Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Table of Contents

	page
General information	2
X-ray crystallography	3
General procedure for acid chloride formation	4
Compound characterization data and procedures	4–37
Optimization experiments for the S-Ac and S-Trt strategies	38–39
¹ H and ¹³ C NMR spectra	40–83
Computational chemistry	84–105
References	106

General information

Except where stated, all reagents were purchased from commercial sources and used without further purification. Anhydrous CH₂Cl₂, toluene, THF and DMF were obtained from an Innovative Technology Inc. PureSolv[®] solvent purification system. ¹H NMR and ¹³C NMR spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer, operating at 400 MHz and 100 MHz. All spectral data was acquired at 295 K unless stated otherwise. Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peaks, $\delta_{\rm H}$ 7.26 and $\delta_{\rm c}$ 77.16 for CDCl₃ were used as a reference. Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity abbreviations used are: br s broad singlet, s singlet, d doublet, br d broad doublet, t triplet, br t broad triplet, q quartet, p pentet, dd, doublet of doublets, ddd doublet of doublet of doublets, dddd doublet of doublet of doublets, dt doublet of triplets, ddt doublet of doublet of triplets, td triplet of doublets, m multiplet. Signal assignment was achieved by analysis of DEPT, COSY, HMBC and HSQC experiments where required. Infrared (IR) spectra were recorded on a PerkinElmer UATR 2 spectrometer as a thin film dispersed from either CH₂Cl₂ or CDCl₃. Mass spectra (high-resolution) were obtained by the University of York Mass Spectrometry Service, using Electrospray Ionisation (ESI) on a Bruker Daltonics, Microtof spectrometer. Melting points were determined using Gallenkamp apparatus. Thin layer chromatography was carried out on Merck silica gel 60F₂₅₄ pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained with basic aqueous potassium permanganate. In most cases, flash column chromatography was carried out using slurry packed Fluka silica gel (SiO₂), 35–70 μ m, 60 Å, under a light positive pressure, eluting with the specified solvent system. When noted in the procedures, products were purified by using a Teledyne ISCO NextGen 300+ automated flash column chromatography unit equipped with UV–Vis (200–800 nm) and evaporative light scattering (ELS) detectors. Crude materials were loaded onto pre-packed RediSep Rf Gold columns (SiO₂: 40–60 mesh) either by direct liquid injection or dry loading from adsorbed Celite.

X-ray crystallography

Diffraction data were collected at 110 K on an Oxford Diffraction SuperNova diffractometer with Cu- K_{α} radiation (λ = 1.54184 Å) using an EOS CCD camera. The crystal was cooled with an Oxford Instruments Cryojet. Diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement was carried out with "Crysalis".¹ Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.² OLEX2³ was used for overall structure solution, refinement and preparation of computer graphics and publication data. Within OLEX2, the algorithms used for structure solution were Superflip charge-flipping⁴ (**24b**) or ShelXT dual-space⁵ (**20**_{RE} & **24I**). Refinement by full-matrix least-squares used the SHELXL-97⁶ algorithm within OLEX2.³ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions. **24b** was a non-merohedral twin modelled using Crysalis¹ with two components in the ratio 0.6144:0.3856(11). The asymmetric unit of 24 contained two molecules, one of which exhibited disorder of two of the carbons (C6 & C7). These were modelled in two positions in a refined ration of 0.901:0.099(3). The ADP of each pair of disordered atoms were constrained to be equal (C6 & C6a, C7 & C7a). CCDC 2040347 (**24b**), 1921223 (**20**_{RE}) and 2040346 (**24I**) contain the crystallographic data for these macrocyclic thiolactones, see: www.ccdc.cam.ac.uk/data_request/cif

General procedure for acid chloride formation

HO
$$\xrightarrow{O}_{n} XR \xrightarrow{(COCI)_2, DCM} \xrightarrow{O}_{n} XR$$

Oxalyl chloride (3 mmol) was added to a suspension of carboxylic acid (1 mmol) in DCM (5 mL), followed by a catalytic amount of DMF (1 drop/mmol of carboxylic acid). The resulting mixture was stirred at RT for 1 h and concentrated *in vacuo* to remove all the solvent and excess oxalyl chloride.

