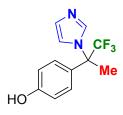

Following to **GP1**, morpholine (0.0420 g, 0.482 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 to 2:1 as an eluent to give the desired product **3ah** as a pale-yellow oil (0.0915 g, 0.3324 mmol, 83%).

Following to **GP3**, cyclohexylamine (0.0476 g, 0.480 mmol, 1.2 eq.) and *p*-TsOH \cdot H₂O (0.0038 g, 0.020 mmol, 5 mol%) were used, and the same purification process to the crude product similarly afforded **3ah** (0.1021 g, 0.3709 mmol, 93%).

Rf = 0.13 (hexane:AcOEt = 1:4). ¹H NMR: δ 1.54 (s, 3H), 2.64-2.67 (m, 4H), 3.67-3.70 (m, 4H), 5.14 (brs, 1H), 6.78-6.84 (m, 2H), 7.50 (d, J = 8.7 Hz, 2H). ¹³C NMR: δ 17.3, 47.4, 66.9 (q, J = 23.9 Hz), 67.8 115.1, 127.3 (q, J = 287.4 Hz), 128.8, 131.2, 155.7.

IR (CHCl₃) v 3304, 3003, 2915, 2857, 1615, 1514, 1377, 1264, 1145, 1109 cm⁻¹. HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₃H₁₆F₃NO₂, 275.1133; Found, 275.1105.

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-phenylhydrazinopropane (4ai)



Following to **GP2**, phenylhydrazine (0.0860 g, 0.795 mmol, 2.0 eq.) and Li_2CO_3 (0.0014 g, 0.019 mmol, 5 mol%) were used, and the crude product was purified by silica gel column chromatography using hexane as an eluent to give the desired product **4ai** as a yellow oil (0.1123 g, 0.2735 mmol, 68% (without Li₂CO₃, 0.0854 g, and usage of 1.2 eq. of phenylhydrazine 0.208 mmol, 52%)).

Following to **GP3**, phenylhydrazine (0.0520 g, 0.481 mmol, 1.2 eq.) and AcOH (0.0144 g, 0.240 mmol, 60 mol%) were used, and the same purification process to the crude product similarly afforded **4ai** (0.1101 g, 0.2682 mmol, 67%).

Rf = 0.27 (hexane:AcOEt = 3:1). m.p.: 134.1 °C. ¹H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 1.26 (brs, 1H), 1.79 (s, 3H), 6.81 (d, J = 8.7 Hz, 2H), 7.34 (d, J= 8.4 Hz, 2H), 7.48-7.51 (m, 3H), 7.76-7.81 (m, 2H). ¹³C NMR: δ -4.4, 17.3 (q, J = 1.9 Hz), 18.2, 25.6, 76.7 (q, J = 26.1 Hz), 119.7, 122.7, 126.2 (q, J = 283.9 Hz), 129.1, 129.2 (q, J = 1.3 Hz), 130.1, 131.5, 151.7, 155.7. ¹⁹F NMR: δ -76.38 (s). IR (CHCl₃) v 3007, 2957, 2931, 2857, 1608, 1510, 1472, 1270, 1178, 916 cm⁻¹. HRMS (FAB+, m/z): [M]⁺ Calcd for C₂₁H₂₉F₃N₂OSi, 410.2001; Found, 410.2002.

4-{1,1,1-Trifluoro-(1*H*-imidazolyl)prop-2-yl}phenol (3aj).

Following to **GP1**, imidazole (0.0544 g, 0.799 mmol, 2.0 eq.) and Li_2CO_3 (0.0014 g, 0.019 mmol, 5 mol%) were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 2:1 to 0:1 as an eluent to give the desired product **3aj** as a white solid (0.0863 g, 0.337 mmol, 84% (without Li_2CO_3 and usage of 1.2 eq. of imidazole: 0.0880 g, 0.0 343 mmol, 86%)).

Following to **GP3**, imidazole (0.0328 g, 0.482 mmol, 1.2 eq.) and AcOH (0.0144 g, 0.240 mmol, 60 mol%) were used, and the same purification process to the crude product similarly afforded **3aj** (0.0905 g, 0.353 mmol, 88%).

Rf = 0.33 (hexane: AcOEt = 1:2).

m.p.: 155.6 °C.

¹H NMR (acetone- d_6): δ 2.17 (s, 3H), 6.89 (d, J = 8.7 Hz, 2H), 7.00 (s, 1H), 7.08 (s, 1H), 7.13 (d, J =

8.7 Hz, 2H), 7.68 (s, 1H), 8.88 (brs, 1H)


¹³C NMR (acetone-*d*₆): δ 24.2, 66.7 (q, *J* = 27.9 Hz), 116.5, 120.3, 126.4 (q, *J* = 285.1 Hz), 128.3, 128.6 (q, *J* = 1.9 Hz), 129.2, 137.9, 159.3.

¹⁹F NMR: δ –74.83 (s).

IR (KBr) v 3401, 3141, 3140, 2925, 2819, 1615, 1522, 1517, 1385, 1148, 818 cm⁻¹.

HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₂H₁₂F₃N₂O, 257.0902; Found, 257.0882.

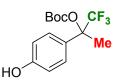
2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-phenylaminopropane (4ak).

Following to **GP2**, aniline (0.1117 g, 1.118 mmol, 3.0 eq.) and Li_2CO_3 (0.0014 g, 0.019 mmol, 5 mol%) were used, and the crude product was purified by silica gel column chromatography using hexane: AcOEt = 30:1 as an eluent to give the desired product **4ak** as a colorless oil (0.0987 g, 0.2495 mmol, 62% (without Li₂CO₃ and usage of 1.2 eq. of aniline: 0.1411 g, 0.3567 mmol, 89%)).

Following to **GP3**, aniline (0.0447 g, 0.480 mmol, 1.2 eq.) and AcOH (0.0144 g, 0.240 mmol, 60 mol%) were used, and the same purification process to the crude product the similarly afforded **4ak** (0.1376 g, 0.3479 mmol, 87%).

Rf = 0.27 (hexane: $CH_2Cl_2 = 4:1$).

¹H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 1.85 (s, 3H), 4.22 (s, 1H), 6.35-6.38 (m, 2H), 6.68-6.74 (m, 1H), 6.82-6.86 (m, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 7.46 (d, *J* = 8.7 Hz, 2H).


¹³C NMR: δ –4.4, 18.2, 20.2, 25.6, 62.6 (q, *J* = 26.1 Hz), 116.5, 118.9, 120.0, 126.4 (q, *J* = 287.1 Hz), 128.7, 129.2, 129.5, 144.0, 155.8.

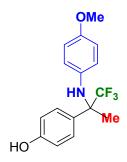
¹⁹F NMR: δ –79.89 (s).

IR (CHCl₃) v 3416, 3006, 2956, 2931, 2886, 2858, 1606, ,1509, 1270, 1158 cm⁻¹.

HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₂₁H₂₉F₃NOSi, 396.1971; Found, 396.1995.

4-[{2-(tert-Butoxycarbonyl)oxy}-1,1,1-trifluoroprop-2-yl}phenol (6aa).

Following to **GP3**, aniline (0.0442 g, 0.475 mmol, 1.2 eq.) and *p*-TsOH \cdot H₂O (0.0038 g, 0.020 mmol, 5 mol%) were used, and the reaction mixture was quenched with 1 *M* HCl aq. After usual work up, the crude mixture was purified by column chromatography using hexane:AcOEt = 3:1 as an eluent to give **6a** as a pale-yellow solid (0.0425 g, 0.139 mmol, 35%). (58% of **2aa** was recovered (0.0969 g, 0.2304 mmol).)


Rf = 0.33 (hexane:AcOEt = 3:1).

m.p.: 117.5 °C.

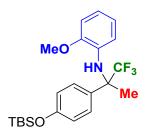
¹H NMR: δ 1.42 (s, 9H), 2.09 (q, *J* = 1.2 Hz, 3H), 5,12 (brs, 1H), 6.78-6.83 (m, 2H), 7.81 (d, *J* = 8.4

Hz, 2H). ¹³C NMR: δ 18.3, 27.8, 82.1 (q, *J* = 26.0 Hz), 83.6, 115.3, 123.9 (q, *J* = 283.8 Hz), 127.2, 127.9, 150.5, 156.4. ¹⁹F NMR: δ –82.19 (s). IR (KBr) v 3432, 3074, 2997, 2937, 1726, 1616, 1517, 1464, 1175, 917 cm⁻¹. HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₄H₁₇F₃O₄, 306.1079; Found, 306.1100.

4-[1,1,1-Trifluoro-2-{(4-methoxyphenyl)amino}prop-2-yl}phenol (3al).

Following to **GP1**, *p*-anisidine (0.0591 g, 0.480 mmol, 1.2 eq.) and Li_2CO_3 (0.0014 g, 0.019 mmol, 5 mol%) were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **3al** as a colorless oil (0.0955 g, 0.307 mmol, 72% (without Li₂CO₃, 0.1159 g, 0.3723 mmol, 93%)).

Following to **GP3**, *p*-anisidine (0.0592 g, 0.481 mmol, 1.2 eq.) and AcOH (0.0144 g, 0.240 mmol, 60 mol%) were used, and the same purification process to the crude product the similarly afforded **3al** (0.1222 g, 0.3925 mmol, 98%).


Rf = 0.23 (hexane: AcOEt = 4:1).

¹H NMR: δ 1.78 (s, 3H), 3.69 (s, 3H), 3.93 (brs, 1H), 4.91 (brs, 1H), 6.37-6.40 (m, 2H), 6.60-6.66 (m, 2H), 6.83-6.87 (m, 2H), 7.51 (d, *J* = 8.4 Hz, 2H).

¹³C NMR: δ 20.1, 55.6, 62.7 (q, *J* = 26.1 Hz), 114.3, 115.3, 118.9, 126.4 (q, *J* = 285.1 Hz), 129.3, 129.4, 137.7, 153.1, 155.7.

¹⁹F NMR: δ –79.71 (s).

IR (CHCl₃) v 3382, 3001, 2953, 2836, 1614, 1511, 1462, 1270, 1154, 825 cm⁻¹. HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₆H₁₆F₃NO₂, 311.1133; Found, 311.1152. 2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-(2-methoxyphenyl)amino-propane (4am).

Following to **GP2**, *o*-anisidine (0.0592 g, 0.481 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 4:1$ as an eluent to give the desired product **4am** as a colorless oil (0.0908 g, 0.213 mmol, 53%).

Following to **GP3**, *o*-anisidine (0.0592 g, 0.481 mmol, 1.2 eq.) and AcOH (0.0144 g, 0.240 mmol, 60 mol%) were used, and the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 4:1$ as an eluent to give the desired product **4am** as a colorless oil (0.1357 g, 0.3196 mmol, 80%).

Rf = 0.33 (hexane:CH₂Cl₂ = 4:1).

¹H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 1.84 (s, 3H), 3.89 (s, 3H), 5.04 (s, 1H), 5.98 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.52 (td, *J* = 7.8, 1.5 Hz, 1H) 6.65 (td, *J* = 7.8, 1.5 Hz, 1H), 6.77-6.86 (m, 3H), 7.46 (d, *J* = 8.4 Hz, 2H).

¹³C NMR: δ –4.4, 18.2, 20.1, 25.6, 55.6, 62.3 (q, *J* = 26.7 Hz), 109.7, 114.5, 117.9, 120.0, 120.4, 126.5 (q, *J* = 285.2 Hz), 129.3, 129.7, 133.8, 147.8, 155.7.

¹⁹F NMR: δ –79.89 (s).

IR (CHCl₃) v 3382, 3001, 2953, 2836, 1614, 1511, 1462, 1270, 1154, 825 cm⁻¹.

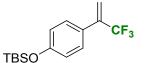
HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₂₂H₃₁F₃NO₂Si, 426.2076; Found, 426.2095.

2-tert-Butyl-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4af).

Following to **GP3**, *t*-butylamine (0.0352 g, 0.481 mmol, 1.2 eq.) and *p*-TsOH•H₂O (0.0038 g, 0.020 mmol, 5 mol%) were used, and the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 4:1 as an eluent to give the desired product **4af** as a colorless oil (0.0284 g, 0.0756 mmol, 19%) in addition to other products of 0.0683 g of 7 (0.225 mmol, 56%) and 0.0111 g of **8** (0.0226 mmol, 6%))

Rf = 0.33 (hexane:CH₂Cl₂ = 4:1).

¹H NMR: δ 0.20 (s, 6H), 0.98 (s, 9H), 1.00 (s, 9H), 1.79 (q, *J* = 0.9 Hz, 3H), 6.77-6.82 (m, 2H), 7.41 (d, *J* = 8.4 Hz, 2H).


¹³C NMR: δ –4.4, 18.2, 21.3, 25.6, 32.4, 51.7, 62.4 (q, *J* = 24.9 Hz), 119.2, 126.8 (q, *J* = 284.6 Hz), 128.9, 133.6, 155.3.

¹⁹F NMR: δ –80.55 (s).

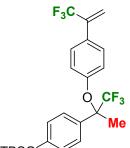
IR (CHCl₃) v 3019, 2959, 2931, 2859, 1607, 1510, 1471, 1270, 1153, 916 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₉H₃₂F₃NOSi, 375.2205; Found, 375.2224.

1-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (7)

Rf = 0.33 (hexane).

