Supporting Information

Stereodivergent Pd/Cu catalysis: asymmetric alkylation of racemic symmetrical 1,3-diphenyl allyl acetates

Ling Zhao,^{ab} Guanlin Li,^b Rui He,^b Penglin Liu,^b Feijun Wang,^a Xiaohong Huo,^{*b} Min Zhao^{*a} and Wanbin Zhang^{*ac}

a. East China University of Science and Technology, Shanghai 200237, China

b. Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

c. College of Chemistry and Molecular Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052 (P. R. China)

CONTENTS

1. General Experimental Details	S2
2. Preparation of Starting Materials	S2
3. Optimization of the Reaction Conditions	S8
4. Construction of All Four Stereoisomers of 3a	S8
5. Characterization of Products	S11
6. Crystal structures of (<i>R</i> , <i>S</i>)- 3h and (<i>S</i> , <i>S</i>)- 3j	S28
7. NMR Analysis of the Mixture of Pd and Cu Complexes	
8. Computational Study about Diastereoselectivity	
9. References	S41
10. NMR and HPLC Spectra	\$42
11. Geometries and Energies	S134

1. General Experimental Details

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry nitrogen atmosphere. All solvents are purified and dried according to standard methods prior to use.

The NMR spectra were recorded on a Bruker 400M (400 MHz, ¹H; 101 MHz, ¹³C) and a Bruker 500 (500 MHz, ¹H; 126 MHz, ¹³C) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent and the internal standard tetramethylsilane. ¹⁹F NMR spectra were recorded on Bruker instruments (376 MHz and 471 MHz, respectively) and referenced relative to PhCF₃. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). The ee values were determined by HPLC using a Daicel chiral column. Mass spectrometry analysis was carried out using an electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. IR was measured on a PerkinElmer Spectrum 100 FT-IR Spectrometer.

2. Preparation of Starting Materials

Reagents were purchased from Sigma-Aldrich, TCI, or Alfa Aesar and used as received unless otherwise stated. (*R*)-L1-L3, (*S*)-L3 were purchased from Daicel chiral reagents. L4-L6,¹ 1,3-diphenylallyl acetate,² and imino esters³ were prepared according to literature procedures. The racemic samples were prepared by running reactions with a racemic catalyst.

Tert-butyl 5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [2a]

¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.47 – 7.38 (m, 3H), 4.83 (dddd, J = 8.5, 6.3, 2.0, 1.6 Hz, 1H), 3.13 (dddd, J = 17.2, 10.0, 5.8, 2.0 Hz, 1H), 2.98 (dddd, J = 17.2, 10.0, 6.5, 1.6 Hz, 1H), 2.33 (dddd, J = 13.0, 10.0, 8.5, 5.8 Hz, 1H), 2.18 (dddd, J = 13.0, 10.0, 6.5, 6.3 Hz, 1H), 1.51 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 175.8, 172.3, 134.0, 130.8, 128.4, 128.0, 81.1, 75.3, 35.4, 28.1, 26.7.

Ethyl 5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [2b]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.86 (m, 2H), 7.50 – 7.39 (m, 3H), 4.92 (dddd, *J* = 8.5, 6.5, 2.1, 1.7 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.17 (dddd, *J* = 17.1, 10.0, 5.5, 2.1 Hz, 1H), 3.00 (dddd, *J* = 17.1, 10.0, 6.7, 1.7 Hz, 1H), 2.36 (dddd, *J* = 13.1, 10.0, 8.5, 5.5 Hz, 1H), 2.25 (dddd, *J* = 13.1, 10.0, 6.7, 6.5 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 173.0, 133.9, 130.9, 128.4, 128.1, 74.7, 61.1, 35.5, 26.5, 14.2. IR (v/cm⁻¹) 2981, 2831, 1733, 1576, 1448, 1367, 1187, 1039, 855, 786, 774, 694, 559 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₃H₁₆NO₂ (M+H)⁺: 218.1176; found: 218.1177.

Methyl 5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [2c]

¹H NMR (500 MHz, CDCl₃) δ 7.90 – 7.85 (m, 2H), 7.47 – 7.37 (m, 3H), 4.92 (dddd, J = 8.6, 6.5, 2.1, 1.8 Hz, 1H), 3.78 (s, 3H), 3.16 (dddd, J = 17.0, 10.0, 5.4, 2.1 Hz, 1H), 2.98 (dddd, J = 17.0, 10.0, 6.9, 1.8 Hz, 1H), 2.35 (dddd, J = 13.2, 10.0, 8.6, 5.4 Hz, 1H), 2.25 (dddd, J = 13.2, 10.0, 6.9, 6.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 173.4, 133.8, 131.0, 128.4, 128.0, 74.6, 52.3, 35.4, 26.4.

Ethyl 5-(2-fluorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2b']

¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.87 (m, 2H), 7.15 – 7.07 (m, 2H), 4.91 (dddd, J = 8.5, 6.4, 2.1, 1.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.15 (dddd, J = 17.2, 10.0, 5.5, 2.1 Hz, 1H), 2.98 (dddd, J = 17.2, 9.8, 6.8, 1.7 Hz, 1H), 2.38 (dddd, J = 13.1, 9.8, 8.5, 5.5 Hz, 1H), 2.27 (ddd, J = 13.1, 10.0, 6.8, 6.4 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 172.8, 161.6 (d, $J_{C,F} = 253.3$ Hz), 132.5 (d, $J_{C,F} = 8.7$ Hz), 130.5 (d, $J_{C,F} = 3.4$ Hz), 124.2 (d, $J_{C,F} = 3.3$ Hz), 122.0 (d, $J_{C,F} = 11.5$ Hz), 116.2 (d, $J_{C,F} = 22.7$ Hz), 73.5, 61.2, 38.3 (d, $J_{C,F} = 7.6$ Hz), 26.8 (d, $J_{C,F} = 2.3$ Hz), 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -109.2. IR (v/cm⁻¹) 2981, 2873, 1728, 1487, 1454, 1370, 1105, 1042, 858, 809, 761, 568 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₃H₁₅NO₂F (M+H)⁺: 236.1081; found: 236.1083.

Ethyl 5-(3-fluorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2c]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 – 7.62 (m, 2H), 7.41 (ddd, J = 21.9, 8.4, 2.8 Hz, 1H), 7.17 (tdd, J = 8.4, 2.6, 1.0 Hz, 1H), 4.93 (dddd, J = 8.8, 6.4, 2.0, 1.8 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.16 (dddd, J = 17.2, 10.0, 5.4, 2.0 Hz, 1H), 2.99 (dddd, J = 16.2, 9.9, 6.8, 1.8 Hz, 1H), 2.39 (dddd, J = 13.1, 9.9, 8.8, 5.4 Hz, 1H), 2.28 (dddd, J = 13.1, 10.0, 6.8, 6.4 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 175.0, 172.7, 161.8 (d, $J_{C,F} =$ 243.0 Hz), 130.0 (d, $J_{C,F} = 8.2$ Hz), 123.8 (d, $J_{C,F} = 3.1$ Hz), 117.8 (d, $J_{C,F} = 21.4$ Hz), 114.8 (d, $J_{C,F} = 22.4$ Hz), 74.7, 61.2, 35.5, 26.5, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.8. IR (v/cm⁻¹) 2981, 2831, 1738, 1487, 1447, 1366, 1264, 1187, 1067, 889, 786, 775, 688, 527 cm-1. HRMS (Q–TOF Premier) calcd for C13H15NO2F (M+H)⁺: 236.1081; found: 236.1083.

Ethyl 5-(3-chlorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2d]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 (dd, J = 2.1, 1.8 Hz, 1H), 7.76 (ddd, J = 7.6, 1.8, 1.2 Hz, 1H), 7.45 (ddd, J = 8.0, 2.1, 1.2 Hz, 1H), 7.37 (dd, J = 8.0, 7.6 Hz, 1H), 4.93 (dddd, J = 8.7, 6.5, 2.2, 1.8 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.15 (dddd, J = 17.2, 10.0, 5.4, 2.2 Hz, 1H), 2.98 (dddd, J = 17.2, 9.9, 6.8, 1.8 Hz, 1H), 2.39 (dddd, J = 13.2, 9.9, 8.7, 5.4 Hz, 1H), 2.27 (dddd, J = 13.2, 10.0, 6.8, 6.5 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*) δ 174.9, 172.7, 135.6, 134.6, 130.9, 129.7, 128.1, 126.2, 74.7, 61.3, 35.5, 26.4, 14.2. IR (v/cm⁻¹) 2957, 2831, 1747, 1428, 1367, 1186, 1069, 1041, 786, 688 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₃H₁₅NO₂Cl (M+H)⁺: 252.0786; found: 252.0789.

Ethyl 5-(*m*-tolyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2e]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 1.8 Hz, 1H), 7.63 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.33 – 7.25 (m, 2H), 4.90 (dddd, *J* = 8.5, 6.5, 2.1, 1.7 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.15 (dddd, *J* = 17.1, 10.0, 5.5, 2.1 Hz, 1H), 2.98 (dddd, *J* = 17.1, 9.9, 6.8, 1.7 Hz, 1H), 2.39 (s, 3H), 2.34 (dddd, *J* = 13.0, 10.0, 8.5, 6.8 Hz, 1H), 2.23 (dddd, *J* = 13.0, 9.9, 6.5, 5.5 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 173.0, 138.1, 133.8, 131.7, 128.5, 128.3, 125.3, 74.6, 61.1, 35.5, 26.5, 21.3, 14.2. IR (v/cm⁻¹) 2980, 2957, 1733, 1585, 1456, 1368, 1352, 1186, 1041, 786, 776, 696 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₄H₁₈NO₂ (M+H)⁺: 232.1332; found: 232.1334.

Ethyl 5-(3-methoxyphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2f]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 (dd, J = 2.7, 1.4 Hz, 1H), 7.42 (ddd, J = 7.7, 1.4, 1.0 Hz, 1H), 7.34 (dd, J = 8.2, 7.7 Hz, 1H), 7.03 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 4.93 (dddd, J = 8.6, 6.4, 2.1, 1.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.87 (s, 3H), 3.17 (dddd, J = 17.2, 10.0, 5.6, 2.1 Hz, 1H), 3.00 (dddd, J = 17.2, 9.8, 6.8, 1.7 Hz, 1H), 2.37 (dddd, J = 13.0, 9.8, 8.6, 5.6 Hz, 1H), 2.26 (dddd, J = 13.1, 10.0, 6.8, 6.4 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 172.9, 159.6, 135.2, 129.4, 120.8, 117.5, 112.3, 74.6, 61.1, 55.5, 35.6, 26.5, 14.2. IR (v/cm⁻¹) 2957, 2835, 1732, 1601, 1456, 1368, 1185, 1042, 994, 873, 786, 692 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₄H₁₈NO₃ (M+H)⁺: 248.1281; found: 248.1284.

Ethyl 5-(4-fluorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2g]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (dd, J = 8.7, 5.6 Hz, 2H), 7.10 (dd, J = 8.7, 8.7 Hz, 2H), 4.90 (dddd, J = 8.7, 6.5, 2.1, 1.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.15 (dddd, J = 17.1, 10.0, 5.5, 2.1 Hz, 1H), 2.98 (dddd, J = 17.1, 9.9, 6.8, 1.7 Hz, 1H), 2.37 (dddd, J = 13.1, 9.9, 8.7, 5.5 Hz, 1H), 2.26 (dddd, J = 13.1, 10.0, 6.8, 6.5 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 172.9, 164.5 (d, $J_{C,F} = 251.2$ Hz), 130.2 (d, $J_{C,F} = 4.0$ Hz), 130.2 (d, $J_{C,F} = 8.5$ Hz), 115.5 (d, $J_{C,F} = 21.8$ Hz), 74.6, 61.2, 35.5, 26.6, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -109.2. IR (v/cm⁻¹) 2981, 2831, 1738, 1511, 1367, 1225, 1187, 1156, 1096, 1038, 842, 775, 555 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₃H₁₅NO₂F (M+H)⁺: 236.1081; found: 236.1085.

Ethyl 5-(4-chlorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2h]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 8.6 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 4.89 (ddt, *J* = 8.6, 6.6, 2.1, 1.8 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 3.12 (dddd, *J* = 17.1, 10.0, 5.4, 2.1 Hz, 1H), 2.95 (dddd, *J* = 17.1, 9.8, 6.8, 1.8 Hz, 1H), 2.36 (dddd, *J* = 12.9, 9.8, 8.6, 5.4 Hz, 1H), 2.24 (dddd, *J* = 13.2, 10.0, 6.8, 6.6 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 172.8, 137.0, 132.3, 129.4, 128.7, 74.7, 61.2, 35.4, 26.5, 14.2. IR (v/cm⁻¹) 2981,

2873, 1736, 1614, 1490, 1402, 1187, 1091, 1038, 836, 819, 555 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₃H₁₅NO₂Cl (M+H)⁺: 252.0786; found: 252.0785.

Ethyl 5-(p-tolyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2i]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 4.89 (dddd, *J* = 8.5, 6.5, 2.1, 1.7 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.14 (dddd, *J* = 17.1, 10.0, 5.5, 2.1 Hz, 1H), 2.96 (dddd, *J* = 17.1, 9.9, 6.7, 1.7 Hz, 1H), 2.39 (s, 3H), 2.33 (dddd, *J* = 13.0, 8.5, 9.9, 5.5 Hz, 1H), 2.22 (dddd, *J* = 13.0, 10.0, 6.7, 6.5 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.9, 173.1, 141.2, 131.2, 129.1, 128.0, 74.6, 61.1, 35.4, 26.5, 21.5, 14.2. IR (v/cm⁻¹) 2964, 2919, 1720, 1565, 1446, 1343, 1291, 1197, 1067, 1031, 975, 855, 824, 797, 775, 561, 462 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₄H₁₈NO₂ (M+H)⁺: 232.1332; found: 232.1335.

Ethyl 5-(4-methoxyphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2j]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 4.86 (dddd, *J* = 8.4, 6.4, 2.0, 1.6 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.83 (s, 3H), 3.12 (dddd, *J* = 17.0, 10.0, 5.5, 2.0 Hz, 1H), 2.94 (dddd, *J* = 17.0, 9.9, 6.8, 1.6 Hz, 1H), 2.32 (dddd, *J* = 13.1, 9.9, 8.4, 5.5 Hz, 1H), 2.21 (dddd, *J* = 13.1, 10.0, 6.8, 6.4 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 173.2, 161.8, 129.7, 126.7, 113.7, 74.5, 61.0, 55.3, 35.3, 26.5, 14.2. IR (v/cm⁻¹) 2978, 2938, 1735, 1606, 1572, 1514, 1460, 1344, 1253, 1174, 1033, 839, 559 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₄H₁₈NO₃ (M+H)⁺: 248.1281; found: 248.1284.

Ethyl 5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2k]

¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 7.9 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 4.96 (dddd, *J* = 8.7, 6.4, 2.2, 1.8 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.19 (dddd, *J* = 17.2, 10.0, 5.4, 2.2 Hz, 1H), 3.03 (dddd, *J* = 17.2, 9.9, 6.8, 1.8 Hz, 1H), 2.41 (dddd, *J* = 13.2, 10.0, 8.7, 5.4 Hz, 1H), 2.30 (dddd, *J* = 13.2, 9.9, 6.8, 6.4 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 172.6, 137.0, 132.5 (q, *J*_{C,F} = 32.6 Hz), 128.4, 125.4 (q, *J*_{C,F} = 3.9 Hz), 123.7

(q, $J_{C,F} = 269.1$ Hz), 74.9, 61.3, 35.6, 26.4, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.9. HRMS (Q–TOF Premier) calcd for C₁₄H₁₅F₃NO₂ (M+H)⁺: 286.1049; found: 286.1048.

Ethyl 5-(naphthalen-2-yl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2]]

¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 – 8.22 (m, 1H), 8.14 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.94 – 7.90 (m, 1H), 7.90 – 7.84 (m, 2H), 7.58 – 7.51 (m, 2H), 4.98 (dddd, *J* = 8.7, 6.4, 2.0, 1.7 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.31 (dddd, *J* = 17.0, 10.0, 5.4, 2.0 Hz, 1H), 3.12 (dddd, *J* = 17.0, 9.9, 6.8, 1.7 Hz, 1H), 2.42 (dddd, *J* = 13.0, 9.9, 8.7, 5.4 Hz, 1H), 2.31 (dddd, *J* = 13.0, 10.0, 6.8, 6.4 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 173.0, 134.6, 132.9, 131.4, 128.8, 128.2, 127.8, 127.3, 126.5, 124.8, 74.8, 61.2, 35.5, 26.6, 14.3. IR (v/cm⁻¹) 2979, 2953, 2831, 1735, 1455, 1367, 1185, 1056, 1035, 958, 869, 752 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₇H₁₈NO₂ (M+H)⁺: 268.1332; found: 268.1331.

Ethyl 5-(furan-2-yl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2m]

¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 1.7 Hz, 1H), 6.92 (d, *J* = 3.4 Hz, 1H), 6.49 (dd, *J* = 3.4, 1.7 Hz, 1H), 4.91 – 4.84 (dddd, *J* = 8.6, 3.3, 2.0, 1.7 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.08 (dddd, *J* = 17.1, 9.9, 5.5, 2.0 Hz, 1H), 2.92 (dddd, *J* = 17.1, 9.8, 6.8, 1.7 Hz, 1H), 2.31 (dddd, *J* = 13.0, 9.8, 8.6, 5.5 Hz, 1H), 2.21 (dddd, *J* = 13.0, 9.9, 6.8, 3.3 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 166.5, 149.4, 145.0, 114.2, 111.7, 74.6, 61.2, 35.3, 26.2, 14.2. IR (v/cm⁻¹) 2960, 2831, 1736, 1483, 1367, 1189, 1081, 1040, 885, 775, 597 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₁H₁₄NO₃ (M+H)⁺: 208.0968; found: 208.0972.

Ethyl 5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrole-2-carboxylate [2n]

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.40 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.08 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.87 (dddd, *J* = 8.4, 6.2, 2.0, 1.6 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.14 (dddd, *J* = 17.2, 9.8, 6.0, 2.0 Hz, 1H), 2.98 (dddd, *J* = 17.2, 9.6, 6.4, 1.6 Hz, 1H), 2.35 (dddd, *J* = 13.0, 9.6, 8.4, 6.0 Hz, 1H), 2.24 (dddd, *J* = 13.0, 9.8, 6.4, 6.2 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 170.4, 138.5, 130.1, 129.9, 127.5, 74.4,

61.1, 36.0, 26.9, 14.2. IR (v/cm⁻¹) 2980, 2873, 1734, 1606, 1431, 1370, 1186, 1042, 714 cm⁻¹. HRMS (Q–TOF Premier) calcd for C₁₁H₁₄NO₂S (M+H)⁺: 224.0740; found: 224.0739.

3. Optimization of the Reaction Conditions

Preparation of the Pd catalyst⁴: $[Pd(\eta^3-allyl)Cl]_2$ (2.5 mol%), **L3** (5.5 mol%) were stirred in DCM (1.0 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 40 min.

Preparation of the Cu catalyst⁵: $[Cu(MeCN)_4]PF_6$ (5.0 mol%), **L5** (5.5 mol%) were stirred in DCM (1.0 mL) in a Schlenk flask under nitrogen atmosphere at room temperature for 40 min.

A flame dried Schlenk tube was cooled to rt and filled with N₂. To this flask was added base (0.15 mmol, 1.2 equiv). Cu catalyst (1.0 mL) and Pd catalyst (1.0 mL) was then added. 1,3-diphenylallyl acetate (0.175 mmol, 1.4 equiv) and imino ester (0.125 mmol, 1.0 equiv) were then added and the reaction mixture was stirred at 50 °C for 16 h. The residue was then purified by SiO₂ column chromatography (PE/EA = 4:1-5:1) to give the desired products. The ee value was determined by HPLC using a Daicel chiral column.