3-(Acetylthio)propanoic acid (28)

3-Bromopropionic acid (3.84 g, 25.1 mmol) was added to a stirring solution of potassium thioacetate (3.41 g, 29.9 mmol) in acetone (500 mL) and allowed to stir at RT for 6 h. Afterwards, all solvent was removed *in vacuo* and the residue taken up in ethyl acetate (250 mL) and water (250 mL). The organic layer was collected and the aqueous layer extracted with ethyl acetate (3 × 250 mL). The combined organics were dried over MgSO₄ and concentrated *in vacuo* to afford the *title compound* as a brown solid (3.44 g, 92%); Rf 0.43 (2:3 ethyl acetate: hexane); m.p. 49–53 °C; v_{max}/cm^{-1} (neat) 2925, 1687, 1408, 1355, 1244, 1200, 1131, 1040, 944, 804, 689, 623, 532, 488; δ_{H} (400 MHz, CDCl₃) 10.10 (1H, br s, COOH), 3.10 (2H, t, *J* = 6.9 Hz, CH₂), 2.69 (2H, t, *J* = 6.9 Hz, CH₂), 2.33 (3H, s, CH₃); δ_{C} (100 MHz, CDCl₃) 195.7 (SCO), 177.9 (COOH), 34.3 (CH₂), 30.7 (CH₃), 23.9 (CH₂); HRMS (ESI): calcd. for C₅H₈NaO₃S, 171.0086. Found: [MNa]⁺, 171.0086 (-0.1 ppm error). This procedure was adapted from a literature method.⁷

1-[3-(Acetylsulfanyl)propanoyl]azocan-2-one (23a)

A mixture of 1-aza-2-cyclooctanone **21a** (381 mg, 2.97 mmol), DMAP (103 mg, 0.840 mmol) and pyridine (1.44 mL, 17.8 mmol) in DCM (30 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride (4.49 mmol, prepared using the general procedure) in DCM (30 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then

diluted with DCM (50 mL) and washed with 10% aq. HCl (50 mL). The aqueous layer was then extracted with DCM (3 × 25 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded the *title compound* as a light orange oil (610 mg, 80%); R_f 0.43 (2:5 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 2928, 2859, 1687, 1445, 1372, 1247, 1198, 1175, 1126, 1092, 998, 893, 774, 692, 628, 594; δ_{H} (400 MHz, CDCl₃) 3.92–3.83 (2H, m, CH₂N), 3.19–3.09 (4H, m, COCH₂CH₂S and COCH₂CH₂S), 2.66–2.58 (2H, m, CH₂CON), 2.29–2.25 (3H, m, CH₃), 1.88–1.79 (2H, m, CH₂), 1.71–1.63 (2H, m, CH₂), 1.60–1.52 (2H, m, CH₂), 1.46–1.37 (2H, m, CH₂); δ_{C} (100 MHz, CDCl₃), 195.9 (COS), 178.3 (CON), 174.8 (COCH₂CH₂C), 43.5 (CH₂N), 39.9 (COCH₂CH₂S), 37.2 (CH₂CON), 30.6 (CH₃), 29.5 (CH₂), 29.1 (CH₂), 26.3 (CH₂), 24.5 (COCH₂CH₂S), 24.0 (CH₂); HRMS (ESI): calcd. for C₁₂H₁₉NNaO₃S, 280.0978. Found: [MNa]⁺, 280.0976 (0.8 ppm error).

1-Thia-5-azacyclododecane-4,12-dione (20RE)

A mixture of 1-[3-(acetylsulfanyl)propanoyl]azocan-2-one 23a (130 mg, 0.505 mmol) and piperidine (0.148 mL, 1.50 mmol) in DCM (5 mL) under an argon atmosphere was stirred at RT for 22 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×10 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the *title compound* **20**_{RE} as an off white solid (31.7 mg, 29%), along with recovered 23a (8.3 mg, 6%) and 20_{RO} (3.4 mg, 3%; for characterisation data for 20_{RO} see next page). Data for **20**_{RE}: m.p. 152–155 °C; R_f 0.28 (9:1 ethyl acetate: methanol); v_{max}/cm⁻¹ (thin film) 3294, 3096, 2924, 2856, 1688, 1638, 1562, 1456, 1434, 1352, 1263, 1244, 1219, 1183, 1144, 1105, 1071, 1035, 977, 936, 883, 858, 784, 729, 629, 566, 587; All ¹H signals are broadened due to rotamer interconversion. δ_H (400 MHz, CDCl₃) 5.71 (1H, br s, NH), 3.42–3.10 (3H, m, 1.5 × CH₂), 2.85–2.32 (5H, m, $2.5 \times CH_2$), 1.67-1.56 (1H, m, $0.5 \times CH_2$), 1.56-1.28 (7H, m, $3.5 \times CH_2$); δ_C (100 MHz, CDCl₃) 200.5 (SCO), 169.9 (CO), 43.5 (CH₂COS), 38.4 (CH₂NH), 37.7 (CH₂), 27.6 (CH₂), 26.2 (CH₂), 24.1 (CH₂), 23.5 (CH₂), 22.3 (CH₂); HRMS (ESI): calcd. for C₁₀H₁₈NO₂S, 216.1053. Found: [MH]⁺, 216.1051 (0.6 ppm error). For X-ray crystallographic data, see CCDC 1921223.