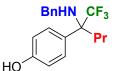
¹H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 5.69 (q, *J* = 1.8 Hz, 1H), 5.86 (q, *J* = 1.2 Hz, 1H), 6.81-6.89 (m, 2H), 7.33 (d, *J* = 8.4 Hz, 2H).


¹³C NMR: δ –4.4, 18.2, 25.7, 118.8 (q, *J* = 6.2 Hz), 120.1, 123.4 (q, *J* = 274.0 Hz), 126.6, 128.6, 138.4 (q, *J* = 29.8 Hz), 156.5.

¹⁹F NMR: δ –66.06 (s).

IR (CHCl₃) v 3019, 2958, 2931, 2859, 1607, 1513, 1267, 1217, 1129, 915, cm⁻¹.

HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₅H₂₂F₃OSi, 303.1392; Found, 303.1384.


2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-{4-(3,3,3-trifluoroprop-1-en-2-yl)phenoxy}propane. (8)

TBSO

¹H NMR: δ 0.23 (s, 6H), 0.99 (s, 9H), 1.85 (s, 3H), 5.66 (q, J = 1.5 Hz, 1H), 5.86 (q, J = 1.2 Hz, 1H) 6.68-6.73 (m, 2H), 6.84-6.89 (m, 2H), 7.25 (d, J = 9.3 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H). ¹³C NMR: δ –4.4, 17.9, 18.2, 25.6, 81.5 (q, J = 29.2 Hz), 119.4 (q, J = 5.6 Hz), 120.0, 123.3 (q, J = 274.1 Hz), 124.7 (q, J = 284.4 Hz), 127.8, 128.2, 128.8, 129.0, 138.1 (q, J = 29.8 Hz), 154.7, 156.5. ¹⁹F NMR: δ –82.56 (s, 3F), –66.13 (s, 3F) IR (CHCl₃) v 3363, 3004, 2952, 1615, 1516, 1459, 1281, 1171, 1121, 970 cm⁻¹. HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₂₄H₂₉F₆O₂Si, 491.1841; Found, 491.1824.

4-{2-(Benzylamino)-1,1,1-trifluoropent-2-yl}phenol. (3ba)

Following to **GP1**, benzylamine (0.0514 g, 0.480 mmol, 1.2 eq.) and **2ba** (0.1794 g, 0.3995 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **3ba** as a pale-yellow oil (0.1193 g, 0.3689 mmol, 92%).

Rf = 0.33 (hexane:AcOEt = 4:1).


¹H NMR: δ 0.90 (t, J = 7.2 Hz, 3H), 1.33-1.46 (m, 2H), 1.62 (s, 1H), 2.04-2.24 (m, 2H), 3.54 (d, J = 11.1 Hz, 1H), 3.75 (d, J = 11.1 Hz, 1H), 5.00 (brs, 1H), 6.81-6.86 (m, 2H), 7.21-7.31 (m, 5H), 7.50 (d, J = 8.1 Hz, 2H).

¹³C NMR: δ 14.3, 16.3, 38.1, 46.9, 65.6 (q, *J* = 25.0 Hz), 115.2, 127.1, 127.6 (q, *J* = 290.7 Hz), 127.8, 128.5, 128.8, 129.4, 140.5, 155.0.

¹⁹F NMR: δ –71.73 (s).

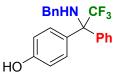
IR (CHCl₃) v 3351, 2965, 2934, 2875, 1608, 1513, 1269, 1165, 916, 761 cm⁻¹. HRMS (FAB+, m/z): [M+H]⁺ Calcd for C₂₃H₃₀F₃O₃Si, 324.1575; Found, 324.1574

4-{2-(Benzylamino)-1,1,1-trifluoro-3-methylbut-2-yl}phenol. (3ca)

Following to **GP1**, benzylamine (0.0514 g, 0.480 mmol, 1.2 eq.) and **2ca** (0.1794 g, 0.3995 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **3ca** as a pale-yellow oil (0.0906 g, 0.2802 mmol, 70%).

Rf = 0.33 (hexane: AcOEt = 4:1).

¹H NMR: δ 0.81 (d, *J* = 6.9 Hz, 3H), 1.06 (dq, *J* = 6.9, 1.5 Hz, 3H), 1.77 (brs, 1H), 2.19 (sept, *J* = 6.9 Hz, 1H), 3.78 (s, 2H), 4.84 (brs, 1H), 6.81-6.84 (m, 2H), 7.28-7.53 (m, 7H).


¹³C NMR: δ 17.6, 17.8, 36.7, 47.0, 69.1 (q, *J* = 22.3 Hz), 114.9, 127.0, 127.5, 128.0 (q, *J* = 294.4 Hz), 128.4, 128.8, 129.5, 140.9, 154.7.

¹⁹F NMR: δ –64.37 (s).

 $IR \quad (CHCl_3) \quad \nu \quad 3370, \quad 2970, \quad 2938, \quad 2879, \quad 1615, \quad 1514, \quad 1240, \quad 1145, \quad 907, \quad 834 \quad cm^{-1}.$

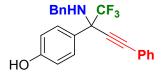
HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₈H₂₁F₃NO, 324.1575; Found, 324.1578.

4-{1-(Benzylamino)-2,2,2-trifluoro-1-phenyleth-2-yl}phenol (3da)

Following to **GP1**, benzylamine (0.0514 g, 0.480 mmol, 1.2 eq.) and **2da** (0.1930 g, 0.3999 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **3da** as a pale-yellow oil (0.1366 g, 0.3822 mmol, 96%).

Rf = 0.37 (hexane:AcOEt = 4:1).

¹H NMR: δ 1.26 (s, 1H), 2.31 (brs, 1H), 3.66 (s, 2H), 6.77-6.81 (m, 2H), 7.28-7.47 (m, 12H).


¹³C NMR: δ 48.2, 70.0 (q, *J* = 24.9 Hz), 115.0, 126.9 (q, *J* = 290.2 Hz), 127.1, 127.97, 128.01, 128.1,

128.4, 128.5 (q, *J* = 1.8 Hz), 130.0 (q, *J* = 1.1 Hz), 131.4, 139.3, 140.4, 155.2.

¹⁹F NMR: δ –68.59 (s).

IR (CHCl₃) v 3352, 3064, 2920, 2866, 1614, 1514, 1448, 1259, 1150, 832 cm⁻¹. HRMS (FAB+, m/z): [M+H]⁺ Calcd for C₂₁H₁₉F₃NO, 358.1419; Found, 358.1401.

4-{2-(Benzylamino)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl}phenol (3ea)

Following to **GP1**, benzylamine (0.0514 g, 0.480 mmol, 1.2 eq.) and **2ea** (0.2031 g, 0.4009 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane: AcOEt = 4:1 as an eluent to give the desired product **3ea** as a brown oil (0.1358 g, 0.3561 mmol, 89%).


Rf = 0.37 (hexane: AcOEt = 4:1).

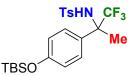
¹H NMR: δ 3.62 (d, *J* = 12.0 Hz, 1H), 3.94 (d, *J* = 12.0 Hz, 1H), 6.86-6.91 (m, 2H), 7.27-7.41 (m, 8H) 7.57-7.60 (m, 2H), 7.82 (d, *J* = 8.7 Hz, 2H).

¹³C NMR: δ 48.0, 70.0 (q, *J* = 29.2 Hz), 84.3, 88.5, 115.3, 121.7, 124.3 (q, *J* = 284.5 Hz), 125.8, 127.3, 128.3, 128.4, 128.5, 129.0, 130.3, 131.9, 139.3, 156.5.

¹⁹F NMR: δ –78.68 (s).

IR (CHCl₃) v 3592, 3333, 3066, 3017, 1613, 1597, 1511, 1267, 1193, 1163, 916 cm⁻¹. HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₉H₃₃F₃NOSi, 376.2284; Found, 376.2257.

Table S1 Investigation of the reaction condition with 2aa and TsNH₂


a) Usage of Li₂CO₃ instead of NaH. b) Isolated yield of **4an** after TBS protection of the crude mixture. c) Isolated yield of **7** after TBS protection of the crude mixture. d) Usage of THF instead of DMSO.

General procedure of reaction of amide or imide (GP4)

To a test tube containing 55% suspension of NaH in mineral oil (0.0349 g, 0.800 mmol) in DMSO (2.0 mL) was introduced an amide or imide (0.88 mmol, 2.2 eq.), and this reaction mixture was stirred for 15-30 min at 30 °C. Then, **2aa** (0.1682 g, 0.4000 mmol) in DMSO 2.0 mL was added to the reaction mixture, and the whole solution was further stirred for 1 h at 50 °C. After cooling to 30 °C and quenched with sat. NH₄Cl aq., TBS protection was conducted by **GP2**. Then, after usual work up, evaporation of the volatiles afforded a white solid which was washed by hexane to remove the excess imide or amide. Evaporation of hexane from the filtrate afforded crude oils which were purified by silica gel column chromatography to furnish the desired product.

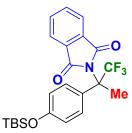
N-[1-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoroprop-2-yl]-4-

methylbenzenesulfonamide (4an)

Following to **GP4**, *p*-toluenesulfonamide (0.1510 g, 0.8820 mmol, 2.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 1:2 as an eluent to give the desired product **4an** as a colorless oil (0.0928 g, 0.196 mmol, 49%).

Rf = 0.25 (hexane: $CH_2Cl_2 = 1:2$).

¹H NMR: δ 0.20 (s, 6H), 0.98 (s, 9H), 1.87 (s, 3H), 2.41 (s, 3H), 5.31 (s, 1H), 6.68-6.73 (m, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H).


¹³C NMR: δ –4.4, 18.1, 19.2, 21.4, 25.6, 63.3 (q, *J* = 28.0 Hz), 119.5, 125.3 (q, *J* = 283.6 Hz), 127.1, 128.3, 128.4, 129.4, 138.8, 143.4, 156.0.

¹⁹F NMR: δ –79.89 (s).

IR (CHCl₃) v 3376, 3027, 2957, 2859, 1608, 1513, 1269, 1165, 916, 761 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₂₂H₃₀F₃NO₃SSi, 473.1668; Found, 473.1667.

 $N-[1-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoroprop-2-yl]phtalimide (4ao)$

Following to **GP4**, phthalimide (0.1294 g, 0.8795 mmol, 2.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 2:1 as an eluent to give the desired product **4ao** as a colorless oil (0.0560 g, 0.1246 mmol, 31%).

Rf = 0.33 (hexane: $CH_2Cl_2 = 2:1$).

¹H NMR: δ 0.21 (s, 6H), 0.98 (s, 9H), 2.23 (s, 3H), 6.79-6.82 (m, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.71-7.76 (m, 2H), 7.78-7.82 (m, 2H).

¹³C NMR: δ –4.4, 18.1, 24.6, 25.6, 63.9 (q, *J* = 29.1 Hz), 119.8, 123.3, 125.8 (q, *J* = 286.9 Hz), 126.3, 131.3, 131.4, 134.3, 155.0, 167.5.

¹⁹F NMR: δ –72.68 (s).

IR (CHCl₃) v 3019, 2954, 2931, 2861, 1728, 1514, 1273, 1216, 918, 761 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₂₃H₂₆F₃NO₃Si, 449.1634; Found, 449.1637.

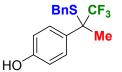

TBSO	BocO CF ₃ Me 2aa	x eq. BnS H 5 mol% Base solv., 30 °C,	→	BnS PO 9aa (P = H) 10aa (P = T	`Me +	HO 4	
Entry	X	Base solv.	solv.	¹⁹ F	¹⁹ F NMR Yield (%)		
	A		50171	9aa+10aa	5	Other products	
1	1.5	TBAF	DMSO	73	2	4	
2	1.5	TBAF	DMF	94	4	2	
3	1.5	TBAF	THF	99	1	trace	
4	1.5	TBAF	Toluene	5	0	0	
5	1.5	TBAF	CH_2Cl_2	5	0	0	
6	1.5	TBAF	MeCN	>99	0	0	
7	1.5	K ₂ CO ₃	MeCN	0	0	0	
8	1.5	DBU	MeCN	88	0	0	
9	1.2	TBAF	MeCN	>99	0	0	
10	1.1	TBAF	MeCN	87	trace	13	

Table S2 Optimisation of the reaction condition with thiol and 2aa

General procedure for the reaction with thiols (GP5)

To a test tube under an argon atmosphere were introduced **2aa** (0.1682 g, 0.4000 mmol), a thiol (0. 48 mmol, 1.2 eq.) and 4.0 mL of MeCN, where tetrabutylammonium fluoride (a 1.0 *M* THF solution, 0.02 mL, 0.02 mmol, 5 mol%) was added. This reaction mixture was stirred for appropriate time at 30 °C or 50 °C (see Table 11). Then, H₂O (2.0 mL) and KF (0.0350 g, 0.602 mmol, 1.5 eq.) was added to the mixture which was further stirred for 2 h at the same temperature. After addition of sat. NH₄Cl aq., the reaction mixture was extracted three times with AcOEt and the combined organic phase was dried over anhydrous Na₂SO₄. After filtration, evaporation of the volatiles afforded a crude material which was purified by silica gel column chromatography to furnish the desired product.

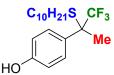
4-[1,1,1-Trifluoro-2-{(phenylmethane)sulfenyl}prop-2-yl]phenol (9aa).