Several Cu and Pd salts including $Pd(OAc)_2$, Pd_2dba_3 , $Cu(OTf)_2$ and $Cu(CH_3CN)_4BF_4$ have also screened, giving the desired products in high yields and with high to excellent diastereoselectivities and enantioselectivities (73% yield, 5:1 dr, 98% ee; 45% yield, 14:1 dr, 99% ee; 86% yield, 5:1 dr, 98% ee; 76% yield, 14:1 dr, 99% ee).

4. Construction of All Four Stereoisomers of 3a

Prepared according to the general procedure as described above by switching the configurations of the ligands.

[(S,S)-3a]

¹H NMR analysis of the crude mixture showed a dr of >20:1. White solid, 47.1 mg, 92% yield. m.p. = 61 – 65 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 – 7.89 (m, 2H), 7.56 – 7.50 (m, 2H), 7.47 – 7.42 (m, 3H), 7.31 – 7.28 (m, 5H), 7.24 – 7.19 (m, 2H), 6.62 (d, *J* = 15.7 Hz, 1H), 6.38 (dd, *J* = 15.7, 9.8 Hz, 1H), 4.30 (d, *J* = 9.8 Hz, 1H), 4.11 (q, *J* = 7.0 Hz, 2H), 2.91 (ddd, *J* = 16.2, 9.8, 5.4 Hz, 1H), 2.57 (ddd, *J* = 13.0, 9.8, 5.8 Hz, 1H), 2.48 (ddd, *J* = 16.2, 9.6, 5.8 Hz, 1H), 2.34 (ddd, *J* = 13.0, 9.6, 5.4 Hz, 1H), 1.14 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 173.7, 140.3, 137.1, 134.1, 133.0, 130.8, 129.5, 128.5, 128.4, 128.1, 128.0, 127.9, 127.5, 126.7, 126.4, 87.1, 61.2, 56.6, 35.3, 30.1, 14.1. HRMS (Q–TOF Premier) calcd for C₂₈H₂₈NO₂ (M+H)⁺: 410.2115; found: 410.2117. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 20.8 min (major), t_{R2} = 41.4 min (minor)]. [α]_D²⁰ = -89.6 (*c* 0.42, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3027, 2970, 2920, 2849, 1726, 1618, 1494, 1450, 1342, 1240, 1097, 969, 747, 693 cm⁻¹.

Ethyl (S)-2-((R,E)-1,3-diphenylallyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [(R,S)-3a]

¹H NMR analysis of the crude mixture showed a dr of 20:1. Light yellow oil, 46.5 mg, 91% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.88 (m, 2H), 7.50 – 7.44 (m, 3H), 7.42 – 7.38 (m, 2H), 7.35 – 7.28 (m, 4H), 7.26 – 7.18 (m, 4H), 6.84 (dd, J = 15.8, 9.0 Hz, 1H), 6.55 (d, J = 15.8 Hz, 1H), 4.33 (d, J = 9.0 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 2.83 (ddd, J = 16.6, 10.0, 5.2 Hz, 1H), 2.39 (ddd, J = 13.4, 10.0, 6.2 Hz, 1H), 2.26 (ddd, J = 13.4, 9.8, 5.2 Hz, 1H), 2.11 (ddd, J = 16.6, 9.8, 6.2 Hz, 1H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.9, 174.0, 139.4, 137.4, 134.1, 132.5, 130.8, 129.9, 129.5, 128.4, 128.4, 128.1, 128.1, 127.2, 126.9, 126.5, 87.4, 61.3, 57.0, 35.3, 30.8, 14.3. HRMS (Q–TOF Premier) calcd for C₂₈H₂₈NO₂ (M+H)⁺: 410.2115; found: 410.2119. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 21.7 min (major), t_{R2} = 31.3 min (minor)]. [α]_D²⁰ = -28.0 (*c* 1.07, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3027, 2979, 2936, 2871, 1729, 1616, 1494, 1453, 1342, 1236, 1081, 966, 747, 693 cm⁻¹.

Ethyl (*R*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [(*R*,*R*)-3a]

¹H NMR analysis of the crude mixture showed a dr of >20:1. White solid, 46.5 mg, 91% yield. m.p. = 72 – 80 °C. HRMS (Q–TOF Premier) calcd for $C_{28}H_{28}NO_2$ (M+H)⁺: 410.2115; found: 410.2110. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; $t_{R1} = 41.5$ min (major), $t_{R2} = 21.0$ min (minor)]. [α]_D²⁰ = 87.8 (*c* 1.11, CH₂Cl₂). Spectral data were in agreement with those of the enantiomer reported above.

Ethyl (*R*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [(*S*,*R*)-3a]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 47.1 mg, 92% yield. HRMS (Q–TOF Premier) calcd for $C_{28}H_{28}NO_2$ (M+H)⁺: 410.2115; found: 410.2115. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 32.8 min (major), t_{R2} = 22.7 min (minor)]. [α]_D²⁰ = 26.6 (*c* 1.15, CH₂Cl₂). Spectral data were in agreement with those of the enantiomer reported above.

5. Characterization of Products

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(2-fluorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(*S*,*S*)-3b]

¹H NMR analysis of the crude mixture showed a dr of 12:1. Light yellow oil, 26.7 mg, 50% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.15 (m, 1H), 7.61 – 7.56 (m, 2H), 7.49 – 7.38 (m, 2H), 7.35 (m, 2H), 7.30 (m, 4H), 7.23 (m, 2H), 7.11 (m, 1H), 6.62 (d, J = 15.7 Hz, 1H), 6.40 (dd, J = 15.7, 9.8 Hz, 1H), 4.29 (d, J = 9.8 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.00 – 2.90 (m, 1H), 2.57 – 2.47 (m, 2H), 2.35 – 2.11 (m, 1H), 1.14 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.6, 172.8 (d, $J_{C-F} = 2.5$ Hz), 161.6 (d, $J_{C-F} = 253.1$ Hz), 140.3, 137.1, 133.1, 132.3 (d, $J_{C-F} = 8.6$ Hz), 130.7 (d, $J_{C-F} = 3.4$ Hz), 129.5, 128.5, 128.1, 127.9, 127.5, 126.8, 126.4, 124.2 (d, $J_{C-F} = 3.3$ Hz), 122.4 (d, $J_{C-F} = 11.9$ Hz), 116.2 (d, $J_{C-F} = 22.5$ Hz), 86.0, 61.2, 56.6, 38.2 (d, $J_{C-F} = 7.1$ Hz), 30.5, 14.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.5. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇FNO₂ (M+H)⁺: 428.2021; found: 428.2017. 99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 17.0 min (major), t_{R2} = 30.3 min (minor)]. [α]_D²⁰ = -61.6 (*c* 0.84, CH₂Cl₂). IR (v/cm⁻¹) 3060, 3027, 2979, 2931, 1726, 1613, 1492, 1454, 1339, 1235, 1107, 969, 746, 698 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(2-fluorophenyl)-3,4-dihydro-2H-Pyrrole-2carboxylate [(*R*,*S*)-3b]

¹H NMR analysis of the crude mixture showed a dr of 10:1. Light yellow oil, 27.8 mg, 52% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.20 (m, 1H), 7.44 (m, 2H), 7.41 – 7.31 (m, 6H), 7.27 (m, 4H), 7.08 (m, 1H), 6.82 (dd, *J* = 15.8, 9.0 Hz, 1H), 6.55 (d, *J* = 15.8 Hz, 1H), 4.32 (d, *J* = 9.0 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.96 – 2.86 (m, 1H), 2.46 – 2.32 (m, 1H), 2.28 – 2.19 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 173.2 (d, *J*_{C-F} = 2.5 Hz), 161.6 (d, *J*_{C-F} = 253.0 Hz), 139.3, 137.3, 132.5, 132.3 (d, *J*_{C-F} = 8.6 Hz), 130.7 (d, *J*_{C-F} = 3.4 Hz), 129.8, 129.3, 128.4, 128.1, 127.2, 127.0, 126.5, 124.2 (d, *J*_{C-F} = 3.4 Hz), 122.3 (d, *J*_{C-F} = 12.0 Hz), 116.2 (d, *J*_{C-F} = 22.6 Hz), 86.2, 61.3, 56.8, 38.1 (d, *J*_{C-F} = 7.5 Hz), 31.0, 14.3. ¹⁹F

NMR (471 MHz, CDCl₃) δ -112.5. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇FNO₂ (M+H)⁺: 428.2021; found: 428.2027. 99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 21.3 min (major), t_{R2} = 20.2 min (minor)]. [α]_D²⁰ = -15.7 (*c* 0.68, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3026, 2979, 2928, 1727, 1613, 1489, 1454, 1339, 1231, 1051, 966, 747, 696 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(3-fluorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(*S*,*S*)-3c]

¹H NMR analysis of the crude mixture showed a dr of 18:1. Light yellow oil, 48.6 mg, 91% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.68-7.71 (m, 1H), 7.65 – 7.61 (m, 1H), 7.58 – 7.53 (m, 2H), 7.44 – 7.39 (m, 1H), 7.34 – 7.28 (m, 6H), 7.24 – 7.17 (m, 3H), 6.63 (d, *J* = 15.7 Hz, 1H), 6.37 (dd, *J* = 15.7, 9.8 Hz, 1H), 4.29 (d, *J* = 9.8 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.88 (ddd, *J* = 16.6, 10.0, 5.4 Hz, 1H), 2.58 (ddd, *J* = 13.0, 10.0, 5.6 Hz, 1H), 2.46 (ddd, *J* = 16.6, 9.8, 5.6 Hz, 1H), 2.36 (ddd, *J* = 13.0, 9.8, 5.4 Hz, 1H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.2 (d, *J*_{C-F} = 2.7 Hz), 173.5, 162.8 (d, *J*_{C-F} = 246.1 Hz), 140.2, 137.1, 136.3 (d, *J*_{C-F} = 7.4 Hz), 133.1, 130.0 (d, *J*_{C-F} = 8.0 Hz), 129.5, 128.5, 128.0, 127.7, 127.5, 126.8, 126.4, 123.9 (d, *J*_{C-F} = 2.9 Hz), 117.8 (d, *J*_{C-F} = 21.5 Hz), 114.8 (d, *J*_{C-F} = 22.2 Hz), 87.1, 61.2, 56.6, 35.3, 30.2, 14.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.9. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇FNO₂ (M+H)⁺: 428.2021; found: 428.2019. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 18.8 min (major), t_{R2} = 27.3 min (minor)]. [α]_D²⁰ = -70.9 (*c* 0.92, CH₂Cl₂). IR (v/cm⁻¹) 3060, 3027, 2979, 2934, 1728, 1618, 1582, 1493, 1449, 1331, 1265, 1179, 1096, 969, 747, 698 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(3-fluorophenyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3c]

¹H NMR analysis of the crude mixture showed a dr of 15:1. Light yellow oil, 48.6 mg, 91%

yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 – 7.64 (m, 1H), 7.62 – 7.54 (m, 1H), 7.42 – 7.38 (m, 3H), 7.34 – 7.26 (m, 4H), 7.25 – 7.16 (m, 5H), 6.82 (dd, *J* = 15.8, 9.0 Hz, 1H), 6.55 (d, *J* = 15.8 Hz, 1H), 4.30 (d, *J* = 9.0 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.78 (ddd, *J* = 16.8, 10.1, 5.2 Hz, 1H), 2.38 (ddd, *J* = 13.4, 10.1, 6.4 Hz, 1H), 2.26 (ddd, *J* = 13.4, 9.8, 5.2 Hz, 1H), 2.04 (ddd, *J* = 16.8, 9.8, 6.4 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.7 (d, *J*_{C-F} = 2.5 Hz), 173.9, 162.8 (d, *J*_{C-F} = 246.1 Hz), 139.2, 137.3, 136.3 (d, *J*_{C-F} = 7.5 Hz), 132.5, 130.0, 129.9 (d, *J*_{C-F} = 14.3 Hz), 129.3, 128.4, 128.1, 127.3, 126.9, 126.5, 123.8 (d, *J*_{C-F} = 2.9 Hz), 117.7 (d, *J*_{C-F} = 21.4 Hz), 114.8 (d, *J*_{C-F} = 22.3 Hz), 87.4, 61.3, 57.0, 35.3, 30.9, 14.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.9. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇FNO₂ (M+H)⁺: 428.2021; found: 428.2029. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 21.1 min (major), t_{R2} = 24.1 min (minor)]. [α]_D²⁰ = -16.7 (*c* 1.14, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3027, 2980, 2935, 1729, 1619, 1582, 1493, 1449, 1331, 1265, 1178, 1083, 966, 747, 702 cm⁻¹.

Ethyl (*S*)-5-(3-chlorophenyl)-2-((*S*,*E*)-1,3-diphenylallyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3d]

¹H NMR analysis of the crude mixture showed a dr of 13:1. Light yellow oil, 50.9 mg, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 – 7.94 (m, 1H), 7.76 – 7.72 (dt, J = 7.6, 1.3 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.48 – 7.45 (m, 1H), 7.41 – 7.36 (m, 1H), 7.35 – 7.28 (m, 6H), 7.25 – 7.20 (m, 2H), 6.62 (d, J = 15.7 Hz, 1H), 6.36 (dd, J = 15.7, 9.8 Hz, 1H), 4.28 (d, J = 9.8 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.87 (ddd, J = 16.4, 10.0, 5.3 Hz, 1H), 2.58 (ddd, J = 13.1, 10.0, 5.6 Hz, 1H), 2.45 (ddd, J = 16.4, 9.9, 5.6 Hz, 1H), 2.35 (ddd, J = 13.0, 9.9, 5.3 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.1, 173.4, 140.1, 137.1, 135.8, 134.5, 133.1, 130.8, 129.7, 129.5, 128.5, 128.0, 128.0, 127.7, 127.5, 126.8, 126.4, 126.2, 87.2, 61.3, 56.6, 35.3, 30.1, 14.1. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇ClNO₂ (M+H)⁺: 444.1725; found: 444.1710. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 18.8 min (major), t_{R2} = 27.3 min (minor)]. [α]_D²⁰ = -101.9 (*c* 0.86, CH₂Cl₂). IR (v/cm⁻¹) 3060, 3026, 2979, 2934, 1728, 1618, 1567, 1493, 1453, 1240, 1097, 968, 746, 697 cm⁻¹.

Ethyl (*S*)-5-(3-chlorophenyl)-2-((*R*,*E*)-1,3-diphenylallyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3d]

¹H NMR analysis of the crude mixture showed a dr of 16:1. Light yellow oil, 49.2 mg, 89% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.91 (m, 1H), 7.73 – 7.69 (m, 1H), 7.48 – 7.43 (m, 1H), 7.40 – 7.35 (m, 3H), 7.35 – 7.26 (m, 5H), 7.25 – 7.19 (m, 4H), 6.81 (dd, *J* = 15.8, 9.0 Hz, 1H), 6.55 (d, *J* = 15.8 Hz, 1H), 4.30 (d, *J* = 9.0 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.77 (ddd, *J* = 16.8, 10.1, 5.2 Hz, 1H), 2.37 (ddd, *J* = 13.4, 10.1, 6.4 Hz, 1H), 2.26 (ddd, *J* = 13.4, 9.8, 5.2 Hz, 1H), 2.04 (ddd, *J* = 16.8, 9.8, 6.4 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 173.9, 139.2, 137.3, 135.8, 134.5, 132.6, 130.8, 129.8, 129.7, 129.2, 128.4, 128.1, 128.0, 127.3, 127.0, 126.5, 126.2, 87.5, 61.3, 57.0, 35.2, 30.8, 14.3. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇ClNO₂ (M+H)⁺: 444.1725; found: 444.1728. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 15.3 min (major), t_{R2} = 11.5 min (minor)]. [α]_D²⁰ = -16.5 (*c* 1.07, CH₂Cl₂). IR (v/cm⁻¹) 3054, 3028, 2983, 2927, 1729, 1619, 1568, 1494, 1453, 1240, 1097, 968, 739, 704 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(*m*-tolyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3e]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 43.9 mg, 83% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 – 7.79 (m, 1H), 7.68 – 7.63 (m, 1H), 7.60 – 7.54 (m, 2H), 7.36 – 7.28 (m, 8H), 7.25 – 7.20 (m, 2H), 6.63 (d, *J* = 15.7 Hz, 1H), 6.40 (dd, *J* = 15.7, 9.9 Hz, 1H), 4.31 (d, *J* = 9.9 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.90 (ddd, *J* = 16.7, 9.8, 5.4 Hz, 1H), 2.56 (ddd, *J* = 12.8, 9.8, 5.9 Hz, 1H), 2.47 (ddd, *J* = 16.7, 9.8, 5.9 Hz, 1H), 2.46 (s, 3H), 2.34 (ddd, *J* = 12.8, 9.8, 5.4 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 173.7, 140.3, 138.1, 137.2, 134.1, 133.0, 131.6, 129.5, 128.5, 128.5, 128.3, 128.0, 127.9, 127.5, 126.7, 126.4, 125.3, 87.1, 61.2, 56.6, 35.4, 30.1, 21.4, 14.2. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₂ (M+H)⁺: 424.2271; found: 424.2257. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 17.0 min (major), t_{R2} = 24.1 min (minor)]. [α]_D²⁰ = -93.7 (*c* 0.77, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3026, 2977, 2936, 1726, 1618, 1600, 1581, 1454, 1222, 1048, 969, 747, 692 cm⁻¹.