The same product **20**_{RE} was also prepared using the S-Fm strategy, using the following procedure:

A mixture of 1-aza-2-cyclooctanone (63.7 mg, 0.501 mmol), DMAP (7.5 mg, 0.062 mmol) and pyridine (0.240 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **34** (1.50 mmol, prepared from **S1** using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was complete at this stage. The crude material was then redissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 14 h, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded the *title compound* as a yellow crystalline solid (16.2 mg, 15%).

1-(3-Mercaptopropanoyl)azocan-2-one (20_{RO})

Data for **20**_{R0} (for synthesis see above): colorless oil; R_f 0.74 (9:1 ethyl acetate: methanol); v_{max}/cm^{-1} (thin film) 2925, 2857, 1685, 1445, 1370, 1339, 1285, 1258, 1197, 1174, 1125, 1091, 1018, 867, 799, 686, 591, 504; δ_{H} (400 MHz, CDCl₃) 3.94–3.88 (2H, m, CH₂N), 3.20 (2H, t, *J* = 6.6 Hz, CH₂CH₂SH), 2.79 (2H, dt, *J* = 8.5, 6.6 Hz, CH₂CH₂SH), 2.67–2.61 (2H, m, CH₂CON), 1.90–1.82 (2H, m, CH₂), 1.74–1.66 (2H, m, CH₂), 1.63 (1H, t, *J* = 8.5 Hz, CH₂SH), 1.61–1.55 (2H, m, CH₂), 1.48–1.40 (2H, m, CH₂); δ_{C} (100 MHz, CDCl₃) 178.4 (CON), 174.8 (COCH₂CH₂), 43.8 (COCH₂CH₂S), 43.5 (CH₂N), 37.2 (CH₂CON), 29.6 (CH₂), 29.2 (CH₂), 26.3 (CH₂), 24.1 (CH₂), 20.1 (CH₂SH); HRMS (ESI): calcd. for C₁₀H₁₇NNaO₂S, 238.0872. Found: [MNa]⁺, 238.0869 (1.3 ppm error).

1-[3-(Acetylsulfanyl)propanoyl]-1-azacyclotridecan-2-one (23b)

A mixture of laurolactam **21b** (592 mg, 3.00 mmol), DMAP (57.4 mg, 0.473 mmol) and pyridine (1.45 mL, 18.0 mmol) in DCM (50 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride (4.49 mmol, 1.50 eqv. prepared using the general procedure) in DCM (10 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (50 mL) and washed with 10% aq. HCl (50 mL). The aqueous layer was then extracted with DCM (3 × 25 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded the *title compound* as a colorless oil (323 mg, 33%); Rf 0.53 (2:3 ethyl acetate: hexane); v_{max}/cm^{-1} (thin film) 2930, 2861, 1690, 1364, 1180, 1133, 1047, 952, 626; δ_{H} (400 MHz, CDCl₃) 3.67 – 3.53 (2H, m, CH₂N), 3.14 – 2.95 (4H, m, COCH₂CH₂S and COCH₂CH₂S), 2.61 – 2.45 (2H, m, CH₂CON), 2.24 – 2.22 (3H, m, CH₃), 1.84 – 1.62 (2H, m, CH₂), 1.58 (2H, p, *J* = 6.6 Hz, CH₂), 1.44 – 1.18 (14H, m, CH₂); δ_{C} (100 MHz, CDzCl₃), 195.7 (COS), 176.5 (CON), 174.4 (COCH₂CH₂), 43.0 (CH₂N), 39.0 (COCH₂CH₂S), 35.9 (CH₂CON), 30.4 (CH₃), 25.8 (CH₂), 25.7 (CH₂), 25.6 (CH₂), 24.9 (CH₂), 24.5 (COCH₂CH₂S), 24.5 (CH₂), 24.4 (CH₂), 24.0 (CH₂), 23.8 (CH₂), 23.7 (CH₂); HRMS (ESI): calcd. for C₁₇H₂₉NNaO₃S, 350.1760. Found: [MNa]⁺, 350.1760 (0.1 pm error).