Following to **GP5**, benzyl mercaptan (0.0597 g, 0.481 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using AcOEt:hexane=3:1 to 1:1 as an eluent to give the desired product **9aa** as a white solid (0.1157 g, 0.3702 mmol, 93%).

Rf = 0.37 (hexane: AcOEt = 4:1).

m.p.: 63.6 °C.

¹H NMR: δ 1.88 (s, 3H), 3.53 (d, *J* = 11.4 Hz, 1H), 3.73 (d, *J* = 11.7 Hz, 1H), 4.92 (brs, 1H), 6.82-6.87 (m, 2H), 7.17-7.29 (m, 5H), 7.55 (d, *J* = 8.7 Hz, 2H)


¹³C NMR: δ 22.4 (q, *J* = 1.9 Hz), 35.3, 55.3 (q, *J* = 26.3 Hz), 115.2, 127.3, 127.4 (q, *J* = 281.6 Hz), 128.5, 129.06, 129.10, 129.4 (q, *J* = 1.3 Hz), 155.1.

¹⁹F NMR: δ –72.07 (s).

IR (KBr) v 3245, 3028, 2932, 2740, 1614, 1515, 1455, 1245, 1155, 1074 cm⁻¹.

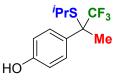
HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₆H₁₅F₃OS, 312.0796; Found, 312.0802.

4-{1,1,1-Trifluoro-2-(decanesulfenyl)prop-2-yl}phenol (9ab).

Following to **GP5**, 1-decanthiol (0.0841 g, 0.4812 mmol, 1.2 eq.) was used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 6:1 as an eluent to give the desired product **9ab** as a white solid (0.1198 g, 0.3308 mmol, 83%).

Rf = 0.40 (hexane:AcOEt = 4:1).

¹H NMR: δ 0.88 (t, J = 6.6 Hz, 3H), 1.22 (brs, 14H), 1.45 (quint., J = 7.2 Hz, 2H), 1.85 (s, 3H), 2.36 (dt, J = 11.1, 7.2 Hz, 1H), 2.46 (dt, J = 11.1, 7.2 Hz, 1H), 4.87 (brs, 1H), 6.79-6.84 (m, 2H), 7.55 (d, J = 8.4 Hz, 2H).


¹³C NMR: δ 14.0, 22.4 (q, *J* = 1.8 Hz), 22.6, 28.6, 28.9, 29.1, 29.3, 29.4, 29.5, 30.2, 31.9, 54.3 (q, *J* = 26.3 Hz), 115.1, 127.5 (q, *J* = 278.9 Hz), 129.3, 129.5, 155.0.

¹⁹F NMR: δ –72.52 (s).

IR (CHCl₃) v 3370, 2927, 2855, 1614, 1514, 1465, 1378, 1262, 1164, 1076 cm⁻¹.

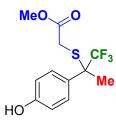
HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₉H₂₉F₃OS, 362.1891; Found, 362.1909.

4-[1,1,1-Trifluoro-2-{(1-methylethane)sulfenyl}prop-2-yl]phenol (9ac)

Following to **GP1**, 2-propanethiol (0.0365 g, 0.479 mmol, 1.2 eq.) was used, the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **9ac** as a colorless oil(0.0807 g, 0.305 mmol, 76%).

Rf = 0.33 (hexane: AcOEt = 4:1).

¹H NMR: δ 1.13 (d, J = 6.9 Hz, 3H), 1.17 (d, J = 6.9 Hz, 3H) 1.88 (s, 3H), 2.82 (sept., J = 6.9 Hz, 1H), 4.84 (brs, 1H), 6.82 (d, J = 7.8 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H).


¹³C NMR: δ 22.9 (q, *J* = 1.8 Hz), 24.9, 25.0, 35.3, 55.1 (q, *J* = 26.4 Hz), 115.0, 127.3 (q, *J* = 278.3 Hz), 129.5, 129.8, 155.0.

¹⁹F NMR: δ –72.67 (s).

IR (CHCl₃) v 3370, 2966, 2928, 2868, 1613, 1514, 1462, 1259, 1165, 1075 cm⁻¹.

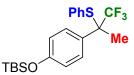
HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₁₂H₁₅F₃OS, 264.0796; Found, 264.0767.

Methyl 2-{1,1,1-trifluoro-2-(4-hydroxyphenyl)prop-2-yl}thioacetate (9ad)

Following to **GP5**, methyl thioglycolate (0.0509 g, 0.480 mmol, 1.2 eq.) was used, the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 2:1 as an eluent to give the desired product **9ad** as a colorless oil (0.1017 g, 0.3456 mmol, 86%).

Rf = 0.33 (hexane: AcOEt = 4:1).

¹H NMR: δ 1.87 (s, 3H), 3.15 (d, *J* = 15.3 Hz, 1H), 3.30 (d, *J* = 15.6 Hz, 1H), 3.65 (s, 3H), 5.04 (brs, 1H), 6.81-6.86 (m, 2H), 7.49 (d, *J* = 8.7 Hz, 2H).


¹³C NMR: δ 22.3 (q, *J* = 1.9 Hz), 32.9, 52.8, 55.0 (q, *J* = 26.3 Hz), 115.4, 127.2 (q, *J* = 278.9 Hz), 127.6, 129.3, 155.8, 170.8.

¹⁹F NMR: δ –72.27 (s).

IR (CHCl₃) v 3415, 3028, 3009, 2955, 1731, 1614, 1516, 1438, 1263, 1164 cm⁻¹.

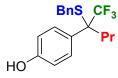
HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₂H₁₃F₃O₃S, 294.0538; Found, 294.0549.

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]]-1,1,1-trifluoro-2-phenylthiopropane (10ae)

Following to **GP5**, thiophenol (0.0597 g, 0.481 mmol) was used, and after quenching with H_2O , following to **GP2**, TBS protection was conducted. The crude mixture was purified by silica gel column chromatography using hexane:CH₂Cl₂ = 15:1 as an eluent to give the desired product **10ae** as a white solid (0.1012 g, 0.2453 mmol, 61%).

Rf = 0.23 (hexane: AcOEt = 4:1).

m.p.: 63.6 °C.


¹H NMR: δ 0.21 (s, 6H), 0.99 (s, 9H), 1.75 (s, 3H), 6.80 (d, *J* = 8.7 Hz, 2H), 7.21-7.39 (m, 5H), 7.45 (d, *J* = 8.7 Hz, 2H).

¹³C NMR: δ –4.4, 18.2, 21.5, 25.7, 56.9 (q, *J* = 24.9 Hz), 119.6, 127.1 (q, *J* = 282.0 Hz), 128.5, 129.3, 129.6, 129.8, 130.1, 137.5, 157.6.

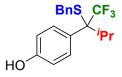
¹⁹F NMR: δ –71.88 (s).

IR (KBr) v 3348, 2965, 2933, 2875, 1614, 1514, 1243, 1160, 1101, 826 cm⁻¹. HRMS (FAB+, m/z): [M+H]⁺ Calcd for C₂₁H₂₈F₃OSSi, 413.1582; Found, 413.1563.

4-[1,1,1-Trifluoro-2-{(phenylmethane)sulfenyl}pent-2-yl]phenol (9ba)

Following to **GP5**, benzyl mercaptan (0.0596 g, 0.480 mmol, 1.2 eq.) and **2ba** (0.1794 g, 0.3995 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **9ba** as a pale-yellow oil (0.1192 g, 0.3502 mmol, 88%).

Rf = 0.30 (hexane: AcOEt = 4:1).


¹H NMR: δ 0.90 (t, J = 7.2 Hz, 3H), 1.36-1.41 (m, 2H), 2.08-2.22 (m, 2H), 3.54 (d, J = 11.1 Hz, 1H), 3.75 (d, J = 11.1 Hz, 1H), 4.99 (brs, 1H), 6.82-6.87 (m, 2H), 7.19-7.31 (m, 5H) 7.50 (d, J = 8.1 Hz, 2H).

¹³C NMR: δ 14.2, 17.5, 35.1 (q, *J* = 1.9 Hz), 36.7, 59.9 (q, *J* = 26.1 Hz), 115.3, 127.3, 127.5, 127.8 (q, *J* = 285.0 Hz), 128.5, 129.2, 129.6, 136.3, 155.0.

¹⁹F NMR: δ –69.0 (s).

IR (CHCl₃) v 3348, 2965, 2933, 2875, 1614, 1514, 1243, 1160, 1101, 826 cm⁻¹. HRMS (FAB+, m/z): [M]⁺ Calcd for C₁₈H₁₉F₃OS, 340.1109; Found, 340.1116.

4-[1,1,1-Trifluoro-3-methyl-2-{(phenylmethane)sulfenyl}but-2-yl]phenol (9ca).

Following to **GP5**, benzyl mercaptan (0.0596 g, 0.480 mmol, 1.2 eq.) and **2ca** (0.1794 g, 0.3995 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **9ca** as a pale-yellow oil (0.1260 g, 0.3702 mmol, 93%).

Rf = 0.37 (hexane:AcOEt = 4:1). ¹H NMR: δ 1.00 (d, J = 7.2 Hz, 6H), 2.42 (sept., J = 7.2 Hz, 1H), 3.31 (d, J = 11.1 Hz, 1H), 3.70 (d, J= 11.1 Hz, 1H), 4.95 (brs, 1H), 6.86-6.89 (m, 2H), 7.22-7.31 (m, 5H) 7.63 (d, J = 8.7 Hz, 2H). ¹³C NMR: δ 18.6 (d, J = 1.8 Hz), 19.1 (d, J = 1.9 Hz), 35.3 (q, J = 1.9 Hz), 38.5, 65.6 (q, J = 24.3 Hz), 115.2, 127.3, 128.2 (q, J = 286.3 Hz) 128.6, 129.1, 129.1, 129.9 (q, J = 1.9 Hz), 136,7, 154.6. ¹⁹F NMR: δ -60.31 (s). IR (CHCl) χ 3385 2972 2942 2884 1614 1514 1455 1247 1153 818 cm⁻¹

IR (CHCl₃) v 3385, 2972, 2942, 2884, 1614, 1514, 1455, 1247, 1153, 818 cm⁻¹. HRMS (FAB-, m/z): [M-H]⁻ Calcd for C₁₈H₁₉F₃O₃S, 339.1030; Found, 339.1010.

4-[1,1,1-Trifluoro-1-phenyl-2-{(phenylmethane)sulfenyl}ethyl]phenol (9da)

Following to **GP5**, benzyl mercaptan (0.0596 g, 0.480 mmol, 1.2 eq.) and **2da** (0.1930 g, 0.3999 mmol) instead of **2aa** were used, and the crude product was purified by silica gel column chromatography using hexane:AcOEt = 4:1 as an eluent to give the desired product **9da** as a pale-yellow oil (0.1260 g, 0.3702 mmol, 93%).

Rf = 0.40 (hexane: AcOEt = 4:1).

¹H NMR: δ 3.42 (d, *J* = 11.4 Hz, 1H), 3.50 (d, *J* = 11.4 Hz, 1H), 4.96 (brs, 1H), 6.76-6.81 (m, 2H), 7.10-7.13 (m, 2H) 7.19-7.27 (m, 3H), 7.31-7.38 (m, 5H), 7.48-7.51 (m, 2H).

¹³C NMR: δ 36.1 (q, *J* = 1.9 Hz), 64.2 (q, *J* = 26.1 Hz), 114.9, 127.1 (q, *J* = 283.1 Hz), 127.3, 128.0, 128.1, 128.5, 129.2, 129.6 (q, *J* = 1.3 Hz), 131.1, (q, *J* = 1.3 Hz), 136,0, 138.4, 155.1.

¹⁹F NMR: δ –66.76 (s).

IR (CHCl₃) v 3363, 3064, 2939, 1614, 1512, 1454, 1371, 1253, 1160, 1036 cm⁻¹. HRMS (FAB+, m/z): [M]⁺ Calcd for C₂₁H₁₇F₃OS, 374.0952; Found, 374.0976.

4-{1,1,1-Trifluoro-2-(2,2,2-trifluoroethoxy)prop-2-yl}phenol (11aa)

To a test tube were introduced 55% suspension of NaH in mineral oil (0.0347 g, 0.795 mmol, 2.0 eq.), 2,2,2-trifluoroethanol (0.0880 g, 0.88 mmol, 2.0 eq.) and 2.0 mL of DMSO were added. This reaction mixture was stirred for 15-30 min at 30 °C. Then, **2aa** (0.1682 g, 0.4000 mmol) and DMSO 2.0 mL was added to the reaction mixture, and this reaction mixture was stirred for 1 h at 50 °C. After cooling to 30 °C and quenched with sat. NH₄Cl, following to **GP1**, deprotection of TBS group was conducted. Then, after usual work up, evaporation of the volatiles of the residue afforded a crude material which was purified by silica gel column chromatography using hexane:AcOEt = 5:1 as an eluent to give the desired product **11aa** as a colorless oil (0.0580 g, 0.2013 mmol, 50%).

Rf = 0.17 (hexane: AcOEt = 5:1).

¹H NMR: δ 1.79 (s, 3H), 3.65 (dq, *J* = 11.1, 8.1 Hz, 1H), 3.71 (dq, *J* = 11.1, 8.1 Hz, 1H), 6.85-6.90 (m, 2H), 7.39 (d, *J* = 9.0 Hz, 2H).