Ethyl (S)-2-((R,E)-1,3-diphenylallyl)-5-(m-tolyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(R,S)-3e]

¹H NMR analysis of the crude mixture showed a dr of 17:1. Light yellow oil, 43.8 mg, 83% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 – 7.79 (m, 1H), 7.64 – 7.59 (m, 1H), 7.41 – 7.37 (d, *J* = 7.3 Hz, 2H), 7.35 – 7.33 (m, 2H), 7.32 – 7.27 (m, 4H), 7.26 – 7.19 (m, 4H), 6.81 (dd, *J* = 15.8, 8.8 Hz, 1H), 6.53 (d, *J* = 15.8 Hz, 1H), 4.34 (d, *J* = 8.8 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.83 (ddd, *J* = 16.6, 9.9, 5.3 Hz, 1H), 2.45 (s, 3H), 2.38 (ddd, *J* = 13.3, 9.9, 6.2 Hz, 1H), 2.24 (ddd, *J* = 13.3, 9.9, 5.3 Hz, 1H), 2.13 (ddd, *J* = 16.6, 9.9, 6.2 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.0, 174.0, 139.4, 138.1, 137.4, 134.1, 132.5, 131.6, 129.9, 129.5, 128.5, 128.3, 128.2, 128.1, 127.2, 126.9, 126.5, 125.3, 87.4, 61.2, 56.9, 35.4, 30.7, 21.4, 14.3. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₂ (M+H)⁺: 424.2271; found: 424.2280. >99% ee. [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 18.0 min (major), t_{R2} = 23.1 min (minor)]. [α]_D²⁰ = -24.4 (*c* 0.95, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3028, 2981, 2923, 1729, 1619, 1601, 1583, 1453, 1265, 1051, 967, 739, 697 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(3-methoxyphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3f]

¹H NMR analysis of the crude mixture showed a dr of 17:1. Light yellow oil, 51.6 mg, 94% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 – 7.54 (m, 2H), 7.52 – 7.49 (m, 1H), 7.46 – 7.43 (m, 1H), 7.39 – 7.32 (m, 3H), 7.31 – 7.26 (m, 4H), 7.24 – 7.20 (m, 2H), 7.07 – 7.03 (m, 1H), 6.63 (d, *J* = 15.7 Hz, 1H), 6.40 (dd, *J* = 15.7, 9.8 Hz, 1H), 4.31 (d, *J* = 9.8 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 2.89 (ddd, *J* = 16.6, 10.0, 5.3 Hz, 1H), 2.57 (ddd, *J* = 12.9, 10.0, 5.9 Hz, 1H), 2.46 (ddd, *J* = 16.4, 9.8, 5.9 Hz, 1H), 2.34 (ddd, *J* = 12.9, 9.8, 5.3 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.2, 173.6, 159.6, 140.3, 137.2, 135.6, 133.0, 129.6, 129.4, 128.5, 128.0, 127.9, 127.5, 126.7, 126.4, 120.7, 116.7, 113.1, 87.1, 61.2, 56.5, 55.5, 35.5, 30.0, 14.2. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₃ (M+H)⁺: 440.2220;

found: 440.2218. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; $t_{R1} = 31.4$ min (major), $t_{R2} = 19.6$ min (minor)]. $[\alpha]_D^{20} = -89.0$ (*c* 0.94, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2978, 2921, 1726, 1618, 1600, 1583, 1493, 1453, 1241, 1097, 969, 746, 695 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(3-methoxyphenyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3f]

¹H NMR analysis of the crude mixture showed a dr of 16:1. Light yellow oil, 51.0 mg, 93% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 1H), 7.43 – 7.38 (m, 3H), 7.36 – 7.32 (m, 3H), 7.31 – 7.27 (m, 2H), 7.26 – 7.19 (m, 4H), 7.05 – 7.02 (m, 1H), 6.82 (dd, *J* = 15.8, 9.0 Hz, 1H), 6.54 (d, *J* = 15.8 Hz, 1H), 4.33 (d, *J* = 9.0 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 2.81 (ddd, *J* = 16.9, 10.1, 5.3 Hz, 1H), 2.38 (ddd, *J* = 13.2, 10.1, 6.2 Hz, 1H), 2.24 (ddd, *J* = 13.2, 9.9, 5.3 Hz, 1H), 2.11 (ddd, *J* = 16.4, 9.9, 6.2 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.7, 174.0, 159.6, 139.4, 137.4, 135.6, 132.5, 129.9, 129.5, 129.4, 128.4, 128.1, 127.2, 126.9, 126.5, 120.8, 116.7, 113.1, 87.4, 61.2, 56.9, 55.5, 35.5, 30.8, 14.3. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₃ (M+H)⁺: 440.2220; found: 440.2215. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 26.2 min (major), t_{R2} = 18.6 min (minor)]. [α]_D²⁰ = -31.2 (*c* 0.98, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2978, 2937, 1729, 1615, 1600, 1582, 1493, 1454, 1223, 1049, 966, 747, 693 cm⁻¹

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(4-fluorophenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(*S*,*S*)-3g]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 49.4 mg, 93% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 – 7.89 (m, 2H), 7.57 – 7.53 (m, 2H), 7.33 – 7.26 (m, 6H), 7.25 – 7.19 (m, 2H), 7.16 – 7.11 (m, 2H), 6.62 (d, *J* = 15.7 Hz, 1H), 6.36 (dd, *J* = 15.7, 9.8 Hz, 1H), 4.28 (d, *J* = 9.8 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 2.87 (ddd, *J* = 16.1, 10.0, 5.2 Hz, 1H), 2.57 (ddd, *J* = 13.0, 10.0, 5.8 Hz, 1H), 2.45 (ddd, *J* = 16.1, 9.8, 5.8 Hz, 1H), 2.35

(ddd, J = 12.9, 9.8, 5.2 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 173.6, 164.5 (d, $J_{C-F} = 251.2$ Hz), 140.2, 137.1, 133.0, 130.2 (d, $J_{C-F} = 8.7$ Hz), 129.5, 128.5, 128.0, 127.8, 127.5, 126.8, 126.3, 115.4 (d, $J_{C-F} = 21.9$ Hz), 87.1, 61.2, 56.6, 35.3, 30.2, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.4. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇FNO₂ (M+H)⁺: 428.2021; found: 428.2016. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 24.3 min (major), t_{R2} = 52.4 min (minor)]. [α]_D²⁰ = -91.3 (*c* 0.54, CH₂Cl₂). IR (v/cm⁻¹) 3060, 3027, 2979, 2933, 1727, 1619, 1601, 1510, 1338, 1235, 1155, 1096, 969, 747, 698 cm⁻¹.

Ethyl (S)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(4-fluorophenyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3g]

¹H NMR analysis of the crude mixture showed a dr of 16:1. Light yellow oil, 49.6 mg, 93% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 – 7.87 (m, 2H), 7.41 – 7.37 (m, 2H), 7.32 – 7.28 (m, 4H), 7.25 – 7.19 (m, 4H), 7.16 – 7.10 (m, 2H), 6.81 (dd, *J* = 15.8, 9.0 Hz, 1H), 6.54 (d, *J* = 15.8 Hz, 1H), 4.30 (d, *J* = 9.0 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.78 (ddd, *J* = 16.9, 10.0, 5.2 Hz, 1H), 2.37 (ddd, *J* = 13.4, 10.0, 6.5 Hz, 1H), 2.25 (ddd, *J* = 13.4, 9.8, 5.2 Hz, 1H), 2.04 (ddd, *J* = 16.6, 9.8, 6.5 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.6, 174.0, 164.4 (d, *J*_{C-F} = 251.1 Hz), 139.3, 137.3, 132.5, 130.2 (d, *J*_{C-F} = 8.6 Hz), 129.9, 129.3, 128.4, 128.0, 127.3, 126.9, 126.5, 115.4 (d, *J*_{C-F} = 21.7 Hz), 87.4, 61.3, 57.0, 35.2, 30.9, 14.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -109.4. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇FNO₂ (M+H)⁺: 428.2021; found: 428.2024. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 28.5 min (major), t_{R2} = 43.1 min (minor)]. [α]_D²⁰ = -15.1 (*c* 0.92, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3026, 2979, 2935, 1730, 1620, 1601, 1510, 1338, 1231, 1156, 1096, 969, 747, 702 cm⁻¹.

Ethyl (S)-5-(4-chlorophenyl)-2-((S,E)-1,3-diphenylallyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(S,S)-3h]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 52.6 mg, 95%

yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.83 (m, 2H), 7.58 – 7.52 (m, 2H), 7.46 – 7.41 (m, 2H), 7.34 – 7.27 (m, 6H), 7.25 – 7.19 (m, 2H), 6.63 (d, *J* = 15.8 Hz, 1H), 6.37 (dd, *J* = 15.8, 9.8 Hz, 1H), 4.29 (d, *J* = 9.8 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.87 (ddd, *J* = 14.2, 10.0, 4.6 Hz, 1H), 2.58 (ddd, *J* = 12.8, 10.0, 5.0 Hz, 1H), 2.44 (ddd, *J* = 14.2, 10.0, 5.0 Hz, 1H), 2.36 (ddd, *J* = 12.8, 10.0, 4.6 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 173.5, 140.1, 137.1, 136.9, 133.1, 132.5, 129.5, 129.4, 128.7, 128.5, 128.0, 127.7, 127.5, 126.8, 126.3, 87.2, 61.2, 56.6, 35.2, 30.1, 14.1. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇ClNO₂ (M+H)⁺: 444.1725; found: 444.1723. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 24.5 min (major), t_{R2} = 56.5 min (minor)]. [α]_D²⁰ = -109.6 (*c* 0.89, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3026, 2979, 2934, 1727, 1617, 1597, 1491, 1240, 1091, 969, 746, 698 cm⁻¹.

Ethyl (*S*)-5-(4-chlorophenyl)-2-((*R*,*E*)-1,3-diphenylallyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3h]

¹H NMR analysis of the crude mixture showed a dr of 17:1. White solid, 50.8 mg, 92% yield. m.p. = 87 - 94 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 – 7.81 (m, 2H), 7.43 – 7.38 (m, 4H), 7.33 – 7.27 (m, 4H), 7.25 – 7.19 (m, 4H), 6.81 (dd, *J* = 15.8, 9.0 Hz, 1H), 6.55 (d, *J* = 15.8 Hz, 1H), 4.30 (d, *J* = 9.0 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.77 (ddd, *J* = 16.8, 10.1, 5.2 Hz, 1H), 2.37 (ddd, *J* = 13.4, 10.1, 6.5 Hz, 1H), 2.26 (ddd, *J* = 13.4, 9.8, 5.2 Hz, 1H), 2.02 (ddd, *J* = 16.8, 9.8, 6.5 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 173.9, 139.2, 137.3, 136.9, 132.6, 132.5, 129.9, 129.4, 129.3, 128.6, 128.4, 128.1, 127.3, 126.9, 126.5, 87.5, 61.3, 57.1, 35.2, 30.9, 14.3. HRMS (Q–TOF Premier) calcd for C₂₈H₂₇ClNO₂ (M+H)⁺: 444.1725; found: 444.1726. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 33.4 min (major), t_{R2} = 39.7 min (minor)]. [α]_D²⁰ = -36.5 (*c* 1.17, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3026, 2979, 2935, 1727, 1618, 1597, 1492, 1235, 1090, 965, 747, 702 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(*p*-tolyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3i]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 44.8 mg, 85% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 – 7.80 (m, 2H), 7.59 – 7.53 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 – 7.25 (m, 6H), 7.23 – 7.19 (m, 2H), 6.62 (d, *J* = 15.7 Hz, 1H), 6.39 (dd, *J* = 15.7, 9.8 Hz, 1H), 4.30 (d, *J* = 9.8 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 2.89 (ddd, *J* = 16.8, 9.9, 5.3 Hz, 1H), 2.55 (ddd, *J* = 12.9, 9.9, 5.9 Hz, 1H), 2.45 (ddd, *J* = 16.8, 9.9, 5.9 Hz, 1H), 2.44 (s, 3H), 2.33 (ddd, *J* = 12.9, 9.9, 5.3 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 173.8, 141.1, 140.3, 137.2, 132.9, 131.5, 129.5, 129.1, 128.5, 128.1, 128.0, 128.0, 127.4, 126.7, 126.4, 87.0, 61.1, 56.6, 35.3, 30.1, 21.6, 14.2. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₂ (M+H)⁺: 424.2271; found: 424.2277. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 20.9 min (major), t_{R2} = 57.8 min (minor)]. [α]_D²⁰ = 103.2 (*c* 0.73, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3027, 2978, 2918, 1727, 1612, 1452, 1339, 1239, 1097, 968, 746, 698 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(*p*-tolyl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3i]

¹H NMR analysis of the crude mixture showed a dr of 18:1. Light yellow oil, 46.5 mg, 88% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 2H), 7.41 – 7.37 (m, 2H), 7.35 – 7.27 (m, 5H), 7.25 – 7.18 (m, 5H), 6.82 (dd, J = 15.8, 8.9 Hz, 1H), 6.53 (d, J = 15.8 Hz, 1H), 4.33 (d, J = 8.9 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 2.81 (ddd, J = 16.6, 10.0, 5.2 Hz, 1H), 2.43 (s, 3H), 2.38 (ddd, J = 13.2, 10.0, 6.3 Hz, 1H), 2.24 (ddd, J = 13.2, 10.0, 5.2 Hz, 1H), 2.09 (ddd, J = 16.6, 10.0, 6.3 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.7, 174.1, 141.0, 139.5, 137.4, 132.4, 131.5, 129.9, 129.6, 129.1, 128.3, 128.1, 128.0, 127.2, 126.8, 126.5, 87.3, 61.2, 57.0, 35.3, 30.7, 21.6, 14.3. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₂ (M+H)⁺: 424.2271; found: 424.2278. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 22.0 min (major), t_{R2} = 35.5 min (minor)]. [α]_D²⁰ = -45.9 (*c* 0.82, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2978, 2922, 1725, 1613, 1453, 1339, 1235, 1094, 965, 747, 702 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(4-methoxyphenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(*S*,*S*)-3j]

¹H NMR analysis of the crude mixture showed a dr of >20:1. White solid, 52.2 mg, 95% yield. m.p. = 106 – 111 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 – 7.87 (m, 2H), 7.61 – 7.54 (m, 2H), 7.36 – 7.31 (m, 2H), 7.30 – 7.26 (m, 4H), 7.25 – 7.19 (m, 2H), 6.99 – 6.95 (m, 2H), 6.62 (d, *J* = 15.7 Hz, 1H), 6.39 (dd, *J* = 15.7, 9.9 Hz, 1H), 4.29 (d, *J* = 9.9 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 2.88 (ddd, *J* = 16.2, 10.0, 5.2 Hz, 1H), 2.55 (ddd, *J* = 12.8, 10.0, 6.0 Hz, 1H), 2.44 (ddd, *J* = 16.2, 9.8, 6.0 Hz, 1H), 2.33 (ddd, *J* = 12.8, 9.8, 5.2 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 173.9, 161.7, 140.4, 137.2, 132.9, 129.8, 129.6, 128.5, 128.1, 128.0, 127.4, 127.0, 126.7, 126.4, 113.7, 87.0, 61.1, 56.7, 55.4, 35.2, 30.2, 14.2. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₃ (M+H)⁺: 440.2220; found: 440.2226. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 97/3, 254 nm, 0.6 mL/min; t_{R1} = 23.8 min (major), t_{R2} = 61.5 min (minor)]. [α]_D²⁰ = -109.2 (*c* 1.09, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2977, 2934, 1726, 1605, 1514, 1453, 1257, 1172, 969, 747, 698 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(4-methoxyphenyl)-3,4-dihydro-2H-pyrrole-2 -carboxylate [(*R*,*S*)-3j]

¹H NMR analysis of the crude mixture showed a dr of 18:1. Light yellow oil, 52.1 mg, 95% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.87 – 7.83 (m, 2H), 7.42 – 7.37 (m, 2H), 7.34 – 7.28 (m, 4H), 7.25 – 7.17 (m, 4H), 6.97 – 6.94 (m, 2H), 6.82 (dd, *J* = 15.8, 8.8 Hz, 1H), 6.53 (d, *J* = 15.8 Hz, 1H), 4.32 (d, *J* = 8.8 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 2.79 (ddd, *J* = 16.5, 10.1, 5.2 Hz, 1H), 2.37 (ddd, *J* = 13.2, 10.1, 6.4 Hz, 1H), 2.23 (ddd, *J* = 13.2, 9.8, 5.2 Hz, 1H), 2.06 (ddd, *J* = 16.5, 9.8, 6.4 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 174.2, 161.7, 139.5, 137.4, 132.4, 129.9, 129.8, 129.6, 128.3, 128.0, 127.2, 127.0, 126.8, 126.5, 113.7, 87.2, 61.2, 57.0, 55.4, 35.2, 30.8, 14.3. HRMS (Q–TOF Premier) calcd for C₂₉H₃₀NO₃ (M+H)⁺: 440.2220; found: 440.2210. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 97/3, 254 nm, 0.6 mL/min; t_{R1} = 25.9 min (major), t_{R2} = 45.6 min (minor)]. [α]_D²⁰ = -43.9 (*c* 1.08, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2978, 2935, 1729, 1606, 1514, 1453, 1254, 1172, 969, 747, 702 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrole-2-carboxylate [(*S*,*S*)-3k]

¹H NMR analysis of the crude mixture showed a dr of 18:1. Light yellow oil, 56.6 mg, 95% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.34 – 7.27 (m, 6H), 7.25 – 7.20 (m, 2H), 6.63 (d, J = 15.8 Hz, 1H), 6.36 (dd, J = 15.8, 9.8 Hz, 1H), 4.30 (d, J = 9.8 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 2.90 (ddd, J = 16.2, 10.0, 5.0 Hz, 1H), 2.61 (ddd, J = 12.8, 10.0, 5.4 Hz, 1H), 2.48 (ddd, J = 16.2, 9.8, 5.4 Hz, 1H), 2.38 (ddd, J = 12.8, 9.8, 5.0 Hz, 1H), 1.15 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 173.3, 140.0, 137.2, 137.0, 133.2, 132.4 (q, $J_{C-F} = 32.4$ Hz), 129.5, 128.5, 128.4, 128.0, 127.6, 127.5, 126.9, 126.3, 125.4 (q, $J_{C-F} = 3.7$ Hz), 124.0 (q, $J_{C-F} = 272.4$ Hz), 87.4, 61.3, 56.5, 35.3, 30.0, 14.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.8. HRMS (Q–TOF Premier) calcd for C₂₉H₂₇F₃NO₂ (M+H)⁺: 478.1989; found: 478.1974. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 14.3 min (major), t_{R2} = 11.0 min (minor)]. [α]_D²⁰ = -75.2 (*c* 0.73, CH₂Cl₂). IR (v/cm⁻¹) 3060, 3027, 2980, 2936, 1729, 1618, 1453, 1323, 1167, 1126, 1067, 968, 746, 698 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2Hpyrrole-2-carboxylate [(*R*,*S*)-3k]

¹H NMR analysis of the crude mixture showed a dr of 16:1. Light yellow oil, 54.8 mg, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 7.28 (m, 4H), 7.25 – 7.18 (m, 4H), 6.82 (dd, J = 15.8, 9.0 Hz, 1H), 6.56 (d, J = 15.8 Hz, 1H), 4.31 (d, J = 9.0 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.80 (ddd, J = 16.8, 10.0, 5.2 Hz, 1H), 2.40 (ddd, J = 13.6, 10.0, 6.5 Hz, 1H), 2.29 (ddd, J = 13.6, 9.7, 5.2 Hz, 1H), 2.06 (ddd, J = 16.8, 9.7, 6.5 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 173.8, 139.1, 137.3, 132.6, 132.4 (d, $J_{C-F} = 32.4$ Hz), 129.8, 129.1, 128.4, 128.4, 128.1, 127.3, 127.0, 126.5, 125.4 (q, J = 3.8 Hz), 124.0 (q, $J_{C-F} = 272.3$ Hz), 120.7, 87.6, 61.4, 57.1, 35.3, 30.9, 14.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.8. HRMS (Q–TOF Premier) calcd for C₂₉H₂₇F₃NO₂ (M+H)⁺: 478.1989; found: 478.1969. >99% ee [DAICEL CHIRALPAK OX,

hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; $t_{R1} = 12.9$ min (major), $t_{R2} = 9.6$ min (minor)]. [α]_D²⁰ = -15.6 (*c* 0.95, CH₂Cl₂). IR (v/cm⁻¹) 3060, 3027, 2981, 2936, 1730, 1619, 1453, 1324, 1168, 1126, 1067, 966, 747, 702 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(naphthalen-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3l]