Methyl 7-(3-sulfanylpropanamido)heptanoate (25) and methyl 7-[3-({2-[(7-methoxy-7oxoheptyl)carbamoyl]ethyl}disulfanyl)propanamido]heptanoate (26)

1-[3-(Acetylsulfanyl)propanoyl]azocan-2-one **21a** (25.7 mg, 0.100 mmol) was dissolved in MeOH (1 mL) and sparged for 5 min with argon to remove oxygen. To this stirring solution was added NaOH (4N aq., 0.03 mL, 1.2 eqv.) and the solution was stirred for 2 hours at RT. The reaction mixture was then acidified with HCl (10% aq.) to pH 1 and diluted with ethyl acetate (3 mL) and water (5 mL). This was then extracted with ethyl acetate (3 × 5 mL) and the organics washed with NaHCO₃. and sat. NaCl. The mixture was dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate:

hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded crude thiol **25** (containing 8% disulfide **26** in ¹H NMR) as an off white solid (4.7 mg, 19%) and disulfide **26** (as a 4.6:1 mixture of rotamers) as light yellow oil (4.0 mg, 16%);

Data for **25**: R_f 0.49 (9:1 ethyl acetate: methanol); δ_{H} (400 MHz, CDCl₃), 5.56 (1H, br s, NH), 3.65 (3H, s, CH₃), 3.25 (2H, q, *J* = 6.8 Hz, CH₂N), 2.80 (2H, dt, *J* = 8.2, 6.7 Hz, CH₂SH), 2.46 (2H, t, *J* = 6.7 Hz, CH₂CON), 2.29 (2H, t, *J* = 7.5 Hz, CH₂CO₂CH₃), 1.65 – 1.56 (3H, m, CH₂ and SH), 1.55 – 1.45 (2H, m, CH₂), 1.37 – 1.27 (4H, m, CH₂); δ_{C} (100 MHz, CDCl₃), 174.3 (CO₂CH₃), 170.7 (CON), 51.6 (CH₃), 40.6 (CH₂CON), 39.6 (CH₂N), 34.0 (CH₂CO₂CH₃), 29.5 (CH₂), 28.8 (CH₂), 26.6 (CH₂), 24.8 (CH₂), 20.6 (CH₂SH); HRMS (ESI): calcd. for C₁₁H₂₁NNaO₃S, 270.1134. Found: [MNa]⁺, 270.1134 (0.0 ppm error).

Data for **26**: R_f 0.39 (9:1 ethyl acetate: methanol); v_{max}/cm^{-1} (thin film) 3307, 2927, 2853, 1735, 1636, 1546, 1438, 1416, 1365, 1260, 1196, 1018, 800, 726; δ_{H} (400 MHz, CDCl₃) 5.98 (4H, br m, NH, both), 3.65 (12H, s, CH₃, both rotamers), 3.24 (8H, td, *J* = 7.1, 5.8 Hz, CH₂N, both rotamers), 3.15 (4H, t, *J* = 7.0 Hz, CH₂S, minor), 2.97 (4H, dt, *J* = 6.9 Hz, CH₂S, major), 2.64 (4H, t, *J* = 7.0 Hz, CH₂CON, minor), 2.55 (4H, t, *J* = 6.9 Hz, CH₂CON, major), 2.29 (8H, t, *J* = 7.5 Hz, CH₂CO₂CH₃, both rotamers), 1.67 – 1.56 (8H, m, CH₂), 1.55 – 1.46 (8H, m, CH₂), 1.38 – 1.27 (16H, m, CH₂); Only one rotamer was clearly observable by ¹³C NMR: δ_{C} (100 MHz, CDCl₃), 174.3 (CO₂CH₃), 171.0 (CON), 51.6 (CH₃), 39.6 (CH₂N), 35.9 (CH₂CON), 34.4 (CH₂S), 34.0 (CH₂CO₂CH₃), 29.4 (CH₂), 28.8 (CH₂), 26.6 (CH₂), 24.8 (CH₂); HRMS (ESI): calcd. for C₂₂H₄₀N₂NaO₆S₂, 515.2220. Found: [MNa]⁺, 515.2224 (-0.8 ppm error).