¹³C NMR: δ 18.3, 61.5 (q, *J* = 35.4 Hz), 80.2 (q, *J* = 29.2 Hz), 115.5, 123.5 (q, *J* = 277.7 Hz), 124.6 (q, *J* = 284.6 Hz), 126.6, 129.3, 156.5.

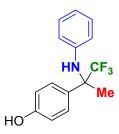
¹⁹F NMR: δ –80.72 (s, 3F), –75.35 (t, J = 9.0 Hz, 3F).

IR (CHCl₃) v 3363, 3004, 2952, 1615, 1516, 1459, 1281, 1171, 1121, 970 cm⁻¹. HRMS (FAB+, m/z): [M]⁺ Calcd for C₁₁H₁₀F₆O₂, 288.0585; Found, 288.0566.

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-phenoxypropane (12ab)

Follwing to **GP2**, phenol (0.0752 g, 0.799 mmol, 2.0 eq.), TBSCl (0.1809 g, 1.200 mmol, 3.0 eq.) and imidazole (0.1633 g, 2.399 mmol, 6.0 eq.) were used, and the crude product was purified by silica gel column chromatography using hexane: $CH_2Cl_2 = 10$:1 as an eluent to give the desired product **12ab** as a colorless oil (0.0696 g, 0.1755 mmol, 43%)

Rf = 0.30 (hexane).


¹H NMR: δ 0.22 (s, 6H), 0.99 (s, 9H), 1.80 (q, J = 0.9 Hz, 3H), 6.71-6.75 (m, 2H), 6.84-6.89 (m, 2H), 6.97 (tt, J = 7.5, 1.2 Hz, 1H), 7.11-7.18 (m, 2H), 7.46 (d, J = 8.4 Hz, 2H).

¹³C NMR: δ –4.4, 18.0, 18.2, 25.6, 81.3 (q, *J* = 24.9 Hz), 116.1, 117.2, 118.9, 127.6 (q, *J* = 284.7 Hz),

128.9, 129.2, 130.0, 145.7, 158.2 ¹⁹F NMR: δ –71.88 (s). IR (CHCl₃) v 2954, 2931, 2878, 2853, 1608, 1509, 1491, 1271, 1174, 770 cm⁻¹. HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₂₁H₂₈F₃O₂Si, 397.1811; Found, 397.1829.

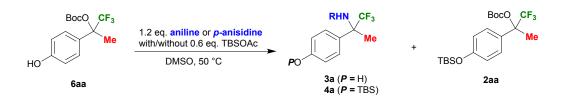
Deprotection of the TBS group in 4ak

4-{1,1,1-Trifluoro-2-(phenylaminoprop)-2-yl}phenol (3ak)

3ak was synthesized by deprotection of **4ak** (0.1586 g, 0.4010 mmol) by TBAF (a 1.0 *M* THF solution, 0.44 mL, 0.44 mmol, 1.1 eq.) in THF (1.0 mL) at 0° C to 30° C for 30 min. After addition of sat. NH₄Cl aq., the reaction mixture was extracted three times with AcOEt and the combined organic phase was dried over anhydrous Na₂SO₄. After filtration, evaporation of the volatiles afforded a crude material which was purified by silica gel column chromatography using hexane:AcOEt = 10:1 to 5:1 as an eluent to give the desired product **3ak** as a white solid (0.0978 g, 0.3477 mmol, 87%).

Rf = 0.17 (hexane: AcOEt = 5:1).

m.p.: 128.1 °C.


¹H NMR: δ 1.86 (s, 3H), 4.23 (s, 1H), 4.83 (brs, 1H), 6.38 (d, *J* = 7.5 Hz, 2H), 6.72 (t, *J* = 7.5 Hz, 1H), 6.82-6.86 (m, 2H), 7.04 (t, *J* = 7.5 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H).

¹³C NMR (acetone-*d*₆): δ 21.1 (q, *J* = 1.9 Hz), 63.1 (q, *J* = 26.1 Hz), 116.5, 118.9, 120.0, 126.4 (q, *J* = 287.1 Hz), 128.7, 129.2, 129.5, 144.0, 155.8.

¹⁹F NMR: δ –80.18 (s).

IR (CHCl₃) v 3499, 3380, 3042, 2999, 2953, 1608, 1508, 1279, 1262, 1182 cm⁻¹. HRMS (FAB+, m/z): [M+H]⁺ Calcd for C₁₅H₁₅F₃NO, 282.1106; Found, 282.1122.

Reactions of 6aa with aniline or *p*-anisidine in the absence or presence of TBSOAc

To a test tube were introduced **6aa** (0.1225 g, 0.4000 mmol), *p*-anisidine (0.0591 g, 0.480 mmol) or aniline (0.0447 g, 0.480 mmol), with or without TBSOAc (0.0417g, 0.0241 mmol, 0.6 eq.) and 4.0 mL of DMSO, and this solution was stirred at 50 °C. Yields of **3ak** as well as the remained **6aa** were determined at a specific time by using ¹⁹F NMR whose results are summarized in Table S3 (without TBSOAc) and Table S4 (with TBSOAc). In Table S5 (without TBSOAc) and Table S6 (with TBSOAc) were tabulated the data when *p*-anisidine was employed as an amine. In a different batch, the desired compound **3al** was isolated in 85% yield as a slightly yellow oil (0.1061 g, 0.3408 mmol).

_	¹⁹ F NMR yield (%)		
Time (min)	6aa	3ak	
5	27	30	
15	16	41	
30	6	55	
60	2	55	
120	0	55	

Table S3 ¹⁹F NMR yields of 3ak and the remained 6aa by using aniline without TBSOAc

Table S4 ¹⁹F NMR yields of 3ak, 4ak, the remained 6aa, and 2aa by using aniline with TBSOAc

	¹⁹ F NMR yield (%)			
Time (min)	6aa	2 aa	3ak	4ak
5	68	16	16	0
15	46	22	30	2
30	28	25	43	3
45	19	26	49	4
60	16	24	53	3
120	11	20	57	7
240	7	11	64	12
480	0	1	75	16
720	1	0	78	13

	¹⁹ F NMR yield (%)		
Time (min)	6aa	3al	
5	11	74	
15	1	86	
30	0	86	
60	0	85	
120	0	86	

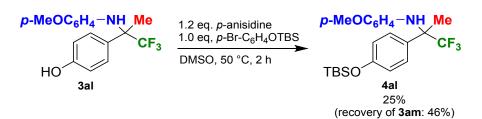

Table S5¹⁹F NMR yields of 3al and the remained 6aa by using *p*-anisidine without TBSOAc

Table S6 ¹⁹F NMR yields of 3al, 4al, the remained 6aa, and 2aa by using *p*-anisidine with TBSOAc

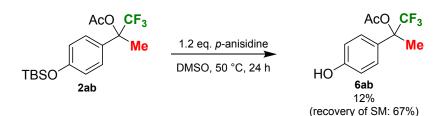
	¹⁹ F NMR yield (%)				
Time (min)	6aa	2 aa	3al	4al	
5	62	20	19	0	
15	53	22	25	0	
30	29	26	43	2	
45	18	29	49	3	
60	20	25	51	4	
120	15	23	55	7	
240	9	16	66	9	
480	5	8	72	15	
720	2	3	79	16	

Control experiments

To a test tube were introduced **3al** (0.0311 g, 0.0999 mmol), *p*-anisidine (0.0147 g, 0.119 mmol), 1bromo-4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]benzene² (0.0287 g, 0.0999 mmol), and 1.0 mL of DMSO, and this solution was stirred for 2 h at 50 °C. After cooling to 30 °C and quenched with H₂O, the resultant solution was extracted three times with AcOEt and the combined organic phase was washed with sat. NaCl aq. After drying over anhydrous Na_2SO_4 , evaporation of the volatiles afforded a crude material which was purified by column chromatography using hexane: AcOEt = 8:1 to 4:1 as an eluent to give **4al** as a brown oil (0.0105 g, 0.0247 mmol, 25%) in addition to recovery of 0.0143 g of **3al** (0.0459 mmol, 46%).

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-{(4-methoxyphenyl)amino}-propane (4al).

¹H NMR: δ 0.22 (s, 6H), 0.99 (s, 9H), 1.77 (s, 3H), 3.69 (s, 3H), 3.93 (brs, 1H), 6.35-6.40 (m, 2H), 6.59-6.64 (m, 2H), 6.82-6.87 (m, 2H), 7.48 (d, *J* = 8.4 Hz, 2H).


¹³C NMR: δ –4.4, 18.2, 20.4, 25.6, 55.4, 62.8 (q, *J* = 26.1 Hz), 114.2, 119.1, 119.9, 126.5 (q, *J* = 285.8 Hz), 129.2 (q, *J* = 1.3 Hz), 130.1, 137.6, 153.5, 155.7.

¹⁹F NMR: δ –79.71 (s).

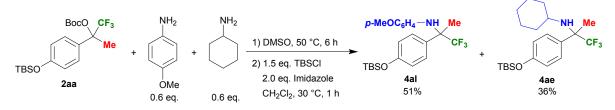
IR (CHCl₃) v 3019, 2957, 2932, 2858, 1510, 1266, 1219, 1157, 916, 769 cm⁻¹.

HRMS (FAB+, *m/z*): [M]⁺ Calcd for C₂₂H₃₀F₃NO₂Si, 425.1998 Found, 420.2010.

(b)

Following to **GP1**, *p*-anisidine (0.0591 g, 0.480 mmol, 1.2 eq.) and **2ab** (0.1449 g, 0.4000 mmol) instead of **2aa** were used, and the reaction mixture was quenched with 1 *M* HCl aq. After usual work up, the crude mixture was purified by column chromatography using hexane:AcOEt = 2:1 as an eluent and the obtained compound was washed with hexane to give **6ab** as a white solid (0.0115 g, 0.0463 mmol, 12%) in addition to recovery of 0.0975 g of **2ab** (0.269 mmol, 67%).

1,1,1-Trifluoro-2-(4-hydroxyphenyl)prop-2-yl acetate (6ab)


Rf = 0.40 (hexane:AcOEt = 2:1). m.p.: 129.9 °C. ¹H NMR: δ 2.08 (q, *J* = 1.2 Hz, 3H), 2.14 (s, 3H), 5.13 (brs, 1H), 6.76-6.81 (m, 2H), 7.26 (d, *J* = 8.1 Hz, 2H).

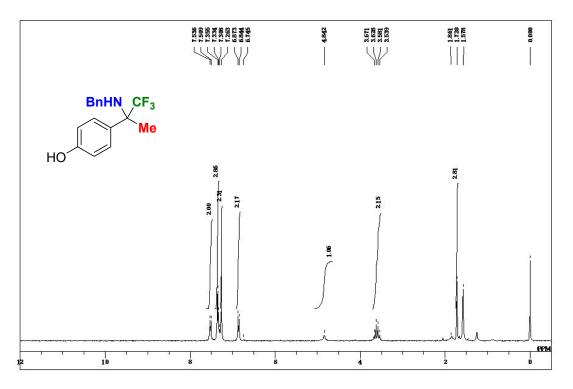
¹³C NMR: δ 18.4, 21.9, 81.7 (q, *J* = 29.1 Hz), 115.3, 124.1 (q, *J* = 286.5 Hz), 127.0, 127.9, 156.3, 168.9.

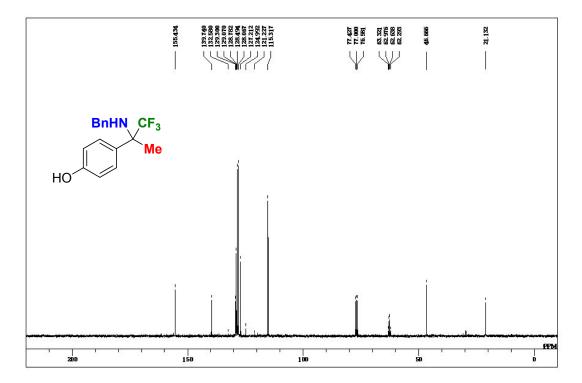
¹⁹F NMR: δ –82.62 (s).

IR (KBr) v 3441, 3041, 2939, 1737, 1517, 1262, 1176, 1114, 959, 821 cm⁻¹. HRMS (FAB+, *m/z*): [M+H]⁺ Calcd for C₁₁H₁₁F₃O₃, 248.0660; Found, 248.0657.