¹H NMR analysis of the crude mixture showed a dr of >20:1. White solid, 54.5 mg, 95% yield. m.p. = 108 – 114 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 – 8.24 (m, 1H), 8.21 – 8.17 (m, 1H), 7.97 – 7.89 (m, 3H), 7.64 – 7.54 (m, 4H), 7.36 – 7.27 (m, 6H), 7.25 – 7.20 (m, 2H), 6.66 (d, *J* = 15.8 Hz, 1H), 6.44 (dd, *J* = 15.8, 9.8 Hz, 1H), 4.35 (d, *J* = 9.8 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.11 – 2.99 (m, 1H), 2.68 – 2.56 (m, 2H), 2.46 – 2.37 (m, 1H), 1.18 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 173.7, 140.3, 137.2, 134.6, 133.0, 132.9, 131.6, 129.6, 128.8, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 127.5, 127.3, 126.8, 126.4, 126.4, 125.1, 87.3, 61.2, 56.7, 35.3, 30.1, 14.2. HRMS (Q–TOF Premier) calcd for C₃₂H₃₀NO₂ (M+H)⁺: 460.2271; found: 460.2265. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 35.5 min (major), t_{R2} = 17.8 min (minor)]. [α]_D²⁰ = -78.1 (*c* 0.95, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2978, 2933, 1726, 1613, 1493, 1452, 1366, 1241, 1096, 969, 746, 698 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(naphthalen-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3]]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 53.9 mg, 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 – 8.25 (m, 1H), 8.19 – 8.15 (m, 1H), 7.96 – 7.90 (m, 3H), 7.60 – 7.54 (m, 2H), 7.44 – 7.37 (m, 4H), 7.34 – 7.30 (m, 2H), 7.26 – 7.19 (m, 4H), 6.90 (dd, *J* = 15.8, 8.8 Hz, 1H), 6.59 (d, *J* = 15.8 Hz, 1H), 4.39 (d, *J* = 8.8 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 2.96 (ddd, *J* = 16.4, 10.0, 5.0 Hz, 1H), 2.45 (ddd, *J* = 13.2, 10.0, 6.4 Hz, 1H), 2.33 (ddd, *J* = 13.2, 9.8, 5.0 Hz, 1H), 2.22 (ddd, *J* = 16.4, 9.8, 6.4 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 174.1, 139.4, 137.4, 134.6, 132.9, 132.5, 131.7, 129.9, 129.5, 128.8, 128.6, 128.4, 128.1, 127.8, 127.3, 126.9, 126.5, 126.4, 125.1, 87.6, 61.3, 57.2, 35.3, 30.9, 14.3. HRMS (Q–TOF Premier) calcd for C₃₂H₃₀NO₂ (M+H)⁺: 460.2271; found:

460.2273. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; $t_{R1} = 24.9 \text{ min (major)}, t_{R2} = 15.4 \text{ min (minor)}]. [\alpha]_D^{20} = -31.6 (c \ 0.99, CH_2Cl_2). IR (v/cm^{-1}) 3058, 3026, 2979, 2935, 1729, 1613, 1493, 1453, 1366, 1230, 1082, 966, 747, 702 cm^{-1}.$

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(furan-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3m]

¹H NMR analysis of the crude mixture showed a dr of 17:1. Brown oil, 45.8 mg, 92% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (d, J = 1.8 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.36 – 7.33 (m, 2H), 7.31 – 7.26 (m, 4H), 7.24 – 7.18 (m, 2H), 6.89 (d, J = 3.4 Hz, 1H), 6.61 (d, J = 15.7 Hz, 1H), 6.50 (dd, J = 3.4, 1.8 Hz, 1H), 6.41 (dd, J = 15.7, 9.8 Hz, 1H), 4.33 (d, J = 9.8 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.84 – 2.75 (m, 1H), 2.59 – 2.50 (m, 1H), 2.36 – 2.25 (m, 2H), 1.15 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 165.6, 149.4, 144.9, 139.9, 137.1, 133.1, 129.5, 128.5, 128.0, 127.6, 127.5, 126.7, 126.4, 114.0, 111.6, 87.4, 61.3, 56.2, 35.2, 29.1, 14.2. HRMS (Q–TOF Premier) calcd for C₂₆H₂₆NO₃ (M+H)⁺: 400.1907; found: 400.1904. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 97/3, 254 nm, 0.6 mL/min; t_{R1} = 18.5 min (major), t_{R2} = 36.1 min (minor)]. [α]_D²⁰ = -83.6 (*c* 0.93, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3027, 2979, 2932, 1727, 1623, 1493, 1453, 1243, 1161, 1048, 970, 747, 700 cm⁻¹.

Ethyl (S)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(furan-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3m]

¹H NMR analysis of the crude mixture showed a dr of 12:1. Brown oil, 44.4 mg, 89% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (d, J = 1.7 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.34 – 7.31 (m, 2H), 7.30 – 7.23 (m, 4H), 7.23 – 7.15 (m, 3H), 6.87 (d, J = 3.4 Hz, 1H), 6.77 (dd, J = 15.8, 9.0 Hz, 1H), 6.51 (d, J = 5.6 Hz, 1H), 6.48 (dd, J = 3.4, 1.7 Hz, 1H), 4.33 (d, J = 9.0 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.72 (ddd, J = 16.8, 10.1, 5.1 Hz, 1H), 2.36 (ddd, J = 13.4, 10.1, 6.7 Hz, 1H), 2.24 (ddd, J = 13.4, 9.9, 5.1 Hz, 1H), 2.02 (ddd, J = 16.8, 9.9, 6.7 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.8, 166.2, 149.4, 145.0, 139.2, 137.3, 132.7, 129.8, 129.1, 128.3, 128.1, 127.2, 126.9, 126.5, 114.1, 111.7, 87.6, 61.3, 57.1, 35.1, 30.2, 14.3. HRMS (Q–TOF Premier) calcd for C₂₆H₂₆NO₃ (M+H)⁺: 400.1907; found: 400.1908. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 97/3, 254 nm, 0.6 mL/min; t_{R1} = 21.9 min

(major), $t_{R2} = 30.4 \text{ min (minor)}$]. [α]_D²⁰ = -21.1 (*c* 1.28, CH₂Cl₂). IR (v/cm⁻¹) 3058, 3026, 2979, 2932, 1725, 1620, 1493, 1453, 1239, 1161, 1052, 967, 747, 702 cm⁻¹.

Ethyl (*S*)-2-((*S*,*E*)-1,3-diphenylallyl)-5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*S*,*S*)-3n]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Light yellow oil, 48.2 mg, 93% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (dd, *J* = 3.6, 1.1 Hz, 2H), 7.50 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.37 – 7.27 (m, 7H), 7.24 – 7.17 (m, 2H), 7.09 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.62 (d, *J* = 15.8 Hz, 1H), 6.40 (dd, *J* = 15.8, 9.8 Hz, 1H), 4.31 (d, *J* = 9.8 Hz, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 2.88 (ddd, *J* = 16.0, 10.0, 5.0 Hz, 1H), 2.58 (ddd, *J* = 12.8, 10.0, 5.8 Hz, 1H), 2.43 (ddd, *J* = 16.0, 9.8, 5.8 Hz, 1H), 2.33 (ddd, *J* = 12.8, 9.8, 5.0 Hz, 1H), 1.15 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 169.4, 140.1, 138.7, 137.1, 133.0, 129.8, 129.8, 129.6, 128.5, 128.0, 127.8, 127.5, 127.4, 126.7, 126.4, 87.0, 61.2, 56.3, 35.9, 30.0, 14.2. HRMS (Q–TOF Premier) calcd for C₂₆H₂₆NO₂S (M+H)⁺: 416.1679; found: 416.1671. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 97/3, 254 nm, 0.6 mL/min; t_{R1} = 18.7 min (major), t_{R2} = 30.9 min (minor)]. [α]_D²⁰ = -137.7 (*c* 0.83, CH₂Cl₂). IR (v/cm⁻¹) 3059, 3027, 2979, 2934, 1732, 1608, 1493, 1453, 1432, 1366, 1240, 1171, 1051, 969, 747, 700 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-diphenylallyl)-5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3n]

¹H NMR analysis of the crude mixture showed a dr of 18:1. Light yellow oil, 48.7 mg, 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 1H), 7.40 – 7.36 (m, 2H), 7.36 – 7.30 (m, 3H), 7.29 – 7.26 (m, 2H), 7.25 – 7.18 (m, 4H), 7.09 – 7.06 (m, 1H), 6.78 (dd, *J* = 15.8, 8.8 Hz, 1H), 6.53 (d, *J* = 15.8 Hz, 1H), 4.32 (d, *J* = 8.8 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.80 (ddd, *J* = 16.4, 10.0, 5.2 Hz, 1H), 2.39 (ddd, *J* = 13.2, 10.0, 6.4 Hz, 1H), 2.26 (ddd, *J* = 13.2, 9.8, 5.2 Hz, 1H), 2.09 (ddd, *J* = 16.4, 9.8, 6.4 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 170.0, 139.3, 138.7, 137.4, 132.6, 129.9, 129.9, 129.8, 129.3, 128.3, 128.1, 127.4, 127.2, 126.9, 126.5, 87.2, 61.3, 56.9, 35.9, 31.0, 14.3. HRMS (Q–TOF Premier) calcd for C₂₆H₂₆NO₂S (M+H)⁺: 416.1679; found: 416.1686. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 97/3, 254 nm, 0.6 mL/min; t_{R1} = 23.0 min (major), t_{R2} = 29.2 min (minor)].

 $[\alpha]_{D}^{20} = -71.5 \ (c \ 1.06, \ CH_2Cl_2). \ IR \ (v/cm^{-1}) \ 3059, \ 3026, \ 2978, \ 2930, \ 1729, \ 1611, \ 1493, \ 1453, \ 1432, \ 1366, \ 1260, \ 1169, \ 1052, \ 966, \ 747, \ 703 \ cm^{-1}.$

Ethyl (S)-2-((S,E)-1,3-di-p-tolylallyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [(S,S)-3ab]

¹H NMR analysis of the crude mixture showed a dr of >20:1. Colorless oil, 49.7 mg, 91% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 – 7.76 (m, 2H), 7.56 – 7.40 (m, 5H), 7.23 (d, J = 8.0Hz, 2H), 7.10 (d, J = 8.0 Hz, 4H), 6.58 (d, J = 15.6 Hz, 1H), 6.32 (dd, J = 15.6, 9.8 Hz, 1H), 4.27 (d, J = 9.8 Hz, 1H), 4.13 (d, J = 7.1 Hz, 2H), 2.91 (ddd, J = 16.6, 9.7, 5.4 Hz, 1H), 2.56 (ddd, J = 12.4, 9.7, 6.0 Hz, 1H), 2.49 (ddd, J = 16.6, 9.4, 6.0 Hz, 1H), 2.34 (s, 2H), 2.33 (ddd, J = 12.4, 9.4, 5.4 Hz, 1H), 2.32 (s, 1H), 1.17 (t, J = 7.1 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 173.8, 137.3, 137.2, 136.2, 134.5, 134.2, 132.7, 130.8, 129.4, 129.2, 128.7, 128.4, 128.1, 127.0, 126.3, 87.3, 61.1, 56.2, 35.3, 30.0, 21.2, 21.1, 14.2. HRMS (Q–TOF Premier) calcd for C₃₀H₃₁NO₂ (M+H)⁺: 438.2428; found: 438.2426. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 27.9 min (major), t_{R2} = 37.9 min (minor)]. [α]_D²⁰ = -77.3 (*c* 0.58, CH₂Cl₂). IR (v/cm⁻¹) 3023, 2913, 2871, 1725, 1576, 1511, 1448, 1342, 1234, 1047, 967, 760, 692 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-di-p-tolylallyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate [(*R*,*S*)-3ab]

¹H NMR analysis of the crude mixture showed a dr of 14:1. Colorless oil, 48.6 mg, 89% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 – 7.88 (m, 2H), 7.49 – 7.44 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.75 (dd, *J* = 15.8, 8.8 Hz, 1H), 6.50 (d, *J* = 15.8 Hz, 1H), 4.28 (d, *J* = 8.8 Hz, 1H), 4.20 (d, *J* = 7.1 Hz, 2H), 2.84 (ddd, J = 16.6, 10.0, 5.0 Hz, 1H), 2.39 (ddd, J = 12.6, 10.0, 5.8 Hz, 1H), 2.34 (s, 3H), 2.30 (s, 3H), 2.25 (ddd, J = 12.6, 9.8, 5.0 Hz, 1H), 2.18 (ddd, J = 16.6, 9.8, 5.8 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 174.1, 136.9, 136.5, 136.3, 134.7, 134.3, 132.1, 130.7, 129.7, 129.0, 128.8, 128.6, 128.3, 128.1, 126.4, 87.5, 61.2, 56.6, 35.3, 30.7, 21.2, 21.1, 14.3. HRMS (Q–TOF Premier) calcd for C₃₀H₃₁NO₂ (M+H)⁺: 438.2428; found: 438.2432. >99% ee [DAICEL CHIRALPAK AD, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 20.9 min (major), t_{R2} = 23.3 min (minor)]. [α]_D²⁰ = -13.3 (*c* 0.82, CH₂Cl₂). IR (v/cm⁻¹) 3024, 2977, 2921, 1725, 1616, 1575, 1511, 1448, 1342, 1235, 1051, 967, 760, 693 cm⁻¹.

Ethyl (S)-2-((S,E)-1,3-bis(4-chlorophenyl)allyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2carboxylate [(S,S)-3ac]

¹H NMR analysis of the crude mixture showed a dr of 18:1. Colorless oil, 51.8 mg, 87% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92 – 7.86 (m, 2H), 7.52 – 7.41 (m, 3H), 7.34-7.28 (m, 2H), 7.30 – 7.22 (m, 4H), 7.22-7.18 (m, 2H), 6.76 (dd, *J* = 15.8, 8.8 Hz, 1H), 6.46 (d, *J* = 15.8 Hz, 1H), 4.27 (d, *J* = 8.8 Hz, 1H), 4.19 (d, *J* = 7.1 Hz, 1H), 2.86 (ddd, *J* = 15.2, 10.0, 5.0 Hz, 1H), 2.36 (ddd, *J* = 13.0, 10.0, 5.0 Hz, 1H), 2.20 (ddd, *J* = 15.2, 10.0, 5.0 Hz, 1H), 2.14 (ddd, *J* = 13.0, 10.0, 5.0 Hz, 1H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 173.8, 137.8, 135.6, 133.9, 133.0, 132.9, 131.5, 131.2, 131.0, 129.8, 128.6, 128.5, 128.3, 128.1, 127.7, 87.0, 61.4, 56.2, 35.2, 30.9, 14.3. HRMS (Q–TOF Premier) calcd for C₂₈H₂₆Cl₂NO₂ (M+H)⁺: 478.1335; found: 478.1333. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 14.7 min (minor), t_{R2} = 22.3 min (major)]. [α]_D²⁰ = -46.1 (*c* 0.86, CH₂Cl₂). IR (v/cm⁻¹) 3028, 2921, 2852, 1726, 1612, 1489, 1447, 1342, 1235, 1089, 968, 759, 692 cm⁻¹.

Ethyl (*S*)-2-((*R*,*E*)-1,3-bis(4-chlorophenyl)allyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2carboxylate [(*R*,*S*)-3ac]

¹H NMR analysis of the crude mixture showed a dr of 16:1. Colorless oil, 53.6 mg, 90% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 – 7.90 (m, 2H), 7.56 – 7.43 (m, 5H), 7.30 – 7.19 (m, 5H), 6.54 (d, *J* = 15.7 Hz, 1H), 6.25 (dd, *J* = 15.7, 9.8 Hz, 1H), 4.23 (d, *J* = 9.8 Hz, 1H), 4.09 (d, *J* = 7.1 Hz, 1H), 2.95 (ddd, *J* = 16.4, 10.0, 6.0 Hz, 1H), 2.61 (ddd, *J* = 16.4, 10.0, 5.5 Hz, 1H), 2.54 (ddd, *J* = 13.6, 10.0, 5.5 Hz, 1H), 2.28 (ddd, *J* = 13.6, 10.0, 6.0 Hz, 1H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 173.4, 138.9, 135.4, 133.9, 133.2, 132.7, 132.0, 131.0, 130.8, 128.7, 128.5, 128.2, 128.1, 127.5, 86.7, 61.2, 56.0, 35.2, 30.7, 14.1. HRMS (Q–TOF Premier) calcd for C₂₈H₂₆Cl₂NO₂ (M+H)⁺: 478.1335; found: 478.1331. >99% ee [DAICEL CHIRALPAK OX, hexane/*i*-PrOH = 99/1, 254 nm, 0.6 mL/min; t_{R1} = 12.6 min (minor), t_{R2} = 16.0 min (major)]. [α]_D²⁰ = -3.0 (*c* 0.78, CH₂Cl₂). IR (v/cm⁻¹) 3029, 2929, 2870, 1725, 1615, 1489, 1442, 1227, 1090, 966, 760, 692 cm⁻¹.

6. Crystal structures of (*R*,*S*)-3h and (*S*,*S*)-3j

The data were collected on an Agilent Technologies Gemini Atlas Ultra diffractometer using a ultra Cu radiation (l=1.54184Å) with collimating mirror monochromators and at 293 K. Data collection, unit cell refinement and data reduction were performed using Agilent Technologies CrysAlisPro V 1.171.35.11.1 The structure was solved by direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for the non-H atoms using Olex2/ SHELXTL program package. The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms). The hydrogen atoms bound to nitrogen were located in a Δ F map and refined with isotropic displacement parameters.

6.1 Crystal structures of (*R*,*S*)-3h

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) a_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found	CIF dictionary	Interpreting this report
No syntax errors round.	CIF dictionary	interpreting this report

Datablock: a_a

Bond precision:	C-C = 0.0080	A	Wavelength	n=1.54178
Cell:	a=8.6212(9) alpha=90	b=11.7654(1 beta=100.74	L2) 13(5)	c=12.0329(12) gamma=90
Temperature:	297 K		(-)	J
	Calculated		Reported	
Volume	1199.1(2)		1199.1(2)
Space group	P 21		P 21	
Hall group	P 2yb		P 2yb	
Moiety formula	C28 H26 C1 N O2	2	C28 H26 (Cl N 02
Sum formula	C28 H26 Cl N O2	2	C28 H26 0	Cl N 02
Mr	443.95		443.95	
Dx,g cm-3	1.230		1.230	
Z	2		2	
Mu (mm-1)	1.594		1.594	
F000	468.0		468.0	
F000'	469.95			
h,k,lmax	10,14,14		10,14,14	
Nref	4425[2330]		4141	
Tmin,Tmax	0.739,0.751		0.626,0.	753
Tmin'	0.671			
Correction metho AbsCorr = ?	od= # Reported !	I Limits: Tr	nin=0.626	Tmax=0.753
Data completenes	ss= 1.78/0.94	Theta (m	ax)= 68.3	95
R(reflections)=	0.0511(3250)	wR2(ref	lections)	= 0.1678(4141)
S = 1.059	Npar	= 290		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🥥 Al	lert level C		
PLATO	52 ALERT 1 C Info on Absorption Correction Method Not Given	Please	Do !
PLAT2	30 ALERT 2 C Hirshfeld Test Diff for 02C27 .	6.2	s.u.
PLAT2	42 ALERT 2 C Low 'MainMol' Ueg as Compared to Neighbors of	C23	Check
PLAT2	42 ALERT 2 C Low 'MainMol' Ueg as Compared to Neighbors of	C27	Check
PLAT3	40 ALERT 3 C Low Bond Precision on C-C Bonds	0.00803	Ang.
PLAT3	60 ALERT 2 C Short C(sp3)-C(sp3) Bond C27 - C28 .	1.34	Ang.
PLAT9	11 ALERT 3 C Missing FCF Refl Between Thmin & STh/L= 0.600	33	Report
PLAT9	87 ALERT 1 C The Flack x is >> 0 - Do a BASF/TWIN Refinement	Please	Check
	ert level G		
PLATO	02 ALERT 2 G Number of Distance or Angle Restraints on AtSite	2	Note
PLATO	33 ALERT 4 G Flack x Value Deviates > 3.0 * sigma from Zero .	0.060	Note
PLAT1	72 ALERT 4 G The CIF-Embedded .res File Contains DFIX Records	1	Report
PLAT7	91 ALERT 4 G Model has Chirality at C9 (Sohnke SpGr)	R	Verify
PLAT7	91 ALERT 4 G Model has Chirality at C16 (Sohnke SpGr)	S	Verify
PLAT8	60 ALERT 3 G Number of Least-Squares Restraints	2	Note
PLAT8	83 ALERT 1 G No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT9	12 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600	6	Note
PLAT9	13 ALERT 3 G Missing # of Very Strong Reflections in FCF	3	Note
PLAT9	41 ALERT 3 G Average HKL Measurement Multiplicity	3.9	Low
PLAT9	65 ALERT 2 G The SHELXL WEIGHT Optimisation has not Converged	Please	Check
PLAT9	78 ALERT 2 G Number C-C Bonds with Positive Residual Density.	2	Info
0 2	ALERT level A = Most likely a serious problem - resolve or exp.	lain	
0 2	ALERT level B = A potentially serious problem, consider careful	lly	
8 3	ALERT level C = Check. Ensure it is not caused by an omission of	or oversigh	nt
12	ALERT level G = General information/check it is not something t	unexpected	
3.	ALERT type 1 CIF construction/syntax error, inconsistent or mis	ssing data	
7.	ALERT type 2 Indicator that the structure model may be wrong or	deficient	t
5.	ALERT type 3 Indicator that the structure quality may be low		
5 .	ALERT type 4 Improvement, methodology, query or suggestion		
0.	ALERT type 5 Informative message, check		