1-[3-(Tritylthio)propanoyl]-1-azacyclotridecan-2-one (31b)

Oxalyl chloride (1.14 mL, 13.3 mmol) was added to a suspension of 3-(tritylthio)propanoic acid (1.57 g, 4.51 mmol) in toluene (45 mL), followed by a catalytic amount of DMF (4 drops). The resulting mixture was stirred at RT for 1 h and concentrated *in vacuo* to remove all solvent and excess oxalyl chloride. The resulting 3-(tritylthio)propanoyl chloride **30** was added to a pre-stirred mixture of laurolactam **21b** (577 mg, 2.92 mmol), DMAP (49.0 mg, 0.401 mmol) and pyridine (1.44 mL, 17.9 mmol) in DCM (50 mL) under an argon atmosphere. The reaction mixture was then heated to 50 °C and stirred for 18 hours. The mixture was then cooled, diluted with DCM (30 mL) and washed with 10% aq. HCl (90 mL). The aqueous layer was then extracted with DCM (3 × 30 mL) and the combined

organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane) afforded the *title compound* as a clear viscous oil (1.21 g, 78%)*; R_f 0.74 (1:9 methanol: ethyl acetate); v_{max}/cm⁻¹ (thin film) 2929, 2859, 1691, 1595, 1489, 1445, 1364, 1229, 1180, 1132, 1099, 1034, 909, 737, 699, 676, 620; δ_{H} (400 MHz, CDCl₃) 7.46 – 7.40 (5H, m, ArH), 7.34 – 7.18 (10H, m, ArH), 3.65 – 3.56 (2H, m, CH₂N), 2.70 (2H, t, *J* = 6.9 Hz, COCH₂CH₂S), 2.61 – 2.49 (2H, m, CH₂CON [overlapping]), 2.53 (2H, t, *J* = 6.9 Hz, COCH₂CH₂S [overlapping]), 1.75 (2H, p, *J* = 6.9 Hz, CH₂), 1.65 – 1.56 (2H, m, CH₂), 1.48 – 1.25 (14H, m, CH₂); δ_{C} (100 MHz, CDCl₃), 176.8 (CON), 174.8 (COCH₂CH₂), 144.9 (3 × ArC), 129.8 (6 × ArCH), 128.0 (6 × ArCH), 126.7 (3 × ArCH), 66.9 (CPh₃), 43.1 (CH₂N), 38.2 (CH₂CON), 36.3 (COCH₂CH₂S), 27.3 (COCH₂CH₂S), 26.0 (CH₂), 25.9 (CH₂), 25.7 (CH₂), 25.1 (CH₂), 24.9 (CH₂), 24.7 (CH₂), 24.2 (CH₂), 24.1 (CH₂), 23.9 (CH₂); HRMS (ESI): calcd. for C₃₄H₄₁NNaO₂S, 550.2750. Found: [MNa]⁺, 550.2753 (-0.5 ppm error).

*The purified product also contains traces of triphenylmethanol that we were unable to remove completely, although the purity of **31b** was sufficient for the product to be used in subsequent steps. Characteristic NMR data for triphenylmethanol can be seen at: δ_c (100 MHz, CDCl₃), 147.0 (Ar**C**), 128.04 (Ar**C**H), 127.37 (Ar**C**H), 81.9 (Ph₃**C**OH).

1-(3-Mercaptopropanoyl)azacyclotridecan-2-one (32)

To a solution of 1-(3-(tritylthio)propanoyl)azacyclotridecan-2-one **31b** (1.02 g, 1.94 mmol) in DCM (10 mL) under an argon atmosphere was added TFA (1.20 mL, 15.7 mmol) and the solution stirred for 3 min. Next, triisopropylsilane (0.550 mL, 2.69 mmol) was added and the solution stirred for a further 30 min. The mixture was then diluted with DCM (5 mL) and washed with water (20 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the *title compound* as a yellow oil (268 mg, 48%), along with a small amount of compound **33** (38.0 mg, 7%; data for **33** is given below). Data for **32**: R_f 0.64 (1:1 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 2928, 2860, 1689, 1463, 1445, 1365, 1247, 1230, 1179, 1132, 1121, 1099, 1047, 762, 716, 605; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.63–3.56 (2H, m, CH₂N), 3.03 (2H, t, *J* = 6.6 Hz, COCH₂CH₂SH), 2.53–2.47 (2H, m, CH₂CON), 1.73–1.64 (2H, m, CH₂), 1.63–