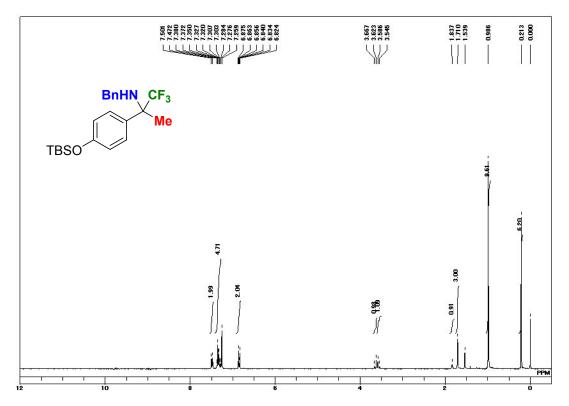
(c)

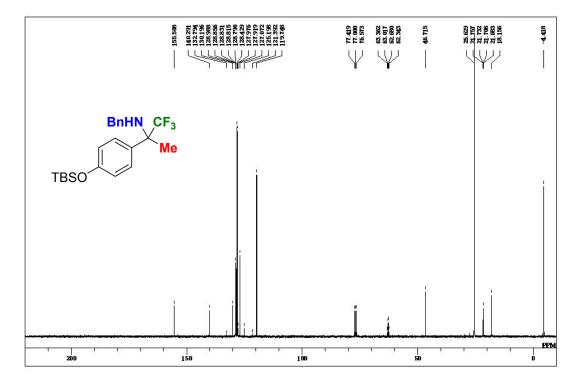
Following to **GP2**, a mixture of *p*-anisidine (0.0295 g, 0.240 mmol, 0.6 eq.) and cyclohexylamine (0.0238 g, 0.240 mmol, 0.6 eq.) were used, and the crude mixture was purified by column chromatography using hexane: $CH_2Cl_2 = 1:0$ to 2:1 as an eluent to give **4al** (0.0936 g, 0.206 mmol, 51%) and **4ae** (0.0573 g, 0.143 mmol, 36%).

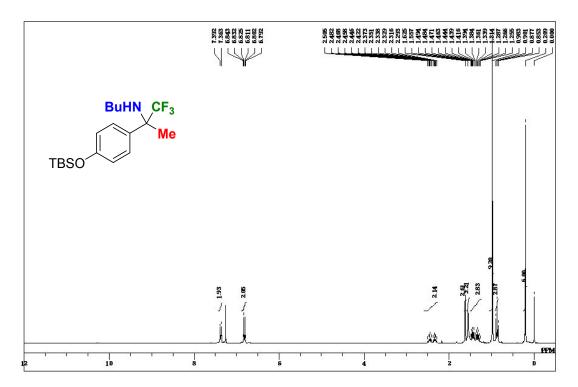

1 K. Terashima, T. Kawasaki-Takasuka, T. Agou, T. Kubota and T. Yamazaki, *Chem. Commun.*, 2020, **56**, 3031.

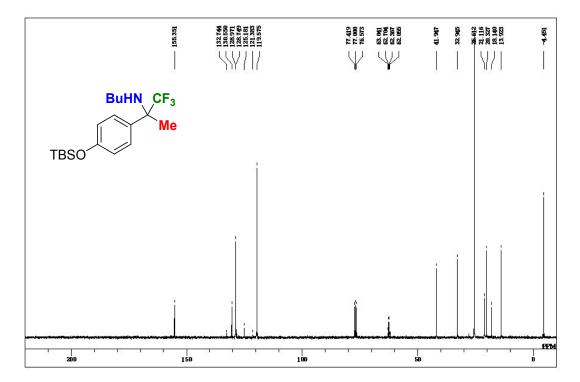

2 U. E. Hille, Q. Hu, C. Vock, M. Negri, M. Bartels, U. Müller-Vieira, T. Lauterbach and R. W. Hartmann, *Eur. J. Med. Chem.*, 2009, **44**, 2765.

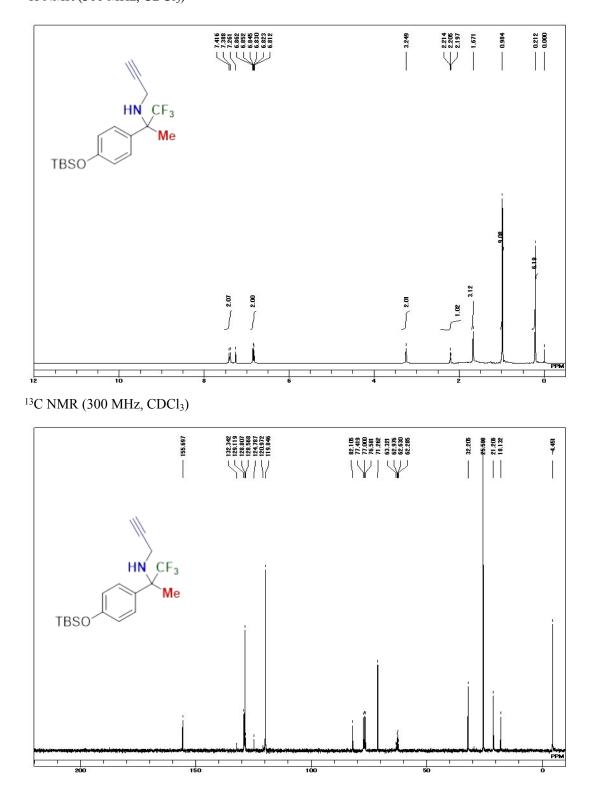
¹H and ¹³C NMR spectra


4-(2-Benzylamino-1,1,1-trifluoroprop-2-yl)phenol (3aa)

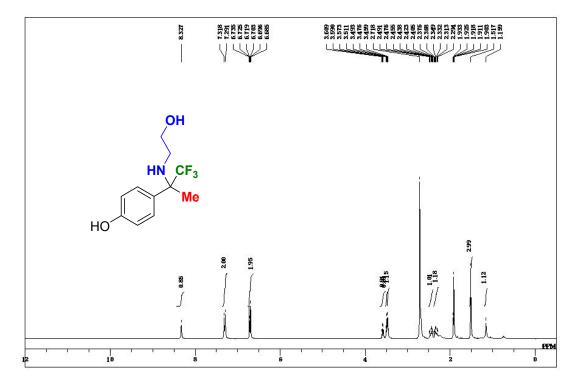

¹H NMR (300 MHz, CDCl₃)



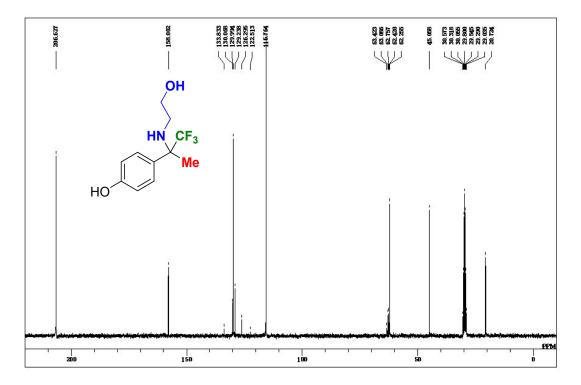

2-Benzylamino-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4aa). ¹H NMR (300 MHz, CDCl₃)



2-Butylamino-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4ab). ¹H NMR (300 MHz, CDCl₃)

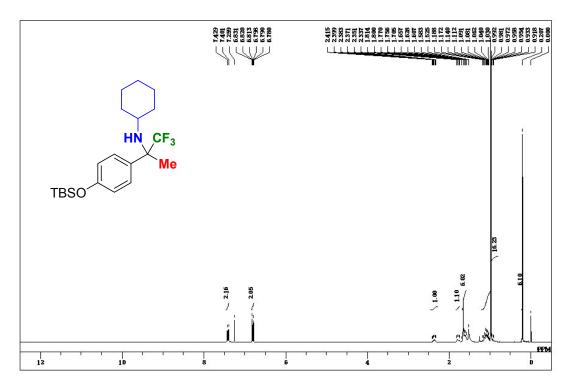


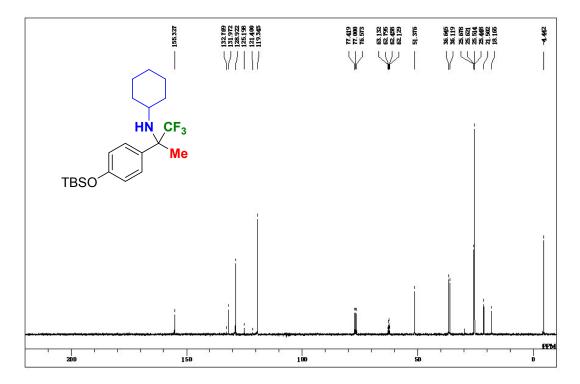
4-(1,1,1-Trifluoro-2-propalgylminoprop-2-yl)phenol (4ac) ¹H NMR (300 MHz, CDCl₃)

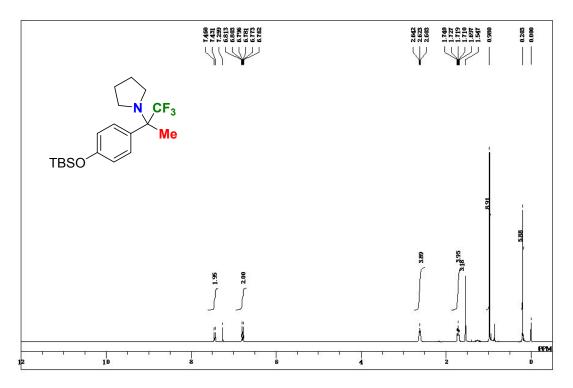


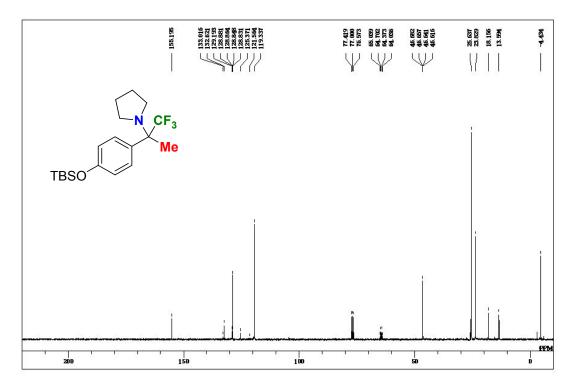
 $\label{eq:constraint} 4-[1,1,1-Trifluoro-\{2-(hydroxyethyl)amino\}prop-2-yl)] phenol~(3ad).$

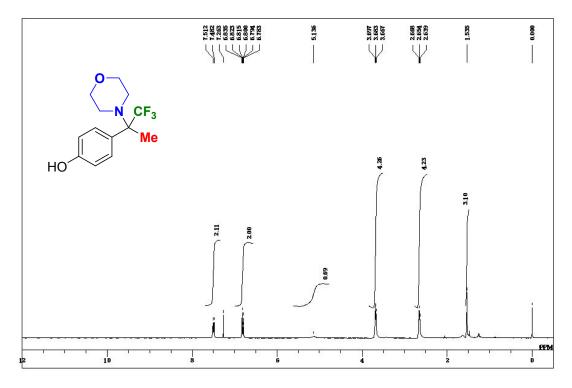
¹H NMR (300 MHz, acetone-*d*6)

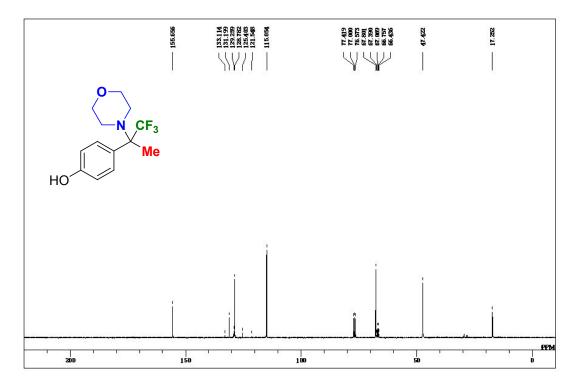



¹³C NMR (300 MHz, acetone-*d*6)

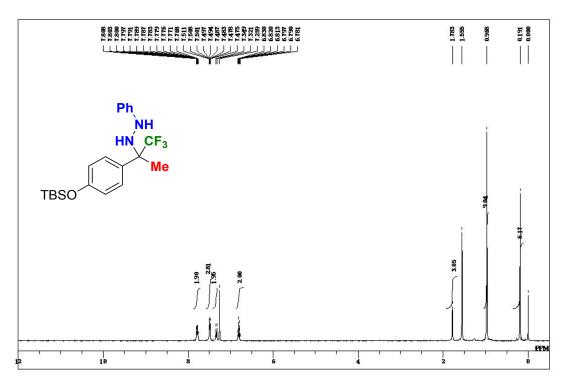

2-(Cyclohexylamino)-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane (4ae).

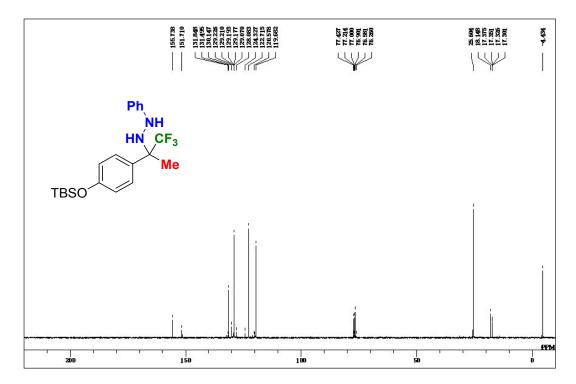

¹H NMR (300 MHz, CDCl₃)


2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-(*N*-pyrrolidino)propane (**3ag**). ¹H NMR (**300** MHz, CDCl₃)



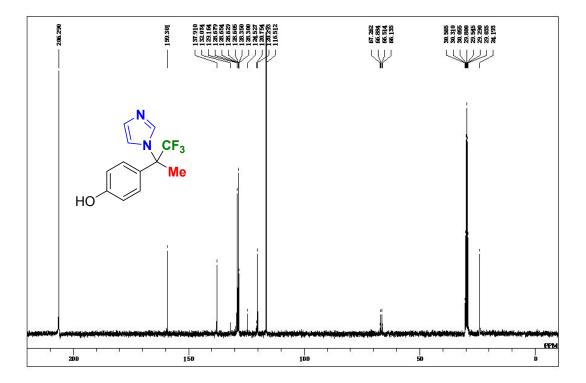
4-{1,1,1-Trifluoro-(*N*-morpholino)prop-2-yl}phenol (**3ah**).