Datablock a_a - ellipsoid plot

6.2 Crystal structures of (S,S)-3j

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) t_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. <u>CIF dictionary</u> <u>Interpreting this report</u> **Datablock: t_a**

Cell: a=11.768(3) alpha=90 beta=96.67(2) gamma=90 Temperature: 297 K Calculated Reported Volume 1244.5(8) 1244.5(7) Space group P 21 P 21 Hall group P 2yb P 2yb Moiety formula C29 H29 N 03 C29 H29 N 03 Sum formula C29 H29 N 03 C29 H29 N 03 Mr 439.53 439.53 Dx, g cm-3 1.173 1.173 Z 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2 (reflections)= 0.1222(4504)	Bond precision:	C-C = 0.0047 A	Wavelength=1.54178	
Temperature: 297 K Calculated Reported Volume 1244.5(8) 1244.5(7) Space group P 21 P 21 Hall group P 2yb P 2yb Moiety formula C29 H29 N 03 C29 H29 N 03 Sum formula C29 H29 N 03 C29 H29 N 03 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 14,10,14 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2 (reflections) = 0.1222(4504)	Cell:	a=11.768(3) alpha=90	b=8.713(4) beta=96.67(2)	c=12.220(4) gamma=90
Calculated Reported Volume 1244.5(8) 1244.5(7) Space group P 21 P 21 Hall group P 2yb P 2yb Moiety formula C29 H29 N 03 C29 H29 N 03 Sum formula C29 H29 N 03 C29 H29 N 03 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 14,10,14 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2 (reflections)= 0.1222(4504)	Temperature:	297 K		2
Volume 1244.5(8) 1244.5(7) Space group P 21 P 21 Hall group P 2yb P 2yb Moiety formula C29 H29 N 03 C29 H29 N 03 Sum formula C29 H29 N 03 C29 H29 N 03 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 14,10,14 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)		Calculated	Reported	
Space group P 21 P 21 Hall group P 2yb P 2yb Moiety formula C29 H29 N 03 C29 H29 N 03 Sum formula C29 H29 N 03 C29 H29 N 03 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 4,10,14 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	Volume	1244.5(8)	1244.5(7)	
Hall group P 2yb P 2yb Moiety formula C29 H29 N 03 C29 H29 N 03 Sum formula C29 H29 N 03 C29 H29 N 03 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 4504 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Space group	P 21	P 21	
Moiety formula C29 H29 N O3 C29 H29 N O3 Sum formula C29 H29 N O3 C29 H29 N O3 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 468.0 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	Hall group	P 2yb	P 2yb	
Sum formula C29 H29 N O3 C29 H29 N O3 Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 14,10,14 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	Moiety formula	C29 H29 N O3	C29 H29 N	03
Mr 439.53 439.53 Dx,g cm-3 1.173 1.173 Z 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 4504 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	Sum formula	C29 H29 N O3	C29 H29 N	03
Dx,g cm-3 1.173 1.173 Z 2 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Mr	439.53	439.53	
Z 2 2 2 Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Dx,g cm-3	1.173	1.173	
Mu (mm-1) 0.596 0.596 F000 468.0 468.0 F000' 469.34 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Z	2	2	
F000 468.0 468.0 F000' 469.34 14,10,14 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Mu (mm-1)	0.596	0.596	
F000' 469.34 h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	F000	468.0	468.0	
<pre>h,k,lmax 14,10,14 14,10,14 Nref 4579[2453] 4504 Tmin,Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)</pre>	F000 '	469.34		
Nref 4579[2453] 4504 Tmin, Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 0.599,0.753 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	h,k,lmax	14,10,14	14,10,14	
<pre>Tmin, Tmax 0.909,0.931 0.599,0.753 Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)</pre>	Nref	4579[2453]	4504	
<pre>Tmin' 0.909 Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)</pre>	Tmin, Tmax	0.909,0.931	0.599,0.7	53
Correction method= # Reported T Limits: Tmin=0.599 Tmax=0.753 AbsCorr = ? Data completeness= 1.84/0.98 Theta(max)= 68.345 R(reflections)= 0.0415(3997) wR2(reflections)= 0.1222(4504)	Tmin'	0.909		
Data completeness= 1.84/0.98 Theta(max) = 68.345 R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Correction metho AbsCorr = ?	od= # Reported T I	Limits: Tmin=0.599 1	Imax=0.753
R(reflections) = 0.0415(3997) wR2(reflections) = 0.1222(4504)	Data completenes	ss= 1.84/0.98	Theta(max) = 68.34	5
a 1.040	R(reflections)=	0.0415(3997)	wR2(reflections)=	0.1222(4504)
S = 1.046 Npar= 300	S = 1.046	Npar=	300	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

-			
PLAT	lert level B 360 ALERT 2 E Short C(sp3)-C(sp3) Bond C28 - C29 .	1.30	Ang.
a	lert level C		
PLAT	052 ALERT 1 C Info on Absorption Correction Method Not Given	Please	Do !
PLAT	220 ALERT 2 C NonSolvent Resd 1 C Ueg(max)/Ueg(min) Range	4.8	Ratio
PLAT	222 ALERT 3 C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range	6.0	Ratio
PLAT	230 ALERT 2 C Hirshfeld Test Diff for C28C29 .	5.3	s.u.
PLAT	242 ALERT 2 C Low 'MainMol' Ueq as Compared to Neighbors of	02	Check
PLAT	242 ALERT 2 C Low 'MainMol' Ueq as Compared to Neighbors of	C27	Check
PLAT	242 ALERT 2 C Low 'MainMol' Ueq as Compared to Neighbors of	C28	Check
PLAT	340 ALERT 3 C Low Bond Precision on C-C Bonds	0.00469	Ang.
PLAT	911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600	5	Report
PLAT PLAT PLAT	Lert level G <u>002 ALERT 2 G</u> Number of Distance or Angle Restraints on AtSite <u>172 ALERT 4 G</u> The CIF-Embedded .res File Contains DFIX Records <u>791 ALERT 4 G</u> Model has Chirality at C9 (Sohnke SpGr)	2 1 S	Note Report Verify
PLAT	791 ALERT 4 G Model has Chirality at C16 (Sohnke SpGr)	S	Verify
PLAT	860 ALERT 3 G Number of Least-Squares Restraints	2	Note
PLAT	<pre>883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .</pre>	Please	Do !
PLAT	912 ALERT 4 G Missing # of FCF Reflections Above STh/L= 0.600	2	Note
PLAT	913 ALERT 3 G Missing # of Very Strong Reflections in FCF	3	Note
PLAT	978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	0	Info
0	ALERT Level A = Most likely a serious problem - resolve or ext	olain	
1	ALERT level B = A potentially serious problem, consider carefu	illy	
9	ALERT level C = Check. Ensure it is not caused by an omission	or oversig	ht
9	ALERT level G = General information/check it is not something	unexpected	
2	ALERT type 1 CIF construction/syntax error, inconsistent or mi	ssing data	
8	ALERT type 2 Indicator that the structure model may be wrong of	or deficient	t
5	ALERT type 3 Indicator that the structure quality may be low		
4	ALERT type 4 Improvement, methodology, query or suggestion		
0	ALERT type 5 Informative message, check		

7. NMR Analysis of the Mixture of Pd and Cu Complexes

Preparation of [Pd(allyl)Cl]₂/(*R*)-L3 complex in CD₂Cl₂:

A 5 mL Schlenk flask was charged with $[Pd(allyl)Cl]_2$ (3.29 mg, 9 µmol) and (*R*)-L3 (10.5 mg, 18 µmol) under a nitrogen atmosphere at room temperature. To this mixture was added CD_2Cl_2 (500 µL), and the resulting mixture was stirred for 30 min at room temperature to afford a light yellow solution. The solution was transferred to a dried NMR tube, and was submitted for NMR analysis.

Preparation of $[Cu(MeCN)_4]PF_6/(S,S_p)-L5$ complex in CD₂Cl₂:

A 5 mL Schlenk flask was charged with $[Cu(MeCN)_4]PF_6$ (6.7 mg, 18 µmol) and (S,S_p) -L5 (8.7 mg, 18 µmol) under a nitrogen atmosphere at room temperature. To this mixture was added CD₂Cl₂ (500 µL), and the resulting mixture was stirred for 30 min at room temperature to afford a light orange solution. The solution was transferred to a dried NMR tube, and was submitted for NMR analysis.

Preparation of (*R*)-L3 and $[Cu(MeCN)_4]PF_6/(S,S_p)-L5$ complex in CD₂Cl₂:

To a dried NMR tube were successively added solutions of $[Cu(MeCN)_4]PF_6$ (6.7 mg, 18 µmol)/(*S*,*S_p*)-**L5** (8.7 mg, 18 µmol) and (*R*)-**L3** (18.0 µmol) at room temperature under a nitrogen atmosphere, and the resulting mixture was shaken for 30 sec. Then, the ³¹P NMR spectra were recorded.

Preparation of (S, S_p) -L5 and $[Pd(allyl)Cl]_2/(R)$ -L3 complex in CD₂Cl₂:

To a dried NMR tube were successively added solutions of $[Pd(allyl)Cl]_2$ (3.29 mg, 9 μ mol)/(*R*)-L3 (10.5 mg, 18 μ mol) and (*S*,*S*_{*p*})-L5 (18.0 μ mol) at room temperature under a

nitrogen atmosphere, and the resulting mixture was shaken for 30 sec. Then, the ³¹P NMR spectra were recorded.

Preparation of $[Pd(allyl)Cl]_2/(R)$ -L3 and $[Cu(MeCN)_4]PF_6/(S,S_p)$ -L5 complexes in CD₂Cl₂:

To a dried NMR tube were successively added solutions of $[Pd(allyl)Cl]_2/(R)$ -L3 (500 µL, 18.0 µmol) and $[Cu(MeCN)_4]PF_6/(S,S_p)$ -L5 (500 µL, 18.0 µmol) at room temperature under a nitrogen atmosphere, and the resulting mixture was shaken for 30 sec. Then, the ³¹P NMR spectra were recorded.

Figure S1 ³¹P NMR spectra of L3, Pd/L3, L5, Cu/L5 and [Cu(CH₃CN)₄]PF₆

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

S35

Figure S4 ³¹P NMR spectra of [Pd/L3 and Cu/L5 mixture] and references
8. Computational Study about Diastereoselectivity

Scheme S1 Proposed mechanism of synergistic Pd/Cu catalysis

To study the diastereoselectivity of our reaction, DFT was used to investigate the transition states.

Computations were performed using the Gaussian 09 (revision D.01) suite of quantum chemical program. All structures are optimized in an implicit solvent model using the PBE0⁶ hybrid functional with usage of empirical Grimme's dispersion correction with Becke-Johnson damping⁷⁻⁸ (GD3BJ). During testing, PBE0 proved to be the one of the best functional for the DFT calculation of organic metals and is widely used in organic metal computation.⁹⁻¹³ In optimization, all atoms except palladium are described with Dunning's correlation-consistent basis sets, cc-pVDZ¹⁴⁻¹⁷ (a double- ζ basis set). Dunning's correlation-consistent basis sets with pseudo potential and description for relativistic effect, cc-pVDZ-PP¹⁸, is used for Pd (28,18) with 28 core and 18 valence electrons. All structures are in a local minimum potential energy surface with zero imaginary frequency or at the first order saddle point (transition state) on the potential surface with one imaginary frequency. Transition states (TSs) are calculated by processes QST2, QST3 or the Berny algorithm.¹⁹⁻²⁰ Intrinsic reaction coordinate (IRC) calculations are additionally carried out to further characterize the true nature of the TSs.²¹ Harmonic vibrational frequencies, thermal, and entropic corrections at 298.15K and p^{Θ} were obtained from frequency calculations. A global multiplicative harmonic frequency scaling factor for PBE0/cc-pVDZ basis set, 0.9560²², were used as a correction for calculated harmonic frequencies and thermal data. The contribution of low frequency vibration is modified by quasiharmonic approximation proposed by Grimme²³ considering the contribution of low frequency vibration (<100.0 cm⁻¹) to the partition function, using the free-rotor approximation. For those above this threshold, the RRHO approximation is retained. All frequency and thermal corrections are computed using Shermo.²⁴ Single point energy in the gas phase is computed using the PBE0-D3BJ functional while the cc-pVTZ¹⁴⁻¹⁷ basis set (a triple- ζ basis set) is used for all atoms except palladium and cc-pVTZ-PP¹⁸ basis set with pseudo potential is used for Pd

(28,18) with 28 core and 18 valence electrons. The effect of a solvent continuum, in THF, was evaluated using the Cramer–Truhlar continuum solvation model that describes the electrostatic interaction and nonpolar interaction between solvent and solute, named as SMD.²⁵ Given the fitting method of the SMD model, the difference in electron energy at the SMD/M052X/6-31G* level of theory and M052X/6-31G* level of theory was calculated as the free energy of solvation. The basis set for Pd was cc-pVTZ-PP with pseudo potential because the 6-31G* basis set for Pd is not defined. Based on the definition of solvation free energy, the free energy change from the work done by 1M molecules during the transition from the gas phase to liquid phase, 1.89 kcal/mol, was added to the solvation free energy.

In this section, four transition states were calculated (Figures S5~S8). Ice blue represents carbon atoms while blue and red are used for nitrogen and oxygen, respectively. Yellow balls represent palladium atoms, cyan balls represent the copper atoms, brown balls represent the iron atoms and white balls represent the hydrogen atom. Orange dashes are bonds which are breaking or forming in a transition state. The transition state, **TS1**, was the structure with the lowest Gibbs energy among these structures, which exactly matched our experimental data. Additionally, the calculated dr value was 880:1 (>20:1) consistent with experimental dr values (>20:1) and calculated ee value was >99% corresponding with experimental ee value (>99%).

Figure S5 TS1, Re face (Pd)+Re face (Cu), main configuration from (R)-L3 and (S, S_p)-L5.

Figure S6 TS2, *Re* face (Pd)+*Si* face (Cu), diastereoisomer, relative Gibbs free energy: 4.02 kcal/mol.

Figure S7 TS3, *Si* face (Pd)+*Re* face (Cu), diastereoisomer, relative Gibbs free energy: 11.15 kcal/mol.

Figure S8 TS4, *Si* face (Pd)+*Si* face (Cu), stereoisomer, relative Gibbs free energy: 12.89 kcal/mol.

Since ligand (*R*)-L3 has C_2 symmetry and the allyl section has C_{2v} symmetry, discussion concerning disastereoselectivity derived from the electrophile is actually the discussion of regioselectivity. First, it is obvious that there is a π - π interaction between one phenyl ring in ligand L3 and another phenyl ring in π -allyl-intermediate. Thus, this phenyl ring in ligand (*R*)-L3 is blocked, leading to less steric hindrance compared with the opposite "free" phenyl ring. We then calculated the electrophilic index to explain how ligand (*R*)-L3 controlled the diastereoselectivity and they are marked in the grid data of the dual descriptor (Figure 9). Following the result obtained for the dual descriptor, the carbons in the π -allyl-intermediate *Int-1* are electrophilic, and the electrophilic index of carbon (C_{α}) contributing to the diastereoisomer. Furthermore, the Pd-C_{α} bond is much longer and weaker than the Pd-C_{β} bond. The two different coordination models of the nucleophile (Cu+(*S*,*S_p*)-L5 and imino easter) provide diastereoselectivity due to the difference in the Gibbs free energy of the nucleophile. The coordination energy model leading to one diastereoisomer is 3.49 kcal/mol higher than the other, which naturally increases the energy of the transition states leading to the diastereoisomer.

Figure S9 Grid data of dual descriptor of π -allyl-intermediate **Int-1** and some bond length (black) and electrophilic index were marked (red).

Figure S10 Two different coordination models of the nucleophile ($Cu+(S,S_p)$ -L5 and imino easter). a) **Int-2a**; b) **Int-2b**.

9. References

- 1. D. Liu, F. Xie and W. Zhang, Tetrahedron Lett., 2007, 48, 585.
- 2. I. D. G. Watson, S. A. Styler and A. K. Yudin, J. Am. Chem. Soc., 2004, 126, 5086.
- 3. P. Liu, X. Huo, B. Li, R. He, J. Zhang, T. Wang, F. Xie and W. Zhang, Org. Lett., 2018, 20, 6564.
- 4. X. Huo, J. Zhang, J. Fu, R. He and W. Zhang, J. Am. Chem. Soc., 2018, 140, 2080-2084.
- 5. X. Huo, R. He, J. Fu, J. Zhang, G. Yang and W. Zhang, J. Am. Chem. Soc., 2017, 139, 9819.
- 6. C. Adamo and V. Barone, J. Chem. Phys, 1999, 110, 6158.
- 7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 8. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
- 9. D. Coskun, S. V. Jerome and R. A. Friesner, J. Chem. Theory Comput., 2016, 12, 1121.
- 10. P. Śliwa and J. Handzlik, Chem. Phys. Lett., 2010, 493, 273.
- 11. Y. Zhao and D. G. Truhlar, Org. Lett., 2007, 9, 1967.
- 12. S. Fomine, S. Gutierrez and M. A. Tlenkopatchev, J. Org. Chem., 2009, 694, 3287.
- 13. S. Fomine and M. A. Tlenkopatchev, Organometallics, 2007, 26, 4491.
- 14. N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 2006, 125, 074110.
- 15. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358.
- 16. N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 2005, 123, 064107.
- 17. T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007.
- 18. K. A. Peterson, D. Figgen, M. Dolg and H. Stoll, J. Chem. Phys., 2007, 126, 124101.
- 19. H. B. Schlegel, in *Modern Electronic Structure Theory*, DOI: 10.1142/9789812832108_0008, pp. 459-500.
- 20. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1990, 94, 5523.
- 21. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.
- 22. D. O. Kashinski, G. M. Chase, R. G. Nelson, O. E. Di Nallo, A. N. Scales, D. L. VanderLey and E.
- F. C. Byrd, J. Phys. Chem. A, 2017, 121, 2265.
- 23. S. Grimme, Chem. Eur. J., 2012, 18, 9955.
- 24. T. Lu and Q. Chen, ChemRxiv, 2020, DOI: 10.26434/chemrxiv.12278801.
- 25. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.

10. NMR and HPLC Spectra

10 0 -10 -20 -30 -40	-50 -60 -70 -80 -90 -100 f1 (ppm)	-110 -120 -130 -140 -150	-160 -170 -180 -190 -200 -210

-105.0 -106.0 -107.0 -108.0 -109.0 -110.0 -111.0 -112.0 -113.0 -114.0 -115.0 -116.0 -117. f1 (ppm)

S47

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

S60

S62

S64

20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-
						fl (ppm)						

						- - -						
 		· · · · · · ·										
20	0	-20	-40	-60	-80	-100 fl (ppm)	-120	-140	-160	-180	-200	-2

S68

						c						
20	0	-20	-40	-60	-80	-100 f1 (ppm)	-120	-140	-160	-180	-200	-2

S70

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

fl (ppm)

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

S86

S90

S94

PeakTable

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.741	42662440	1283418	99.626	99.674
2	31.279	160146	4196	0.374	0.326
Total		42822586	1287613	100.000	100.000

(*R*,*R*)-3a

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.493	2178856	97270	25.403	31.663
2	19.740	2091446	77989	24.384	25.386
3	20.533	2054924	74595	23.958	24.281
4	29.307	2251847	57355	26.254	18.670
Total		8577073	307209	100.000	100.000

(S,S)-3b

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.038	11070984	422315	99.471	99.732
2	30.349	58916	1134	0.529	0.268
Total		11129899	423448	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.978	6830444	242748	21.162	25.406
2	21.288	9292562	292132	28.790	30.574
3	24.205	9303617	251207	28.825	26.291
4	27.399	6849967	169400	21.223	17.729
Total		32276590	955487	100.000	100.000

Total

2647681

100.000

100.000

75549405

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.775	8316473	518239	27.916	34.031
2	12.674	6750510	367952	22.660	24.162
3	15.368	8103800	367585	27.202	24.138
4	15.891	6620186	269049	22.222	17.668
Total		29790968	1522824	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.683	48000	6561	0.110	0.404
2	15.628	43462672	1615594	99.890	99.596
Total		43510672	1622155	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.521	39235	2688	0.154	0.273
2	15.337	25413306	983442	99.846	99.727
Total		25452541	986131	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.091	41160411	1613753	99.951	99.900
2	24.167	20088	1619	0.049	0.100
Total		41180498	1615372	100.000	100.000

Total

1684763

100.000

100.000

46851712

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.669	4900221	173215	25.325	35.122
2	19.488	4686901	140713	24.223	28.532
3	26.353	5155074	109309	26.643	22.164
4	31.747	4606770	69938	23.809	14.181
Total		19348966	493176	100.000	100.000

ОМе Ρh `Ph CO₂Et

19.650

31.404

1

2

Total

	U	
86611	3491	0.201
42943895	670647	99.799
43030506	674139	100.000

35 min

100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.638	3082	190	0.018	0.053
2	26.243	17125402	357141	99.982	99.947
Total		17128484	357331	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.359	16648914	652359	28.059	42.696
2	17.666	12601311	410124	21.237	26.842
3	24.950	17394239	336114	29.315	21.998
4	35.503	12690808	129329	21.388	8.464
Total		59335271	1527926	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.809	28951	968	0.046	0.143
2	35.526	63413298	677751	99.954	99.857
Total		63442249	678719	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.689	6127186	195522	25.536	33.911
2	22.477	5797083	133856	24.160	23.216
3	30.237	5930498	132613	24.716	23.000
4	36.059	6139431	114580	25.587	19.873
Total		23994199	576571	100.000	100.000
3 4 Total	30.237 36.059	5930498 6139431 23994199	132613 114580 576571	24.716 25.587 100.000	23.000 19.873 100.000

(S,S)-3m

Peak#	Ket. Time	Area	Height	Area %	Height %
1	18.507	19079282	682820	99.831	99.915
2	36.170	32304	582	0.169	0.085
Total		19111586	683402	100.000	100.000

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

I Cakn	Ret. Time	Alca	mergin	Aica /o	fieight 70
1	20.899	35996743	1064022	99.848	99.871
2	23.344	54671	1374	0.152	0.129
Total		36051414	1065397	100.000	100.000

1. 01 2. 04J

____87.0

4.0

F10 'I

3.0

1. 02 1. 00 1. 00

2.0

50

1.0

__ 14.3

0.0

3.03 2.004 2.004 2.004 1.004

7.0

137.8 135.6 133.9 133.0 133.0 133.0 131.5 131.2 131.2 131.0 123.8 128.5 128.5 128.3

2. 03**.**=

8.0

11.0

10.0

9.0

 $\underset{\textstyle \sim}{\overset{176.1}{\scriptstyle -173.8}}$

6.0 f1 (ppm)

5.0

15.866

21.267

min

20

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.388	15400516	607111	19.364	26.193
2	14.111	23736275	792546	29.845	34.193
3	15.866	15841165	457469	19.918	19.737
4	21.267	24554534	460728	30.874	19.877
Total		79532489	2317854	100.000	100.000

11. Geometries and Energies

			C -3 593220	-3/183//	3 220051
	TS1		U 2 295641	4 104441	2 492404
Thermal corre	ection to U	: 1.608856 a.u.	П-5.565041	-4.194441	2.465494
Thermal corre	ection to H	: 1.609801 a.u.	C 1 604664	-2.0///11	0.091799
Thermal corre	ection to G	: 1.387637 a.u.	U 1 196076	-2.000550	-0.306313
Electronic ene	ergy: -817	1.0197970 a.u.	П -1.160070	-1.705572	-0.430788
Sum of electro	onic energ	y and ZPE: -	U 0 210206	-3.03/310	-1.365105
8169.5132005 a.u.			П -0.210500	-3.401270	-1.901155
Sum of electro	onic energ	y and thermal	C -1.823500	-4.8/2314	-1.555212
correction to U: -82	169.41094	05 a.u.	H -1.399434	-5.652528	-2.169280
Sum of electro	onic energ	y and thermal	C -3.038002	-5.08/8/2	-0.8/9513
correction to H: -8	169.40999	63 a.u.	H -3.566349	-6.035479	-1.003894
Sum of electro	onic energ	y and thermal	C -2.551313	2.423924	-2.034876
correction to G: -82	169.63216	04 a.u.	C -1.189106	2.154066	-2.234014
Imaginary free	quency: -2	19.27 cm ⁻¹	H -0.755817	1.227096	-1.850378
Cartesian Coo	ordinates:		C -0.381314	3.058259	-2.914285
11			H 0.669525	2.819869	-3.079850
Pd -2.421519	0.512043	0.842946	C -0.914656	4.264665	-3.370927
C -5.655594 -	1.140578	-0.767051	H -0.276890	4.983716	-3.889432
C -5.337997 -	1.347621	0.585137	C -2.260388	4.552043	-3.151240
C -6.345163 -	1.290646	1.559016	H -2.681828	5.499548	-3.494033
Н -6.105694 -	1.460287	2.607798	C -3.079954	3.635025	-2.491482
C -7.656494 -	1.018711	1.190452	H -4.129656	3.876836	-2.321123
Н -8.435228 -	0.972187	1.954723	C -5.172182	1.939023	-0.863267
C -7.993307 -	0.806326	-0.143216	C -6.028778	2.153613	-1.950595
C -6.998268 -	0.880014	-1.119669	H -5.723450	1.856966	-2.955784
C -4.674503 -	1.234232	-1.887240	C -7.278841	2.731058	-1.743760
C -3.763295 -	0.219353	-2.223273	H -7.944586	2.899456	-2.592941
C -2.940159 -	0.359678	-3.349597	C -7.682508	3.087710	-0.455537
H -2.248126 0	.433826	-3.625765	H -8.665965	3.535894	-0.297525
C -3.008400 -	1.510441	-4.124379	C -6.833090	2.870796	0.628849
Н -2.361159 -	1.614786	-4.998261	H -7.148193	3.144480	1.637816
C -3.896387 -2	2.533700	-3.804369	C -5.579032	2.298344	0.425864
C -4.737020 -2	2.388632	-2.699024	H -4.906803	2.116013	1.268247
C -3.688236 -2	2.080407	2.830192	C -3.589520	-4.090754	-0.077368
C -3.920817 -	1.095905	3.802675	H -4.557360	-4.249079	0.401763
Н -3.965803 -	0.044681	3.502952	P -3.571673	-1.500330	1.093853
C -4.105524 -	1.450327	5.136334	P -3.517326	1.199229	-1.074757
H -4.298050 -	0.676030	5.882011	C -1.093528	2.112993	1.242050
C -4.029637 -2	2.790627	5.517118	C -0.928516	1.139189	2.281401
H -4.167026 -	3.071510	6.563544	H -0.375308	2.092908	0.417970
C -3.759980 -3	3.768231	4.560923	C -0.140647	-0.014889	2.093958
Н -3.679300	4.816485	4.856734	H -1.375878	1.311859	3.263376

C -1.730931 3.421296 1.460184	C 2.131840 -5.115887 -1.487928
C -2.556388 3.691661 2.567340	H 2.141127 -4.800820 0.649342
C -1.531544 4.447038 0.520872	C 4.909209 -0.685470 -2.272710
C -3.162752 4.935001 2.720001	C 2.366883 0.073957 -3.228774
H -2.738430 2.915699 3.314105	Cu 3.224220 0.567098 0.172614
C -2.142931 5.688843 0.672808	C 2.261460 -4.517320 -2.743138
H -0.888710 4.259411 -0.341273	H 2.617855 -2.695899 -3.833304
C -2.963393 5.941391 1.771873	H 1.923414 -6.185208 -1.411559
H -3.801414 5.120329 3.586874	Fe 6.438956 -1.792344 -1.535324
H-1.971579 6.466349 -0.075238	C 6.000096 0.156274 -1.828648
H -3.444140 6.914612 1.891632	C 5.433780 -1.532442 -3.299064
H 0.315106 -0.159699 1.110684	C 1.087250 -0.330575 -3.630253
C 2.023995 0.889019 2.756019	C 3.035662 1.057944 -3.970582
N 2.205371 1.622700 1.595111	H 2.154351 -5.116260 -3.650147
C 1.655873 1.788795 3.907759	C 5.916335 -3.596693 -0.725690
C 2.737939 -0.339098 2.849715	C 7.234394 -3.660236 -1.265257
C 1.917963 2.884274 1.795515	C 7.164684 -0.193619 -2.586679
C 1.572324 3.172486 3.238259	C 6.015650 1.152600 -0.764817
H 2.418305 1.752001 4.700800	C 6.809451 -1.230931 -3.485834
H 0.701128 1.500150 4.375327	H 4.875627 -2.301321 -3.826653
O 3.296861 -0.906015 1.887567	C 0.508351 0.212195 -4.776799
O 2.764936 -0.857934 4.084220	H 0.542589 -1.086761 -3.060676
C 2.014588 3.910602 0.769854	C 2.445153 1.609271 -5.106278
H 0.578170 3.636172 3.326258	H 4.033029 1.385552 -3.668542
H 2.291384 3.892883 3.662948	C 5.896248 -2.577249 0.273522
C 3.482807 -2.088608 4.248340	H 5.063242 -4.191688 -1.046038
C 1.833723 5.261746 1.122232	C 8.031077 -2.681426 -0.601408
C 2.289769 3.608575 -0.578010	H 7.563906 -4.312994 -2.071671
H 2.985254 -2.877371 3.663762	H 8.150204 0.247270 -2.460861
H 4.502841 -1.966528 3.851975	N 5.076288 1.442224 0.063995
C 1.946713 6.270611 0.169939	O 7.159350 1.843879 -0.660155
H 1.598604 5.525340 2.154197	H 7.485622 -1.739164 -4.170493
C 2.411321 4.619471 -1.523082	C 1.183815 1.179876 -5.518939
H 2.402444 2.566001 -0.884831	H-0.480919 -0.126353 -5.090552
C 2.241328 5.957132 -1.156719	H 2.981097 2.371066 -5.676709
H 1.799871 7.311069 0.467600	C 7.204807 -2.015215 0.349093
H 2.630831 4.361737 -2.561541	H 5.030842 -2.251935 0.849578
H 2.331914 6.748242 -1.903942	H 9.075222 -2.456108 -0.810773
C 2.518991 -2.975896 -0.433327	C 5.561860 2.516168 0.943761
C 2.671864 -2.375253 -1.688584	C 6.974125 2.802901 0.404464
C 2.252387 -4.341799 -0.335373	H 0.724870 1.603147 -6.414623
H 2.632570 -2.370506 0.469254	H 7.507381 -1.189916 0.990043
P 3.167514 -0.606273 -1.716971	H 4.907659 3.390423 0.798839
C 2.526234 -3.152926 -2.846142	H 7.079647 3.806234 -0.028840

C -0.155641 -1.190948 2.960244	8169.5068476 a.u.
C 0.248942 -2.423858 2.422934	Sum of electronic energy and thermal
C -0.554993 -1.147475 4.305618	correction to U: -8169.4046937 a.u.
C 0.252204 -3.577484 3.199357	Sum of electronic energy and thermal
H 0.548143 -2.470742 1.375677	correction to H: -8169.4037495 a.u.
C -0.535929 -2.298443 5.085654	Sum of electronic energy and thermal
H -0.873641 -0.204647 4.751894	correction to G: -8169.6257615 a.u.
C -0.133749 -3.518536 4.538744	Imaginary frequency: -189.72 cm ⁻¹
H 0.553954 -4.528730 2.755258	Cartesian Coordinates:
H-0.845862 -2.245283 6.131114	11
H-0.131237 -4.421306 5.153223	Pd -2.756317 0.779548 0.367104
H 7.773372 2.642683 1.140980	C -5.822975 -1.689450 0.125924
C 5.495985 2.132257 2.427700	C -5.293929 -1.303528 1.368798
C 5.924122 3.311953 3.291256	C -6.152161 -0.956263 2.421304
C 6.274064 0.866199 2.753627	H -5.744123 -0.663404 3.388091
H 4.433335 1.931553 2.632317	C -7.528781 -0.983762 2.235822
H 5.341443 4.216699 3.053386	H-8.192165 -0.706546 3.057776
H 5.775768 3.086819 4.358720	C -8.075441 -1.364186 1.013742
H 6.991511 3.554203 3.152869	C -7.226170 -1.729064 -0.032648
H 5.907010 0.016872 2.160244	C -5.005522 -2.114035 -1.049338
H 7.355252 0.983050 2.568480	C -4.351372 -1.217354 -1.913143
H 6.152248 0.608218 3.817436	C -3.706059 -1.688828 -3.063909
H -3.937351 -3.431409 -4.419331	H -3.215919 -0.989848 -3.741385
H -9.025570 -0.589780 -0.414501	C -3.692685 -3.050280 -3.344121
O -7.224907 -0.696168 -2.436674	H -3.186802 -3.415085 -4.240730
O -5.641662 -3.313630 -2.319447	C -4.318059 -3.958866 -2.494754
C -5.779488 -4.476074 -3.111904	C -4.985255 -3.490896 -1.359727
H -4.844489 -5.058461 -3.148415	C -3.239268 -0.858478 3.357755
H -6.559571 -5.077604 -2.628959	C -3.481983 0.427396 3.864085
H -6.095902 -4.228435 -4.139004	H -3.776210 1.227387 3.178312
C -8.559018 -0.506854 -2.864108	C -3.356678 0.685760 5.226115
H -8.510922 -0.387685 -3.953817	H -3.562048 1.687664 5.609444
H -9.186270 -1.381150 -2.621912	C -2.955256 -0.331172 6.093802
H -9.006993 0.398540 -2.423057	H -2.846258 -0.128589 7.161443
C 3.493095 -2.410529 5.718629	C -2.679761 -1.601697 5.591154
H 2.469504 -2.526865 6.105164	H -2.347841 -2.396408 6.262746
H 4.035695 -3.352897 5.887322	C -2.825624 -1.869257 4.229701
H 3.995144 -1.616129 6.292260	H -2.606589 -2.868589 3.850712
TS2	C -2.784041 -2.749242 1.189682
Thermal correction to U: 1.608938 a.u.	C -1.577017 -2.815579 0.487140
Thermal correction to H: 1.609882 a.u.	H-1.109569 -1.887078 0.152228
Thermal correction to G: 1.387870 a.u.	C -0.989158 -4.049886 0.217142
Electronic energy: -8171.0136320 a.u.	H -0.045364 -4.097660 -0.330345
Sum of electronic oncernent 7DE	C -1.610915 -5.222791 0.645142

Sum of electronic energy and ZPE : -

Н -1.150736	-6.190732	0.434510	Н -5.593828	6.545604	-0.210938
C -2.820916	-5.161424	1.338853	H 0.109653	0.860412	0.208695
Н -3.310478	-6.079886	1.669492	C 1.791856	2.653651	1.218928
C -3.582256	1.427862	-2.915364	N 2.766149	1.742355	1.582313
C -2.205446	1.360444	-3.175430	C 1.484017	3.597805	2.349528
H -1.562428	0.752135	-2.535166	C 1.639358	2.922027	-0.173944
C -1.648248	2.074376	-4.232610	C 3.055917	1.863538	2.855748
H -0.575849	2.002365	-4.425604	C 2.353678	3.042949	3.490311
C -2.457955	2.886605	-5.029131	H 0.410960	3.605236	2.604016
Н -2.020531	3.460112	-5.849230	H 1.747659	4.634315	2.088082
C -3.824769	2.968440	-4.768211	O 2.086444	2.206435	-1.087504
H -4.462761	3.607930	-5.382060	O 0.941474	4.043490	-0.424401
C -4.387983	2.241183	-3.718894	C 3.974239	0.998443	3.575698
Н -5.456206	2.329176	-3.518291	H 3.103526	3.770123	3.844957
C -5.916960	1.126009	-1.202772	H 1.766455	2.744001	4.369174
C -6.929925	0.801542	-2.114480	C 0.748251	4.384524	-1.803340
H -6.711034	0.166704	-2.975234	C 4.091473	1.124063	4.973365
C -8.222577	1.278491	-1.912291	C 4.754935	0.017043	2.935057
H -9.009860	1.028419	-2.626553	H 1.706184	4.290290	-2.336647
C -8.513508	2.067980	-0.797903	H 0.044436	3.667699	-2.257818
H -9.530299	2.434503	-0.640608	C 4.942771	0.295578	5.699604
C -7.508223	2.385710	0.114477	H 3.500765	1.874143	5.500762
Н -7.732454	2.999056	0.989599	C 5.603268	-0.808107	3.662678
C -6.211829	1.916997	-0.087929	H 4.696569	-0.088226	1.848144
H -5.418338	2.158579	0.622570	C 5.701936	-0.677102	5.050639
C -3.410530	-3.928685	1.610240	H 5.011022	0.411258	6.783497
H -4.362809	-3.881568	2.141420	H 6.199867	-1.561956	3.144187
P -3.471908	-1.096930	1.552340	H 6.369822	-1.327671	5.618820
P -4.198488	0.549640	-1.425850	C 3.808418	-2.917945	0.855323
C -1.867205	2.665070	0.022682	C 3.541391	-2.780893	-0.509682
C -1.294212	2.139681	1.222860	C 3.847878	-4.180786	1.446143
H -1.284231	2.566616	-0.897209	H 3.977975	-2.027331	1.460663
C -0.222118	1.218192	1.187335	P 3.545903	-1.086261	-1.218249
H -1.635669	2.504941	2.194475	C 3.284935	-3.925235	-1.277421
C -2.853380	3.757160	0.005512	C 3.606483	-5.316517	0.675377
C -3.560466	4.168794	1.150145	H 4.060663	-4.272047	2.513515
C -3.148031	4.392656	-1.213198	C 5.009420	-1.046757	-2.303822
C -4.530997	5.163375	1.071086	C 2.171267	-1.160654	-2.431334
H -3.360446	3.697147	2.114654	Cu 3.536096	0.790429	-0.036319
C -4.124167	5.382172	-1.292180	C 3.320559	-5.185952	-0.685853
H -2.607615	4.089170	-2.112303	H 3.043411	-3.832635	-2.338172
C -4.825507	5.772005	-0.150842	H 3.631097	-6.306501	1.135719
H -5.069924	5.462312	1.973337	Fe 6.911633	-1.602912	-1.882445
H -4.338914	5.850914	-2.255393	C 5.923747	0.064504	-2.461890