¹H NMR (300 MHz, CDCl₃)

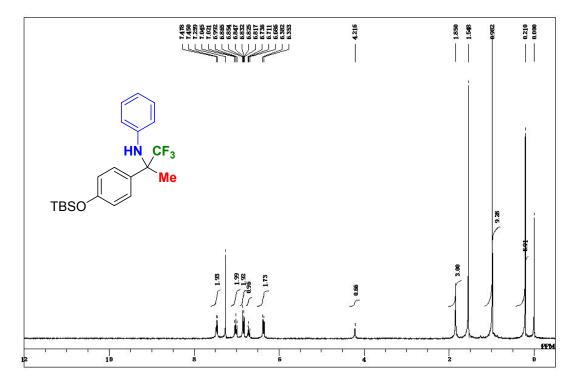


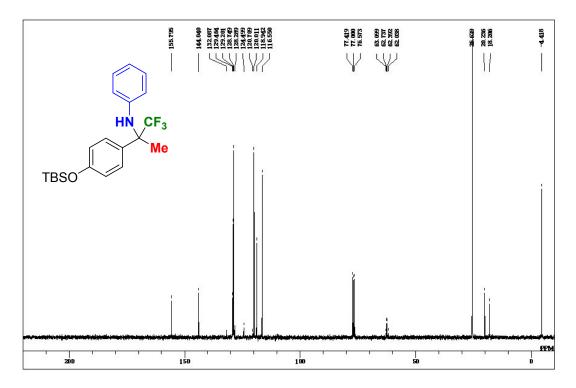
2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-phenylhydrazinopropane (4ai)


¹H NMR (300 MHz, CDCl₃)

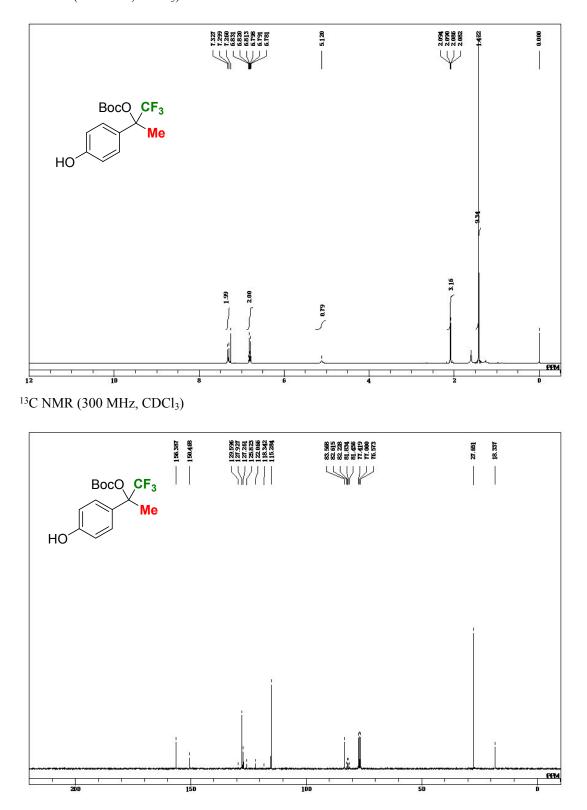


4-{1,1,1-Trifluoro-(1*H*-imidazolyl)prop-2-yl}phenol (3aj).

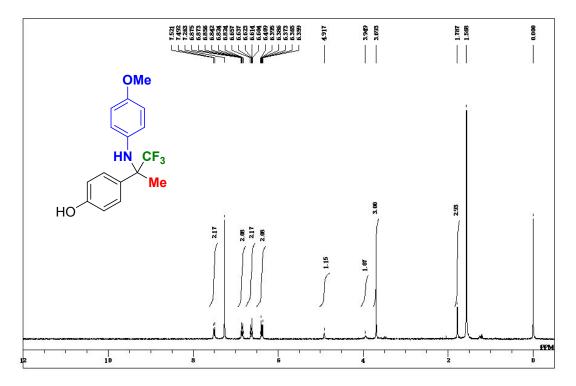

¹H NMR (300 MHz, acetone-*d*6)

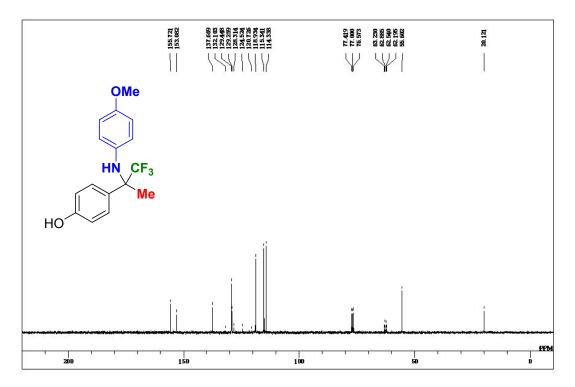


¹³C NMR (300 MHz, acetone-*d*6)



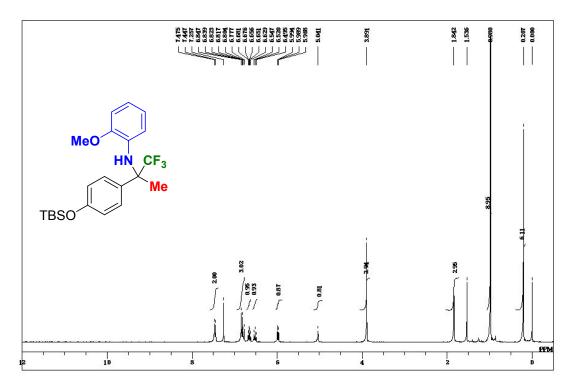
2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-phenylaminopropane (4ak). ¹H NMR (300 MHz, CDCl₃)

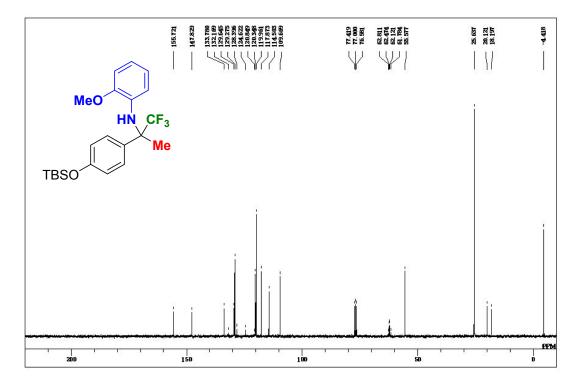




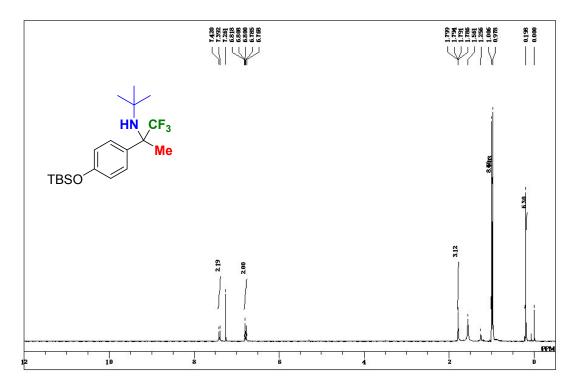
4-[{2-(*tert*-Butoxycarbonyl)oxy}-1,1,1-trifluoroprop-2-yl}phenol (6a). ¹H NMR (300 MHz, CDCl₃)

4-[1,1,1-Trifluoro-2-{(4-methoxyphenyl)amino}prop-2-yl}phenol (3al). ¹H NMR (300 MHz, CDCl₃)

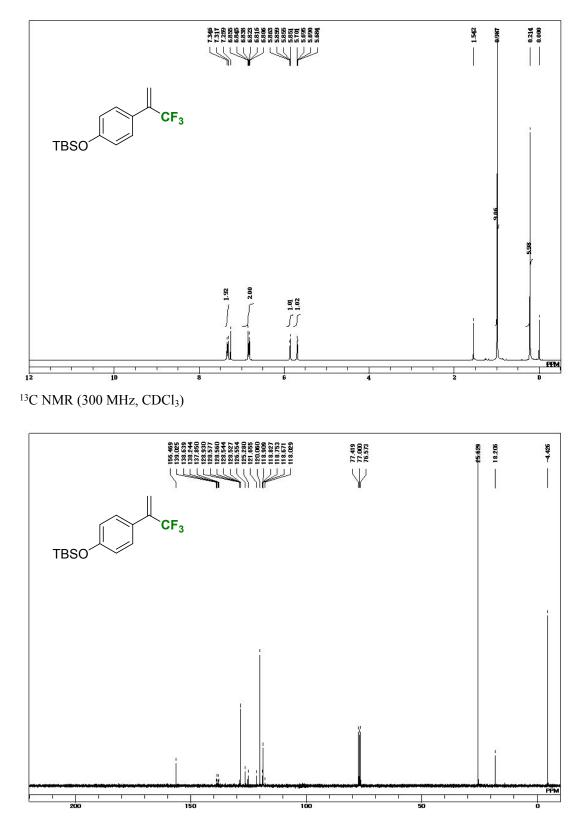




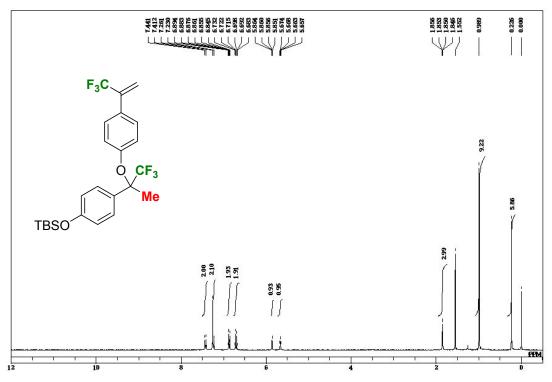
2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-(2-

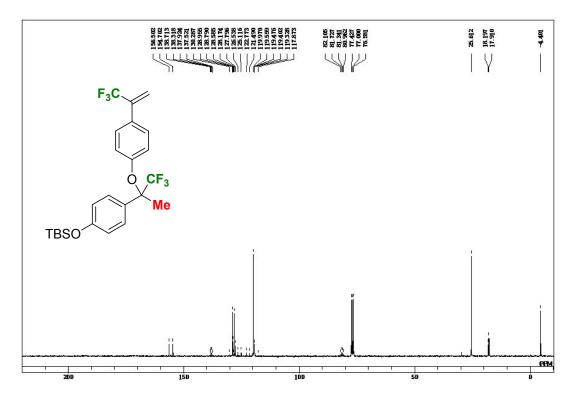

methoxyphenyl)aminopropane (4am).

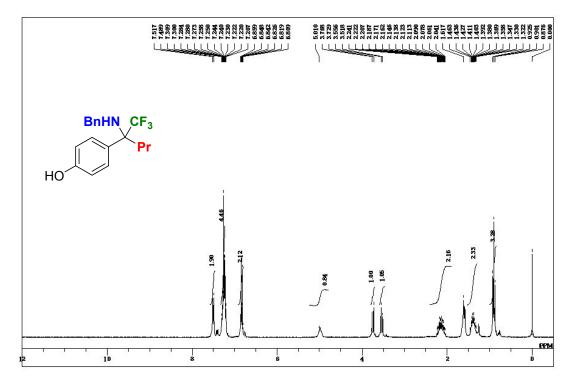

¹H NMR (300 MHz, CDCl₃)



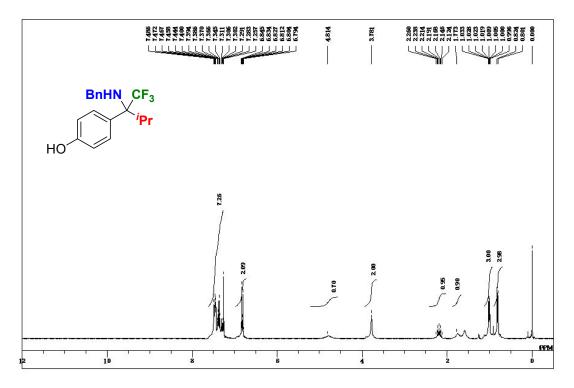
2-*tert*-Butyl-2-[4-[{(1,1-dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoropropane **(4af).** ¹H NMR (300 MHz, CDCl₃)

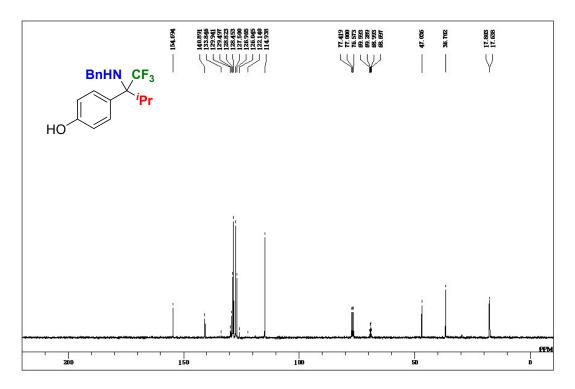


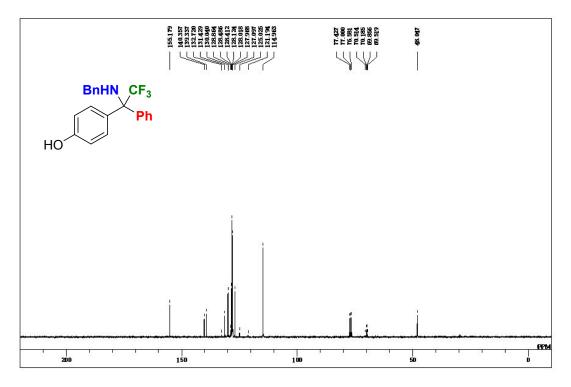

1-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (7) ¹H NMR (300 MHz, CDCl₃)