C 5.431780	-2.064076 -3.216265	H 1.422136 -1.793564 5.309473
C 0.939261	-1.671360 -2.004669	H 7.691692 3.682718 -0.969262
C 2.294704	-0.664375 -3.732630	C 6.048829 3.144134 1.065827
H 3.119381	-6.073211 -1.290128	C 6.341395 4.582435 1.472422
C 7.070554	-3.119772 -0.523728	C 7.209972 2.213265 1.384213
C 8.153068	-3.173119 -1.449199	H 5.172125 2.800269 1.637886
C 6.887234	-0.297377 -3.458582	H 5.479110 5.238750 1.272156
C 5.960361	1.334805 -1.745861	H 6.570475 4.644455 2.547421
C 6.578328	-1.603340 -3.917631	H 7.208861 4.991196 0.926883
H 4.963697	-3.038401 -3.332507	H 6.982351 1.176429 1.096303
C -0.147037	-1.713232 -2.872373	H 8.136220 2.518237 0.868611
H 0.838715	-2.052905 -0.987126	H 7.420378 2.217690 2.464830
C 1.200951	-0.698748 -4.599167	H -4.295843 -5.022534 -2.727493
H 3.247614	-0.257142 -4.076421	H-9.156419 -1.377031 0.881795
C 7.116010	-1.852956 0.131484	O -7.661334 -2.118157 -1.248850
H 6.315898	-3.889417 -0.374309	O -5.643089 -4.289098 -0.494775
C 8.867026	-1.941211 -1.367019	C -5.687591 -5.675831 -0.766076
H 8.372466	-3.994580 -2.128733	H -4.678269 -6.116698 -0.806849
Н 7.721235	0.321972 -3.778188	H -6.243296 -6.127329 0.065182
N 5.190255	1.738667 -0.798778	H -6.217103 -5.883668 -1.711130
O 6.918652	2.179803 -2.155184	C -9.055285 -2.237499 -1.451168
H 7.147447	-2.171337 -4.650868	H -9.180715 -2.575304 -2.487473
C -0.016934	-1.228566 -4.175279	H -9.497851 -2.983676 -0.770104
H -1.098629	-2.124010 -2.530520	H -9.571154 -1.272447 -1.320260
H 1.306393	-0.314223 -5.616034	C 0.216284 5.792088 -1.852967
C 8.227393	-1.126378 -0.388996	H 0.015129 6.074317 -2.897602
H 6.403104	-1.485794 0.866053	H-0.722190 5.883256 -1.286687
H 9.726033	-1.657980 -1.972517	H 0.945553 6.503891 -1.436479
C 5.622647	3.087694 -0.406679	TS3
C 6.729748	3.411322 -1.423875	Thermal correction to U: 1 609196 a u
Н -0.867853	-1.259142 -4.859052	Thermal correction to H: 1 610140 a u
H 8.511327	-0.111825 -0.116956	Thermal correction to G: 1.388827 a.u.
H 4.766855	3.769290 -0.534055	Electronic energy: -8171 0032140 a u
H 6.440115	4.186344 -2.146481	Sum of electronic energy and ZPE: -
C 0.210948	0.422904 2.329042	8169 4958143 a u
C 0.953398	-0.748889 2.103895	Sum of electronic energy and thermal
C -0.073109	0.783509 3.656970	correction to U: -8169.3940178 a.u.
C 1.369555	-1.548097 3.162816	Sum of electronic energy and thermal
H 1.198860	-1.028856 1.077466	correction to H: -8169.3930736 a.u.
C 0.367785	-0.001379 4.717184	Sum of electronic energy and thermal
Н -0.635642	1.693708 3.866053	correction to G: -8169.6143867 a u
C 1.084917	-1.174009 4.475995	Imaginary frequency: -284 55 cm ⁻¹
H 1.925513	-2.465432 2.963063	Cartesian Coordinates
H 0.144241	0.302145 5.741550	11

Pd 2.404232 0.173557 -0.920708	C 0.973820 4.728700 2.439184
C 5.821237 -0.122979 1.091690	H 1.140960 5.781683 2.676167
C 5.726443 -0.606800 -0.222075	C 2.013603 3.975645 1.892952
C 6.793942 -0.418527 -1.112104	H 2.978152 4.449597 1.708320
H 6.738135 -0.800546 -2.129737	C 4.563290 2.682280 0.645639
C 7.936703 0.254445 -0.697897	C 5.222898 3.236653 1.749994
H 8.761349 0.400455 -1.398780	H 4.901653 2.982833 2.761677
C 8.050180 0.739211 0.602118	C 6.298509 4.098947 1.555072
C 6.999946 0.537056 1.499012	H 6.807962 4.533421 2.417871
C 4.768745 -0.336641 2.123776	C 6.728634 4.402046 0.261686
C 3.584926 0.416360 2.207138	H 7.577231 5.073453 0.112976
C 2.689956 0.180339 3.260819	C 6.078735 3.846170 -0.839641
H 1.779888 0.769172 3.354137	H 6.416830 4.077502 -1.851825
C 2.961075 -0.802196 4.205389	C 4.995306 2.990186 -0.648687
H 2.254413 -0.979625 5.019043	H 4.478507 2.546934 -1.504148
C 4.125146 -1.561435 4.136048	C 4.999488 -3.685392 0.605482
C 5.034058 -1.317539 3.105425	H 5.993850 -3.489816 0.199287
C 4.568431 -1.980831 -2.448790	P 4.135815 -1.364435 -0.778330
C 4.687736 -1.018361 -3.464096	P 3.124988 1.569259 0.826698
H 4.475124 0.030796 -3.238687	C 0.112854 1.570798 -1.749986
C 5.089790 -1.387925 -4.743781	C 0.859749 0.579825 -2.447315
H 5.195061 -0.626604 -5.519793	H -0.338845 1.280143 -0.799874
C 5.342247 -2.729300 -5.034928	C 0.895743 -0.788630 -2.081404
H 5.651111 -3.023619 -6.040297	H 1.332049 0.872005 -3.388363
C 5.177699 -3.694671 -4.043600	C 0.364880 3.004475 -1.925377
H 5.349927 -4.748821 -4.271687	C 1.012373 3.522222 -3.064061
C 4.796847 -3.324705 -2.753115	C -0.069914 3.911597 -0.944796
H 4.681057 -4.090387 -1.984656	C 1.200461 4.890847 -3.216413
C 3.934427 -2.830424 0.295129	H 1.369883 2.849504 -3.845314
C 2.671576 -3.065732 0.851150	C 0.123734 5.282433 -1.096416
H 1.852203 -2.378313 0.625721	H-0.546335 3.532988 -0.043816
C 2.470385 -4.150988 1.701418	C 0.751506 5.780711 -2.235572
H 1.484612 -4.321025 2.138326	H 1.701949 5.270301 -4.109481
C 3.530393 -5.008047 1.997152	H-0.225897 5.962574 -0.316951
H 3.375021 -5.858460 2.664867	H 0.902445 6.855385 -2.358582
C 4.792693 -4.775382 1.448019	H 0.253786 -1.076596 -1.237364
H 5.625203 -5.440850 1.686566	C -2.028705 1.651784 -2.547774
C 1.818894 2.626810 1.575560	N -2.645778 2.068712 -1.369110
C 0.555079 2.056076 1.789988	C -2.178648 2.709466 -3.616150
H 0.373063 1.014919 1.510929	C -2.114426 0.244245 -2.822688
C -0.473514 2.803853 2.355645	C -2.989156 3.327601 -1.454714
H-1.443729 2.339053 2.530152	C -2.739714 3.905153 -2.828442
C -0.267977 4.144385 2.681631	H -2.879799 2.367256 -4.394234
H-1.080606 4.733300 3.111877	H-1.231527 2.948757 -4.120171

O -2.444207 -0.614638 -1.989674	C -0.729473 0.377198 4.830922
O -1.781504 -0.074855 -4.074143	H -0.511538 -0.936757 3.138340
C -3.583850 4.073950 -0.352807	C -2.850232 1.502374 5.050490
H -2.037415 4.750731 -2.779313	H -4.325741 1.050020 3.549776
H -3.676327 4.296001 -3.257638	C -5.368512 -3.494132 -0.221741
C -1.972572 -1.448835 -4.459339	H -4.190495 -4.730602 1.234348
C -4.009421 5.399267 -0.556148	C -7.420380 -3.958187 0.724170
C -3.742193 3.512892 0.929049	H -6.597927 -5.273083 2.347428
H -1.263629 -2.079065 -3.904034	H-8.175036 -0.915099 2.165687
H -2.993058 -1.753843 -4.180318	N -5.315158 0.654770 -0.408731
C -4.588187 6.128857 0.479341	O -7.491119 0.503524 0.108291
H -3.885700 5.864663 -1.535264	H -7.177419 -2.509441 4.108277
C -4.321439 4.243332 1.958800	C -1.559162 1.259230 5.520298
H -3.400132 2.492716 1.115743	H 0.281905 0.184840 5.193483
C -4.750375 5.555332 1.740217	H-3.509108 2.190898 5.584094
H -4.912725 7.155910 0.299336	C -6.767879 -3.238263 -0.317831
H -4.432696 3.788069 2.945276	H -4.595252 -3.069608 -0.857943
H-5.204318 6.128053 2.551519	H -8.486541 -3.941083 0.942727
C -1.944683 -2.888238 0.264053	C -5.991496 1.414655 -1.469373
C -2.270926 -2.398409 1.534582	C -7.471247 1.360809 -1.054486
C -1.429091 -4.177848 0.122816	H-1.199821 1.757180 6.423008
H -2.105290 -2.261191 -0.616364	H -7.248130 -2.572534 -1.031786
P-3.090767 -0.758028 1.632713	H -5.621833 2.450794 -1.434009
C -2.040825 -3.198717 2.662575	H -7.872053 2.338200 -0.754512
C -1.214101 -4.974559 1.245734	C 1.194335 -1.909692 -2.985194
H -1.195473 -4.558610 -0.873084	C 1.059658 -3.218334 -2.492563
C -4.806931 -1.167814 2.125378	C 1.565176 -1.748412 -4.328446
C -2.477382 -0.027559 3.204737	C 1.266005 -4.324806 -3.310179
Cu -3.273283 0.491218 -0.207053	H 0.784098 -3.360001 -1.446179
C -1.512101 -4.478946 2.517078	C 1.777120 -2.855053 -5.146397
H -2.271877 -2.823294 3.661148	H 1.672147 -0.746927 -4.748501
H -0.806681 -5.981559 1.133102	C 1.623261 -4.149142 -4.647642
Fe -6.058608 -2.645455 1.507665	H 1.149324 -5.330468 -2.899277
C -6.030599 -0.626382 1.573591	H 2.061702 -2.703817 -6.190152
C -5.183140 -1.985237 3.236723	H 1.786645 -5.012796 -5.295493
C -1.178642 -0.257911 3.673409	H -8.132104 0.915221 -1.810025
C -3.308821 0.861726 3.901719	C -5.674429 0.857822 -2.863354
H -1.335131 -5.094534 3.401705	C -6.291430 1.743496 -3.937993
C -5.155816 -4.373724 0.880930	C -6.070221 -0.602041 -3.027562
C -6.423939 -4.660072 1.464929	H-4.578892 0.921511 -2.960746
C -7.125116 -1.122938 2.354528	H -5.983990 2.795105 -3.819441
C -6.215708 0.196880 0.386376	H -5.981403 1.412805 -4.941330
C -6.596572 -1.954285 3.374350	H -7.393739 1.712355 -3.907945
H -4.497453 -2.550652 3.862251	Н -5.590561 -1.234836 -2.266497

```
H-7.162017 -0.742837 -2.957217
H-5.760224 -0.974158 -4.016607
H 4.321264 -2.328153 4.883899
H 8.953386 1.263751 0.910960
O 7.016167 0.955505 2.781812
O 6.199399 -1.980690 2.960032
C 6.545716 -2.943752 3.934520
H 5.805492 -3.758407 3.986309
H 7.511190 -3.357368 3.617290
H 6.658203 -2.485538 4.931416
C 8.204139 1.541181 3.275184
H 8.004921 1.784679 4.326295
H 9.050455 0.836214 3.220099
H 8.462821 2.465834 2.733786
C -1.750090 -1.531028 -5.944947
H-0.737679 -1.194050 -6.212361
H-1.860719 -2.574294 -6.276353
H-2.480690 -0.913545 -6.489864
      ------
```

TC4

	184			
Thermal correction to U: 1.609371 a.u.				
Thermal correction to H: 1.610315 a.u.				
Thermal correction to G: 1.390161 a.u.				
Electronic energy: -8171.0017800 a.u.				
Sum of electro	onic energy a	nd ZPE: -		
8169.4941555 a.u.				
Sum of electro	onic energy a	nd thermal		
correction to U: -81	69.3924094	a.u.		
Sum of electronic energy and thermal				
correction to H: -81	69.3914652	a.u.		
Sum of electronic energy and thermal				
correction to G: -81	69.6116193	a.u.		
Imaginary frequency: -304.72 cm ⁻¹				
Cartesian Coordinates:				
11				
Pd -2.305220	0.272101	0.818755		
C -5.764256	-0.843513	-0.806232		
C -5.454417	-1.192907	0.517653		
C -6.456477	-1.146578	1.498994		
Н -6.237577	-1.432869	2.525560		
C -7.743366	-0.742357	1.167121		
H -8.514516	-0.708751	1.939771		
C -8.067158	-0.385322	-0.138704		
C -7.082024	-0.449753	-1.125226		
C -4.798520	-0.949843	-1.934913		

C -3.794020	-0.005903	-2.203550
C -2.980888	-0.164202	-3.335856
H -2.208372	0.566796	-3.567159
C -3.155839	-1.255924	-4.177166
Н -2.515753	-1.371288	-5.054640
C -4.140946	-2.205712	-3.923591
C -4.969360	-2.043813	-2.812478
C -3.871531	-2.172967	2.689411
C -4.133772	-1.203883	3.670747
H -4.163715	-0.146985	3.390014
C -4.376015	-1.581178	4.988029
Н -4.597222	-0.819039	5.738351
C -4.317119	-2.927821	5.349391
H -4.498924	-3.226036	6.384205
C -4.005416	-3.888707	4.389413
H -3.935143	-4.941781	4.670529
C -3.789207	-3.516546	3.062259
H -3.560923	-4.280291	2.317348
C -3.261280	-3.031096	-0.053666
C -2.003959	-3.030564	-0.669658
Н -1.339595	-2.174915	-0.521953
C -1.616505	-4.097422	-1.477298
Н -0.636533	-4.086434	-1.958161
C -2.484795	-5.172032	-1.669838
H -2.184339	-6.010013	-2.302901
C -3.740360	-5.176414	-1.058921
H -4.421844	-6.015579	-1.214268
C -2.361649	2.481079	-1.926143
C -1.026065	2.106551	-2.131276
Н -0.666565	1.152549	-1.737381
C -0.154587	2.933886	-2.833027
H 0.879588	2.622908	-2.981003
C -0.604718	4.160319	-3.324241
H 0.078795	4.815042	-3.869348
C -1.926432	4.549320	-3.107567
Н -2.282573	5.512936	-3.478792
C -2.803265	3.715490	-2.413231
H -3.831386	4.037573	-2.244252
C -4.985943	2.228128	-0.721856
C -5.855194	2.536200	-1.775933
H -5.630142	2.194265	-2.787754
C -7.013980	3.267484	-1.526662
H -7.688713	3.510889	-2.350255
C -7.314145	3.686615	-0.228830

H -8.226278	4.256354	-0.037655	C 2.896448	-2.083722	5.293671
C -6.454445	3.373966	0.823771	H 1.903744	-0.194997	5.519653
H -6.690496	3.694652	1.840510	C 3.899894	-2.509174	3.145585
C -5.291122	2.647069	0.577540	H 3.733783	-0.935465	1.685532
H -4.612197	2.389541	1.394859	C 3.609884	-2.928940	4.444955
C -4.134107	-4.106866	-0.257620	H 2.659970	-2.399750	6.311650
H -5.125469	-4.101858	0.199321	H 4.464269	-3.163911	2.479003
P -3.700782	-1.578573	0.964282	H 3.941888	-3.909192	4.792807
P -3.419270	1.323158	-0.969116	C 2.344132	-2.872756	-0.336472
C -0.382747	2.186215	1.254973	C 2.567997	-2.335129	-1.608024
C -0.749933	1.127635	2.128199	C 2.069595	-4.231288	-0.178372
H 0.006456	1.932428	0.268806	H 2.393011	-2.221958	0.537637
C -0.519544	-0.248662	1.897656	P 3.070172	-0.570374	-1.698984
H -1.184892	1.404079	3.090625	C 2.473695	-3.170733	-2.730139
C -0.995014	3.519681	1.391805	C 2.004237	-5.061644	-1.295261
C -1.711059	3.909392	2.538919	H 1.905457	-4.637211	0.821935
C -0.884003	4.446099	0.344780	C 4.794580	-0.644079	-2.316569
C -2.297186	5.168701	2.624903	C 2.253183	0.061899	-3.224647
H -1.828756	3.221837	3.377443	Cu 3.091108	0.768276	0.091120
C -1.472795	5.704447	0.428236	C 2.196519	-4.526551	-2.571247
H -0.341900	4.162470	-0.556854	H 2.608795	-2.765165	-3.734087
C -2.184744	6.073893	1.568579	H 1.788418	-6.125402	-1.175634
Н -2.852576	5.442767	3.524612	Fe 6.390804	-1.787271	-1.804315
H -1.380236	6.397921	-0.410358	C 5.903639	0.179335	-1.885520
H -2.652002	7.058748	1.634110	C 5.251516	-1.386873	-3.451248
H 0.093782	-0.503436	1.022363	C 0.997070	-0.392894	-3.642906
C 1.778599	2.648302	1.836311	C 2.907330	1.050297	-3.974480
N 2.283919	1.349137	1.879316	H 2.129034	-5.170414	-3.450789
C 1.688646	3.212661	3.230673	C 5.856815	-3.574962	-0.961396
C 2.116766	3.402458	0.661121	C 7.006835	-3.742783	-1.785256
C 2.274060	0.905976	3.111983	C 7.013138	-0.083600	-2.752582
C 1.777405	1.945377	4.090934	C 5.974425	1.111358	-0.767728
H 0.771285	3.792860	3.403228	C 6.604569	-1.043331	-3.712701
H 2.537146	3.890115	3.427038	H 4.665783	-2.113145	-4.007885
O 2.403584	2.896989	-0.434326	C 0.428032	0.107693	-4.814234
O 2.065426	4.727551	0.845638	H 0.462193	-1.151164	-3.066481
C 2.743286	-0.406329	3.534895	C 2.328969	1.554003	-5.136862
H 2.460094	2.045605	4.948005	H 3.884405	1.419636	-3.655907
H 0.799534	1.644549	4.499929	C 6.176498	-2.616931	0.045725
C 2.338935	5.545640	-0.301610	H 4.892061	-4.058354	-1.102285
C 2.471690	-0.837227	4.846414	C 8.037259	-2.892538	-1.286401
C 3.478956	-1.262468	2.696420	H 7.072580	-4.376643	-2.667739
H 3.341285	5.299527	-0.685921	H 8.000440	0.361416	-2.659241
H 1 611402	5 312585	-1 094828	N 5 063340	1 385834	0 097369

O 7.140905 1.765918 -0.653131	C -8.604633 0.222662 -2.812112
H 7.234282 -1.478683 -4.486040	H-8.551517 0.428725 -3.888507
C 1.090682 1.076093 -5.565706	Н -9.321089 -0.597060 -2.635660
H-0.543520 -0.264759 -5.142639	H-8.948218 1.129181 -2.287602
H 2.853720 2.319657 -5.712300	C 2.244964 6.980898 0.140234
C 7.525129 -2.197767 -0.153409	H 2.450571 7.645579 -0.712185
H 5.500230 -2.238781 0.806836	H 1.239510 7.208978 0.524574
H 9.027109 -2.765260 -1.720862	H 2.977758 7.198721 0.932226
C 5.631167 2.354436 1.049395	 Int-1
C 6.948541 2.761672 0.375986	Thermal correction to U: 0.850201 a.u.
H 0.639260 1.462829 -6.481524	Thermal correction to H: 0.851145 a.u.
H 8.052745 -1.444719 0.428296	Thermal correction to G: 0.720466 a u
H 4.949097 3.214677 1.122204	Electronic energy: -3004 8680010 a u
H 6.890970 3.742263 -0.118035	Sum of electronic energy and ZPE : -
C -0.521435 -1.287620 2.937818	3004.0713812.a.u.
C -0.057182 -2.569878 2.603733	Sum of electronic energy and thermal corr
C -0.943637 -1.064067 4.257139	to U: -3004.0178005 a.u.
C -0.009086 -3.590031 3.547934	Sum of electronic energy and thermal corr
H 0.268833 -2.760616 1.579651	to H: -3004 0168563 a u
C -0.901514 -2.085928 5.201304	Sum of electronic energy and thermal corr
H-1.314148 -0.081138 4.553667	to G: -3004 1475353 a u
C -0.431617 -3.353166 4.855997	Cartesian Coordinates:
H 0.360235 -4.577166 3.260402	1.1
H-1.239152 -1.889274 6.221188	Pd -0.131935 -1.300274 -0.378255
H-0.397020 -4.150096 5.601713	C = 0.240358 + 2.434816 + 0.944431
H 7.823198 2.738138 1.038039	C = 0.711259 = 1.552810 = 1.478218
C 5.777278 1.743990 2.450431	C = 0.930013 + 1.502481 + 2.861672
C 6.189781 2.812291 3.454186	H -1.680414 0.836981 3.281207
C 6.715513 0.546283 2.477679	C -0.190079 2.321357 3.707736
H 4.770584 1.391911 2.723196	H -0 361250 2 278971 4 785246
H 5.481674 3.656744 3.458083	C 0.763159 3.199292 3.201003
H 6.223628 2.396807 4.473164	C 0.967932 = 3.267853 = 1.821481
H 7.192087 3.215457 3.230869	C 0.490009 2.591953 -0.515283
H 6.410427 -0.215996 1.746433	C 1.227722 1.678400 -1.285241
H 7.757666 0.834335 2.260260	C 1 466488 1 933293 -2 642239
H 6.706540 0.072232 3.471084	H 2 055231 1 239680 -3 240025
H-4.263485 -3.056809 -4.591668	C = 0.961032 = 3.086665 = 3.230313
H-9.080658 -0.068710 -0.381293	H 1 150190 3 281312 -4 287915
O -7.296099 -0.142583 -2.421740	C = 0.221473 + 0.02730 = 2.488408
O -5.964700 -2.894455 -2.488570	C = 0.004282 = 3.762417 = 1.131432
C -6.236391 -3.970083 -3.364583	$C_{-2} 867400 = 0.367077 = 1.151452$
H -5.371613 -4.645986 -3.464967	C = 2.456612 = 1.316144 = 2.358082
H -7.070835 -4.520737 -2.912600	$H_{-1} = 404342 = 1.609329 = 2.411801$
H -6.537421 -3.609461 -4.362558	C_{-3} 377980 -1 870283 -3.241601

H -8.551517 0.428725 -3.888507
H -9.321089 -0.597060 -2.635660
H-8.948218 1.129181 -2.287602
C 2.244964 6.980898 0.140234
H 2.450571 7.645579 -0.712185
H 1.239510 7.208978 0.524574
H 2.977758 7.198721 0.932226
 Int-1
Thermal correction to U: 0.850201 a.u.
Thermal correction to H: 0.851145 a.u.
Thermal correction to G: 0.720466 a.u.
Electronic energy: -3004.8680010 a.u.
Sum of electronic energy and ZPE : -
04.0713812 a.u.
Sum of electronic energy and thermal correction
U: -3004.0178005 a.u.
Sum of electronic energy and thermal correction
H: -3004.0168563 a.u.
Sum of electronic energy and thermal correction
G: -3004.1475353 a.u.
Cartesian Coordinates:
11
Pd -0.131935 -1.300274 -0.378255
C 0.240358 2.434816 0.944431
C -0.711259 1.552810 1.478218
C -0.930013 1.504481 2.861672
H -1.680414 0.836981 3.281207
C -0.190079 2.321357 3.707736
H -0.361250 2.278971 4.785246
C 0.763159 3.199292 3.201003
C 0.967932 3.267853 1.821481
C 0.490009 2.591953 -0.515283
C 1.227722 1.678400 -1.285241
U 1.466488 1.933293 -2.642239
H 2.055231 1.239680 -3.240025
C 0.961032 3.086665 -3.230313
H 1.150190 5.281512 -4.287915
C = 0.004282 = 2.762417 = 1.121422
C = 0.004282 = 3.702417 = 1.131432
C = 2.50/400 = 0.50/07/ = 1.4093/6
$\bigcirc -2.430012 -1.310144 -2.338082$ H 1 404342 -1 600220 -2.411801
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C-3.377900 -1.870203 3.241013

LL 2.045401 2.505592 2.097020	U 1 010044 2 111000 1 0cc001	
H - 3.043491 - 2.595583 - 3.987020	H 1.012244 -3.111099 -1.800991	
U = 5.448576 = 1.045265 = 3.852177	C = 1.579807 = 2.821201 = 1.106499	
$\begin{array}{c} 11 - 5.448570 & -1.745205 & 5.852177 \\ C & 5.141170 & 0.506024 & 2.105067 \end{array}$	C = 1 020180 = 2.652808 = 0.000287	
C = -5.141170 = -0.396934 = 2.195007	C 1.930160 - 3.033898 - 0.029387	
$\Pi = 0.190100 = -0.520411 = 2.115920$	C = 1.818557 = -5.854092 = 1.410480	
C - 4.218138 - 0.022290 - 1.521070	$C_{2,024445} = 4.220001 = 2.171727$	
H -4.557628 0.693280 0.571089	C 2.924445 - 4.229001 - 2.171626	
C = 2.395106 = 1.401335 = 0.900324	H 0.859/30 -3.69/356 1.916502	
C -2.292649 1.027455 -2.244673	C 4.291326 -4.215373 0.186349	
H -1./1930/ 0.13/250 -2.513502	H 3.28/021 -3.685191 -1.64/042	
C -2.901021 1.798970 -3.231885	C 4.168044 -4.409033 1.561251	
H -2.811135 1.509450 -4.280/19	H 2.818572 -4.374524 3.248987	
C -3.616528 2.942673 -2.877910	H 5.258347 -4.350774 -0.302932	
H -4.094175 3.547973 -3.651315	H 5.036516 -4.695771 2.157857	
C -3.718211 3.319347 -1.537668	H -1.324969 -2.493470 -2.185683	
H -4.274808 4.217258 -1.261788	C -3.019557 -2.893065 -0.907315	
C 2.976406 -0.621447 -1.697602	C -3.888875 -2.250816 -1.803702	
C 2.520206 -1.142180 -2.918513	C -3.570916 -3.586921 0.180666	
H 1.455283 -1.104999 -3.162546	C -5.267008 -2.293578 -1.619113	
C 3.414673 -1.709553 -3.820962	H -3.470368 -1.710742 -2.655903	
H 3.048698 -2.103232 -4.771362	C -4.949041 -3.634461 0.360591	
C 4.772754 -1.783754 -3.504422	H -2.922174 -4.101852 0.890486	
H 5.474502 -2.236277 -4.208055	C -5.802849 -2.988312 -0.535172	
C 5.227360 -1.286852 -2.285188	H -5.925323 -1.784966 -2.326399	
H 6.285932 -1.353263 -2.025665	H -5.362610 -4.180100 1.210999	
C 4.335372 -0.706439 -1.382700	H -6.883887 -3.026788 -0.386280	
H 4.704545 -0.331855 -0.427491	H -0.167414 4.900858 -2.966102	
C 2.657031 0.503482 0.973096	H 1.334185 3.831079 3.879652	
C 3.604240 1.535815 0.971390	O 1.856237 4.091869 1.232754	
H 3.782028 2.116671 0.064400	O -0.698511 4.589019 -0.326045	
C 4.308552 1.826951 2.136309	C -1.189263 5.798174 -0.872577	
H 5.048533 2.629969 2.134508	H -1.880155 5.614485 -1.711018	
C 4.063343 1.101401 3.303745	H -1.732408 6.295890 -0.059840	
H 4.613359 1.338052 4.217162	H -0.365956 6.449136 -1.210990	
C 3.119151 0.075205 3.306003	C 2.565528 5.003031 2.050142	
H 2.925302 -0.491679 4.218714	H 3.209560 5.575689 1.371426	
C 2.417030 -0.226171 2.141168	H 1.879792 5.693348 2.568992	
H 1.676875 -1.029023 2.132563	H 3.193011 4.482916 2.791526	
C -3.102302 2.557724 -0.547820	Int-2a	
H -3.159298 2.868510 0.497039	Thermal correction to U: 0.755536 a.u.	
P-1.568261 0.372966 0.354547	Thermal correction to H: 0.756480 a.u.	
P 1.738381 0.072781 -0.538638	Thermal correction to G: 0.634957 a.u.	
C 0.793784 -3.221308 -0.800057	Electronic energy: -5166.1138760 a.u.	
C -0.561461 -3.442866 -0.432664	Sum of electronic energy and ZPE : -	
5165.4063594 a.u.	H -0.571999	1.229549 -3.901238
---	-------------	---------------------
Sum of electronic energy and thermal correction	C 0.748095	2.712672 -3.093836
to U: -5165.3583401 a.u.	C 0.522341	5.000841 2.938829
Sum of electronic energy and thermal correction	H -1.587584	4.621832 3.076881
to H: -5165.3573959 a.u.	C 1.703651	3.851942 1.185357
Sum of electronic energy and thermal correction	H 0.529105	2.557474 -0.069601
to G: -5165.4789191 a.u.	C 4.806829	-1.458543 1.068316
Cartesian Coordinates:	C 5.111904	-0.853795 -0.186947
11	C 2.807074	-2.518904 -1.891318
C -3.325331 1.479456 0.029880	C 2.937837	-3.435134 -0.816395
N -2.037893 1.913825 0.157645	H 1.823423	-3.622238 1.116490
C -4.256743 2.253024 0.926502	C 0.798906	-2.029922 4.465613
C -3.592360 0.425264 -0.856523	H 0.161932	-3.183821 2.760100
Cu -0.797847 0.572402 -0.725023	C 0.941185	0.361615 4.149053
C -1.938043 2.860852 1.071803	H 0.428576	1.081608 2.180049
C -3.273225 3.124677 1.738766	C -3.729703	-3.090364 1.299019
H -4.963036 2.874278 0.347922	H -2.705169	-1.306494 1.940577
H -4.870525 1.600128 1.566649	C -2.552456	-4.483095 -0.281887
O -2.739288 -0.146807 -1.578587	H -0.589467	-3.807775 -0.869565
O -4.895533 0.040150 -0.880523	H 0.974707	0.126188 -5.292640
P-0.200633 -1.179054 0.538725	H 2.265392	1.239223 -4.746803
N 0.452465 0.384342 -2.286770	H -0.009952	2.982844 -2.336673
C -0.698500 3.496689 1.447808	C 2.124582	2.880129 -2.465289
H -3.232544 2.825611 2.802060	C 0.560731	3.623204 -4.300121
H -3.541464 4.193101 1.728925	C 1.718779	4.734358 2.270992
C -5.198480 -1.091177 -1.695856	H 0.512709	5.689732 3.787314
C 1.201164 -1.991752 -0.289152	H 2.629582	3.636567 0.646347
C 0.284495 -1.068292 2.304973	C 3.728931	-0.735557 1.656968
C -1.511386 -2.461843 0.550849	H 5.285511	-2.342952 1.485004
C 1.350227 -0.520640 -2.467311	C 4.223134	0.244180 -0.372801
C 0.440204 1.257962 -3.469709	H 5.865074	-1.193664 -0.895465
C -0.666215 4.398158 2.535973	H 3.422307	-2.477626 -2.786419
C 0.522397 3.245098 0.779038	H 3.688708	-4.218892 -0.736747
H -4.482237 -1.900286 -1.484939	C 1.076417	-0.756904 4.969987
H -5.088134 -0.821784 -2.760334	H 0.890096	-2.905789 5.111907
Fe 3.166036 -1.498214 -0.154990	H 1.140594	1.362295 4.538520
C 1.735060 -1.618467 -1.583888	C -3.682487	-4.231391 0.494344
C 1.958991 -3.116457 0.163581	H -4.613878	-2.882400 1.905757
C 0.397819 -2.187357 3.140649	H -2.509331	-5.372663 -0.914542
C 0.541451 0.205779 2.822146	H 2.932921	2.667237 -3.184560
C -2.654938 -2.206952 1.322708	H 2.263710	3.914232 -2.115162
C -1.468749 -3.603392 -0.255098	H 2.253846	2.213737 -1.599408
O 2.027381 -0.478722 -3.625498	H 1.275654	3.380349 -5.104712
C 1.448826 0.584588 -4.414089	H -0.455658	3.535874 -4.716132

H 0.722854 4.676359 -4.023457	H -4.917501	0.785203	3.053290
H 2.649861 5.208787 2.587348	P -0.556161	-1.170519	-0.831872
C 3.366462 0.316786 0.764853	C -1.556042	-0.997776	-2.357453
H 3.238538 -0.968485 2.599916	C -2.111706	-2.094380	-3.027768
H 4.178743 0.890021 -1.247672	C -1.755687	0.296445	-2.852975
H 1.387649 -0.638906 6.010312	C -2.885186	-1.892730	-4.169029
H -4.528540 -4.921767 0.472203	H -1.933238	-3.108254	-2.661756
H 2.557333 1.028206 0.914438	C -2.532357	0.492354	-3.994805
C -6.611585 -1.509161 -1.380346	H -1.292338	1.143732	-2.337439
H -7.323159 -0.695016 -1.588452	C -3.101072	-0.599678	-4.649780
H -6.893725 -2.378539 -1.993686	H -3.318995	-2.749736	-4.689155
H -6.708520 -1.789625 -0.319852	H -2.686209	1.503714	-4.378048
Int-2b	H -3.705642	-0.445504	-5.546411
Thermal correction to U: 0.756012 au	C 0.382847	-2.726030	-1.091317
Thermal correction to H: 0.756956 a u	C 1.438098	-2.692661	-2.014631
Thermal correction to G: 0.635318 a u	C 0.157505	-3.888894	-0.348423
Electronic energy: -5166 1086750 a u	C 2.242904	-3.811400	-2.202663
Sum of electronic energy and ZPE : -	H 1.637939	-1.776682	-2.577339
5165 4007121 a u	C 0.974741	-5.005950	-0.531863
Sum of electronic energy and thermal correction	H -0.654664	-3.924967	0.380589
to U: -5165 3526628 a u	C 2.014866	-4.970801	-1.458408
Sum of electronic energy and thermal correction	H 3.063733	-3.773195	-2.921972
to H: -5165 3517186 a u	H 0.793513	-5.909456	0.054816
Sum of electronic energy and thermal correction	H 2.654719	-5.844845	-1.597529
to G_{1} -5165 4733565 a u	C -0.524292	-0.613548	2.513127
Cartesian Coordinates:	C 0.788874	-0.185764	4.266280
1.1	C 1.140467	0.751155	3.099694
Fe -3 272395 -0 451849 1 136194	N 0.282006	0.254693	2.008309
C = 2.752514 = -1.855347 = 2.538731	O -0.384078	-0.897368	3.815177
C = 1.771128 = 1.620889 = 0.441881	H 2.193298	0.634719	2.795025
C = 1.607762 = -1.338863 = 1.851264	H -2.172623	1.770929	-0.209191
C -3.243967 = 1.502675 = 1.737617	H 1.568555	-0.930965	4.479279
C - 4 192389 = 0.762973 = 0.227548	Cu 0.585503	0.543200	-0.012411
C = 3.052720 = 1.418404 = 0.327904	N 2.349697	1.309750	-0.646355
H -2 934670 -1 776825 3 607809	C 2.156097	2.520233	-1.255293
H -2.530795 1.914401 2.449701	C 3.610714	0.941391	-0.692665
H -4.335170 0.514500 -1.277702	C 3.467180	3.116386	-1.697200
C -3.019521 -2.299907 0.293111	C 0.858726	3.029923	-1.310716
C -3.619672 -2.435081 1.575471	C 4.446511	1.945504	-1.461297
C -5.085501 0.446282 0.838888	C 4.111843	-0.311012	-0.165070
C -4.498450 0.904535 2.055703	H 3.458360	3.457139	-2.743441
H -3.445447 -2.629186 -0.651679	H 3.740229	3.993927	-1.083647
H -4.593965 -2.874702 1.780196	O -0.169740	2.441092	-0.864640
H -6.031421 -0.084191 0.744783	O 0.750674	4.250239	-1.892595

2975 9029 61756 4805 7439 9780 99780 99155 8048 6411 1317 4631 4631
9029 61756 4805 7439 9780 69155 8048 6411 1317 4631 8423
51756 1805 7439 9780 59155 8048 6411 1317 1631 8423
4805 7439 9780 9155 8048 6411 1317 4631 8423
7439 9780 9155 8048 6411 1317 4631 8423
9780 9155 8048 6411 1317 4631 8423
89155 8048 6411 1317 4631 8423
3048 6411 1317 4631 3423
6411 1317 1631 3423
1317 1631 3423
4631 3423
3423
2663
7339
863
)589
3408
1972
816
7529
3127
280
94
09
5177
25
9191
279
2411
355
293
665
200
716
297
070
441
647
647 1640

H 5.351502	2.247312	-0.911482
H 4.794794	1.498538	-2.410367
C 5.451529	-0.688553	-0.398589
C 3.304692	-1.205120	0.573504
C -0.565730	4.791992	-1.982077
C 5.949878	-1.902465	0.067964
H 6.108820	-0.024442	-0.963047
C 3.806466	-2.413827	1.035055
H 2.263737	-0.943328	0.774313
H -1.028829	4.812507	-0.982484
Н -1.192791	4.144626	-2.618634
C 5.133737	-2.777521	0.785101
H 6.990172	-2.168412	-0.135572
H 3.150397	-3.086395	1.593207
H 5.524627	-3.730951	1.146519
H 0.522000	0.337221	5.193466
C 0.890340	2.230734	3.424516
Н -0.147433	2.305207	3.802860
C 1.844597	2.683385	4.524635
H 2.890218	2.626652	4.177485
H 1.643393	3.728698	4.805189
H 1.761882	2.075678	5.439429
C 1.031386	3.124445	2.202625
H 2.048874	3.052222	1.783690
H 0.324016	2.859158	1.404639
H 0.858541	4.177477	2.476782
C -0.446845	6.176939	-2.564245
H 0.010813	6.146827	-3.565250
H -1.444182	6.633602	-2.655078
H 0.171379	6.822938	-1.92165