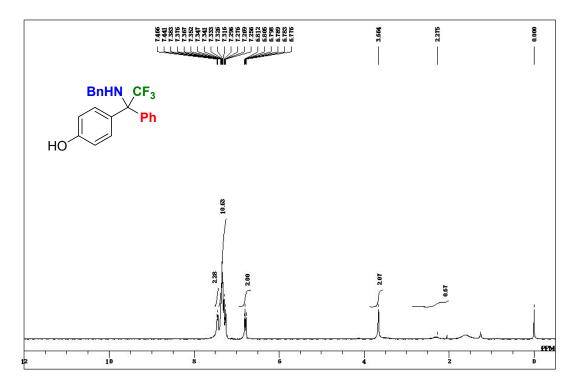

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-{4-(3,3,3-trifluoroprop-1-en-2-yl)phenoxy}propane. (8)

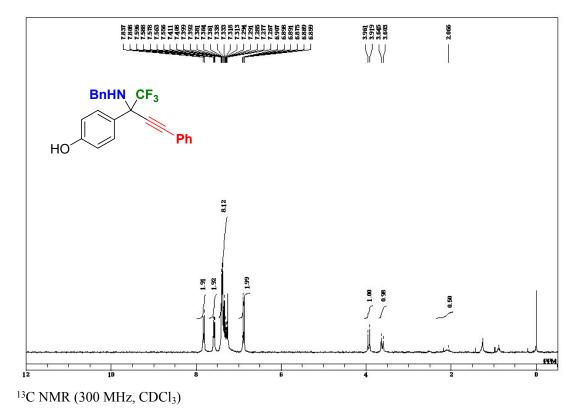
¹³C NMR (300 MHz, CDCl₃)




4-{2-(Benzylamino)-1,1,1-trifluoropent-2-yl}phenol. (**3ba**) ¹H NMR (300 MHz, CDCl₃)

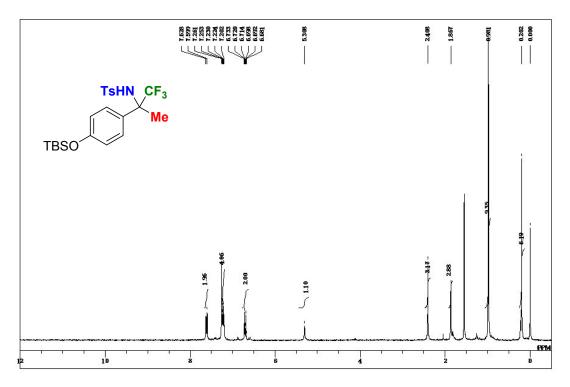


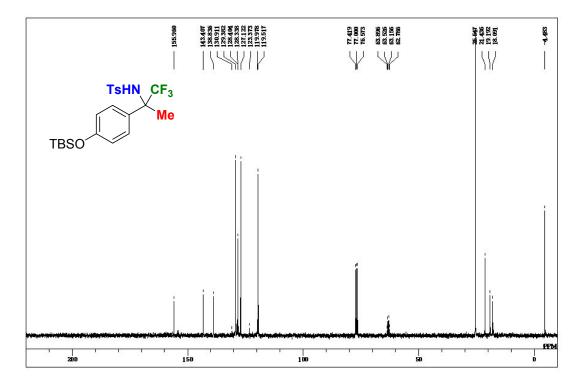

4-{2-(Benzylamino)-1,1,1-trifluoro-3-methylbut-2-yl}phenol. (3ca) ¹H NMR (300 MHz, CDCl₃)



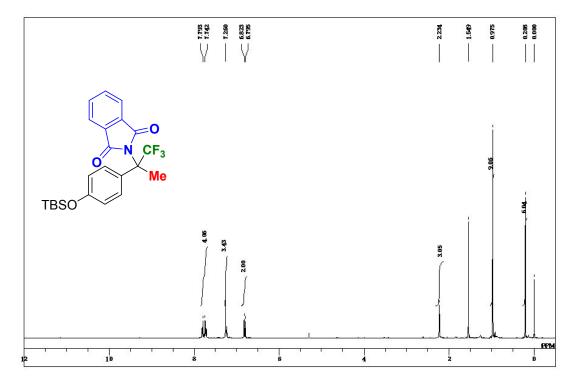
4-{1-(Benzylamino)-2,2,2-trifluoro-1-phenyleth-2-yl}phenol (3da) ¹H NMR (300 MHz, CDCl₃)

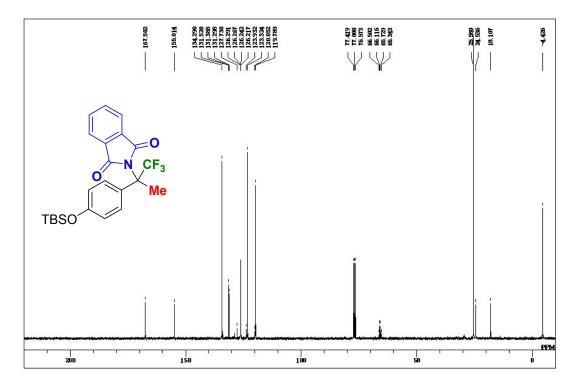
4-{2-(Benzylamino)-1,1,1-trifluoro-4-phenylbut-3-yn-2-yl}phenol (3ea) ¹H NMR (300 MHz, CDCl₃)

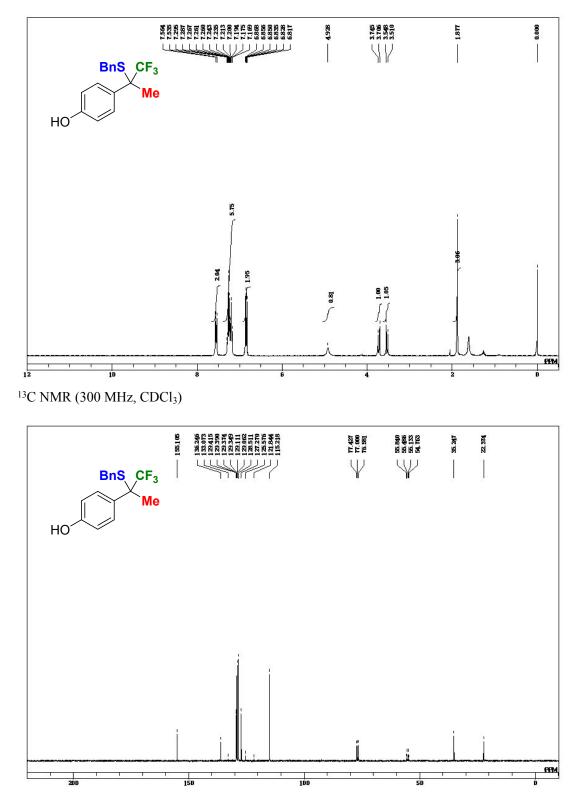




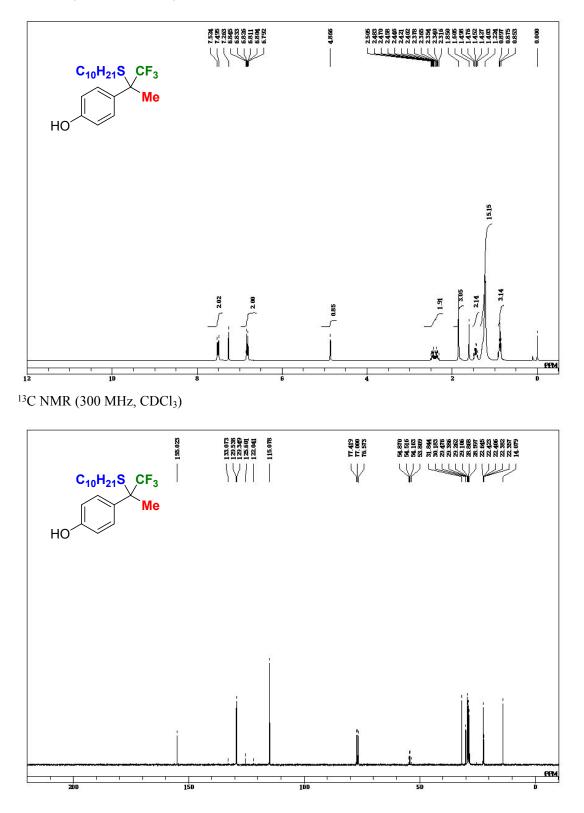
N-[1-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoroprop-2-yl]-4-

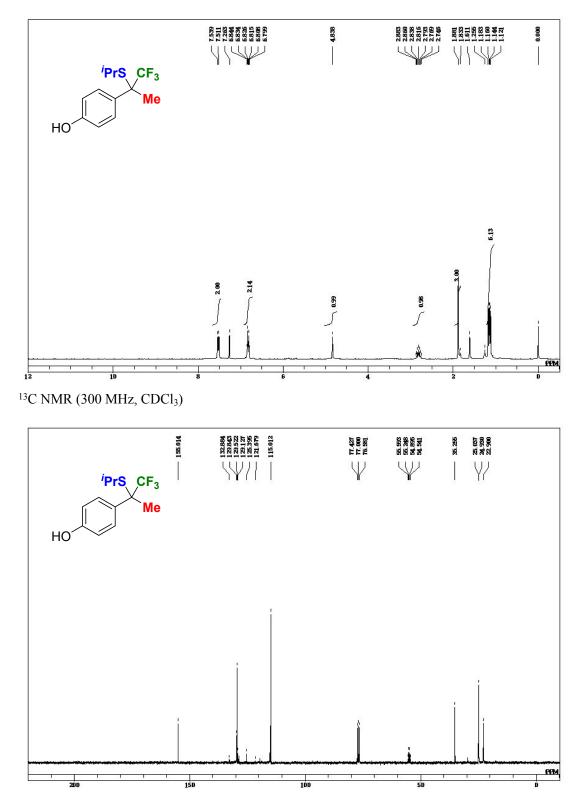

methylbenzenesulfonamide (4an)


¹H NMR (300 MHz, CDCl₃)

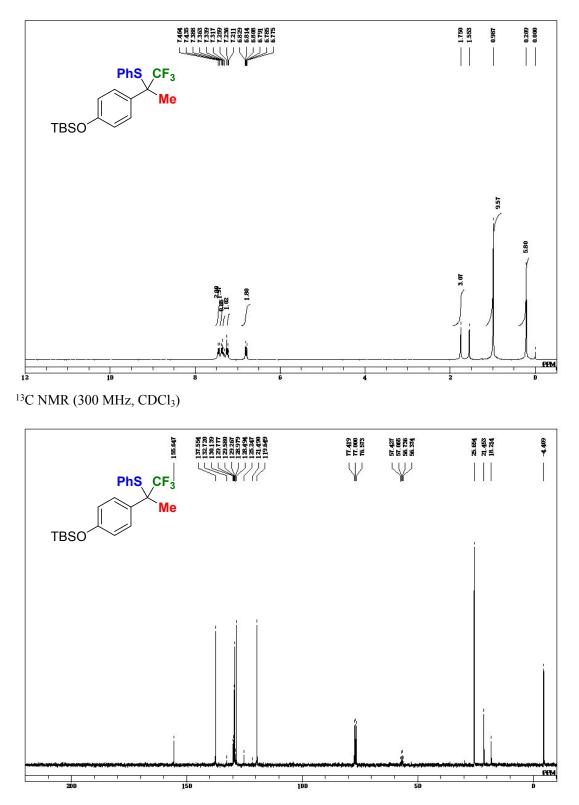


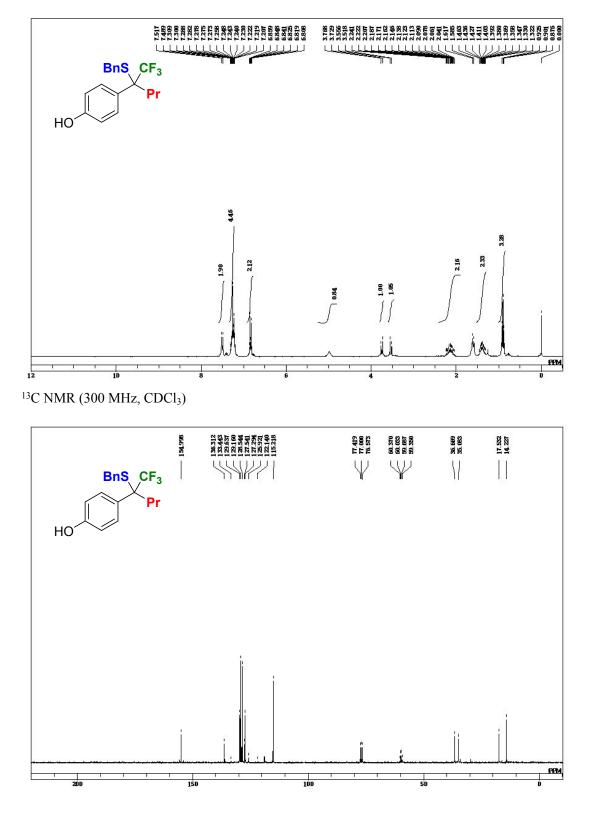
N-[1-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoroprop-2-yl]phtalimide (4ao) ¹H NMR (300 MHz, CDCl₃)

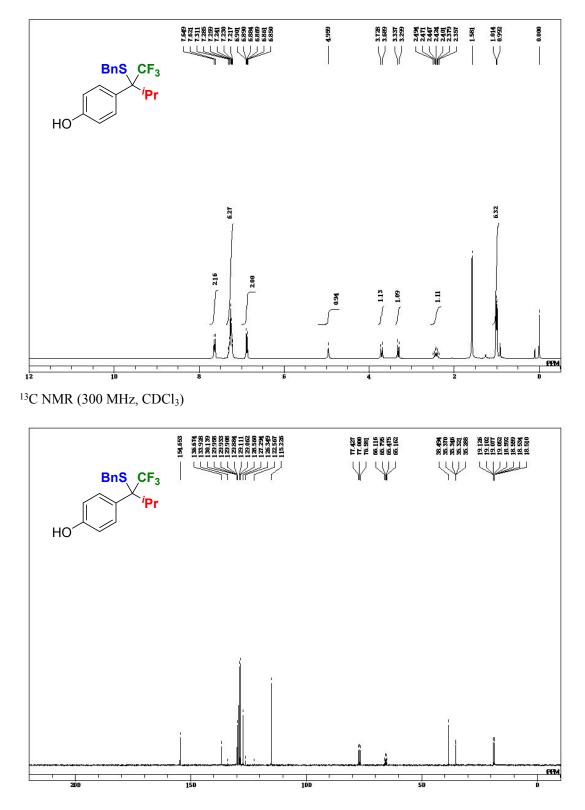


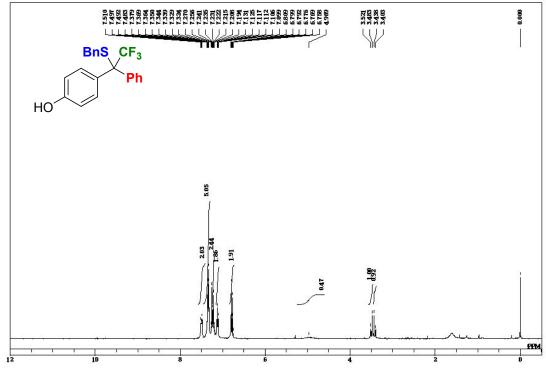

4-[1,1,1-Trifluoro-2-{(phenylmethane)sulfenyl}prop-2-yl]phenol (9aa). ¹H NMR (300 MHz, CDCl₃)

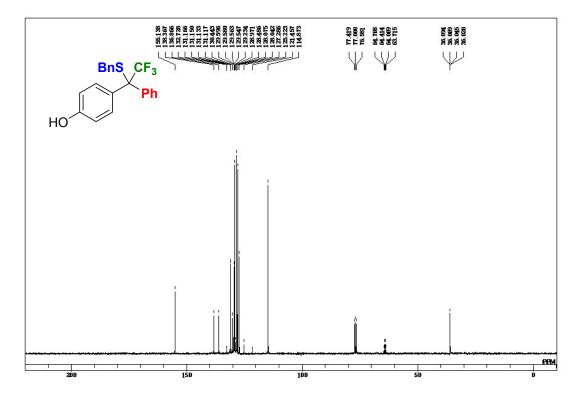

4-{1,1,1-Trifluoro-2-(decanesulfenyl)prop-2-yl}phenol (9ab). ¹H NMR (300 MHz, CDCl₃)

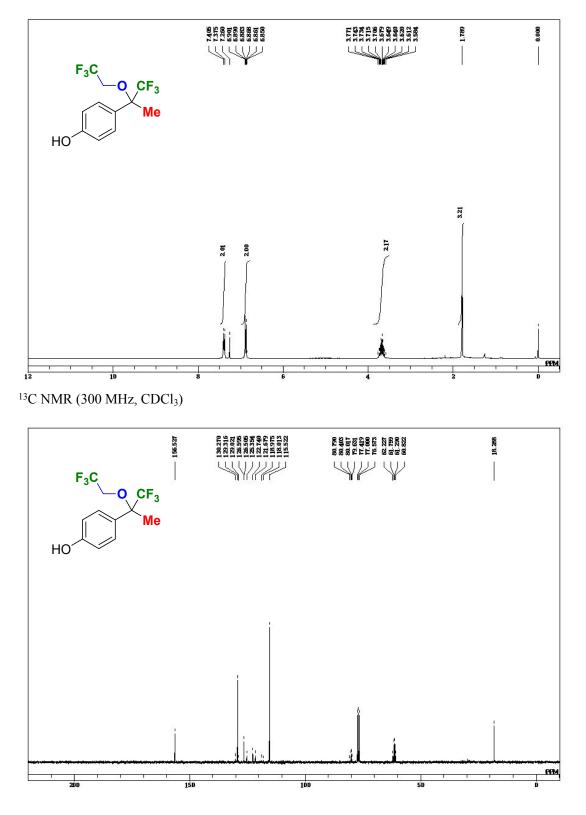

4-[1,1,1-Trifluoro-2-{(1-methylethane)sulfenyl}prop-2-yl]phenol (9ac) ¹H NMR (300 MHz, CDCl₃)

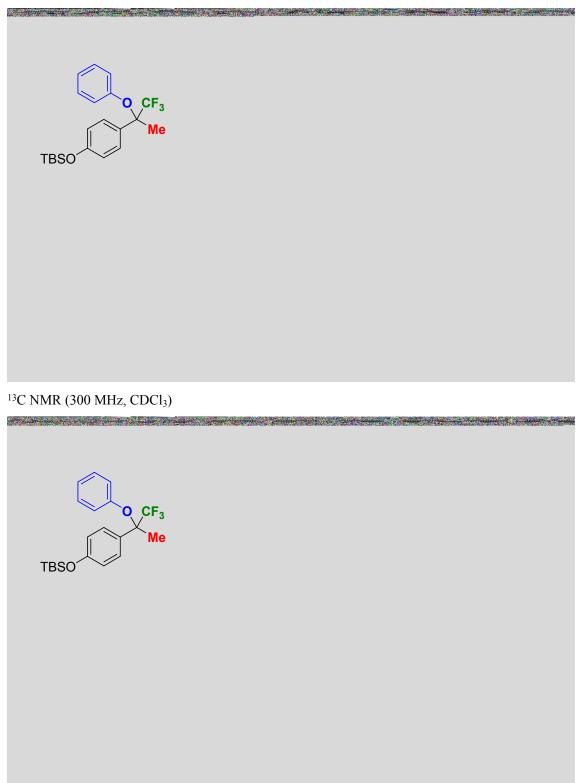

Methyl 2-{1,1,1-trifluoro-2-(4-hydroxyphenyl)prop-2-yl}thioacetate (9ad) ¹H NMR (300 MHz, CDCl₃)

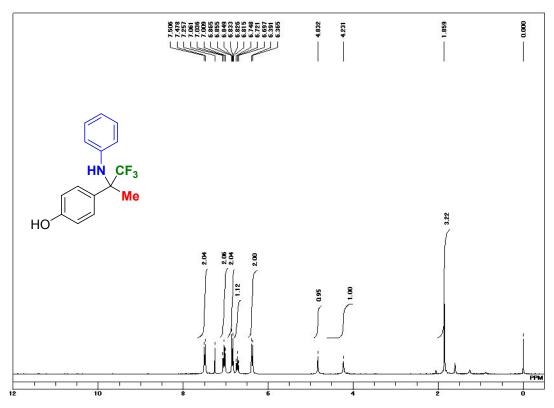

2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]]-1,1,1-trifluoro-2-phenylthiopropane (10ae) ¹H NMR (300 MHz, CDCl₃)

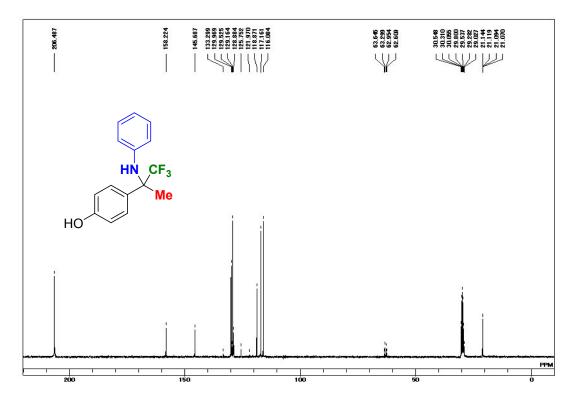

4-[1,1,1-Trifluoro-2-{(phenylmethane)sulfenyl}pent-2-yl]phenol (9ba) ¹H NMR (300 MHz, CDCl₃)


4-[1,1,1-Trifluoro-3-methyl-2-{(phenylmethane)sulfenyl}but-2-yl]phenol (9ca). ¹H NMR (300 MHz, CDCl₃)

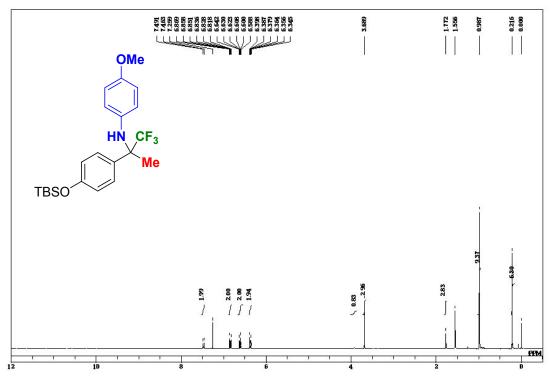

4-[1,1,1-Trifluoro-1-phenyl-2-{(phenylmethane)sulfenyl}ethyl]phenol (9da) ¹H NMR (300 MHz, CDCl₃)

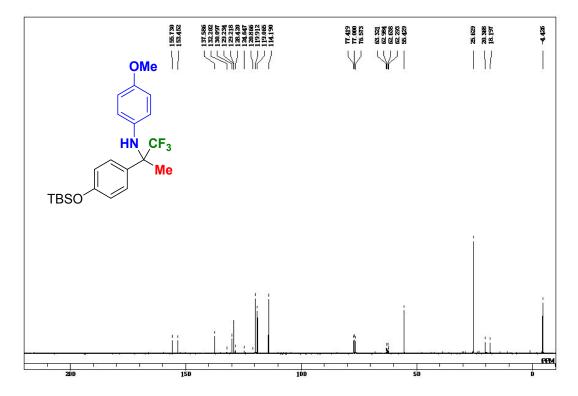

¹³C NMR (300 MHz, CDCl₃)

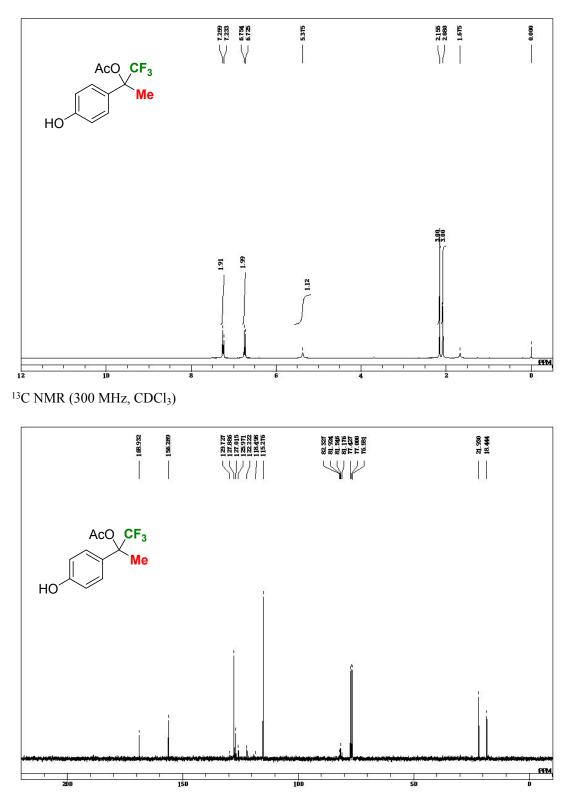

4-{1,1,1-Trifluoro-2-(2,2,2-trifluoroethoxy)prop-2-yl}phenol (11aa) ¹H NMR (300 MHz, CDCl₃)


2-[4-[{(1,1-Dimethylethyl)dimethylsilyl}oxy]phenyl]-1,1,1-trifluoro-2-phenoxypropane (**12ab**) ¹H NMR (300 MHz, CDCl₃)

4-{1,1,1-Trifluoro-2-(phenylaminoprop)-2-yl}phenol (**3ak**) ¹H NMR (300 MHz, CDCl₃)




¹³C NMR (300 MHz, acetone-*d*6)


methoxyphenyl)amino}propane (4al).

¹H NMR (300 MHz, CDCl₃)

1,1,1-Trifluoro-2-(4-hydroxyphenyl)prop-2-yl acetate ¹H NMR (300 MHz, CDCl₃)