1.54 (2H, m, CH₂ [overlapping]), 1.58 (1H, t, J = 8.4 Hz, SH [overlapping]), 1.41–1.15 (14H, m, CH₂); δ_{C} (100 MHz, CDCl₃), 176.5 (CON), 174.3 (COCH₂CH₂), 42.9 (2 × CH₂ (CH₂N and COCH₂CH₂S)), 35.8 (CH₂CON), 25.8 (CH₂), 25.6 (CH₂), 25.5 (CH₂), 24.8 (CH₂), 24.5 (CH₂), 24.4 (CH₂), 24.0 (CH₂), 23.8 (CH₂), 23.6 (CH₂), 19.8 (COCH₂CH₂SH); HRMS (ESI): calcd. for C₁₅H₂₇NNaO₂S, 308.1655. Found: [MNa]⁺, 308.1646 (2.7 ppm error).

(E)-6,7,8,9,10,11,12,13,14,15-Decahydro-2H-[1,3]thiazino[3,2-a][1]azacyclotridecin-4(3H)-one (33)

Data for **33** (for synthesis see above): off white pasty solid; $R_f 0.55$ (ethyl acetate); v_{max}/cm^{-1} (thin film) 3317, 2927, 2856, 1651, 1549, 1443, 1355, 1258, 1117, 1028, 918, 733, 702, 605; δ_H (400 MHz, CDCl₃), 5.47 (1H, t, *J* = 7.8 Hz, CHCH₂), 3.82–3.74 (2H, m, CH₂N), 3.01–2.96 (2H, m, COCH₂CH₂S), 2.71–2.65 (2H, m, COCH₂CH₂S), 2.22–2.15 (2H, m, CHCH₂), 1.69–1.58 (2H, m, CH₂), 1.54–1.45 (2H, m, CH₂), 1.38–1.24 (12H, m, 6 × CH₂); δ_C (100 MHz, CDCl₃), 169.8 (CON), 133.0 (C quat), 121.1 (CHCH₂), 46.2 (CH₂N), 35.5 (COCH₂CH₂S), 28.7 (CHCH₂), 27.4 (CH₂), 27.2 (CH₂), 25.6 (CH₂), 25.5 (CH₂), 25.3 (CH₂), 25.1 (CH₂), 24.80 (CH₂), 24.75 (COCH₂CH₂S), 24.1 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₅NNaOS, 290.1549. Found: [MNa]⁺, 290.1546 (1.1 ppm error).

1-Thia-5-azacycloheptadecane-4,17-dione (24b)

To a solution of 1-(3-(tritylthio)propanoyl)azacyclotridecan-2-one **31b** (1.02 g, 1.93 mmol) in DCM (20 mL) under an argon atmosphere was added TFA (1.95 mL, 25.5 mmol) and the solution stirred for 3 min. Next, triisopropylsilane (0.44 mL, 2.15 mmol) was added and the solution stirred for a further 30 min. The solvent and TFA were removed *in vacuo*. The crude material was then re-dissolved in DCM (20 mL) and DBU (2.87 mL, 19.3 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed *in vacuo*. The reaction mixture was then diluted with DCM (20 mL) and washed with 10% aq. HCl (50 mL). The aqueous layer was then extracted with DCM (3 × 50 mL) and the

combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a white crystalline solid (307 mg, 56%), along with a small amount of laurolactam **21b** (13.3 mg, 4%). Data for **24b**: m.p. 88–95°C; R_f 0.17 (1:1 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 3299, 2927, 2856, 1684, 1647, 1555, 1459, 1355, 1261, 1203, 1026, 717; δ_{H} (400 MHz, CDCl₃) 5.88 (1H, br s, NH), 3.31–3.23 (2H, m, CH₂NH), 3.17–3.09 (2H, m, CH₂SCO), 2.55–2.47 (4H, m, COCH₂CH₂S and CH₂COS), 1.64 (2H, apparent pentet, *J* = 7.0 Hz, CH₂), 1.51–1.40 (2H, m, CH₂), 1.37–1.18 (14H, m, 7 × CH₂); δ_{C} (100 MHz, CDCl₃): 201.1 (SCO), 171.0 (CO), 43.7 (CH₂COS), 39.4 (CH₂NH), 36.1 (COCH₂CH₂S), 28.8 (CH₂), 27.5 (CH₂), 27.40 (CH₂), 27.3 (CH₂), 27.2 (CH₂), 26.4 (CH₂), 25.4 (CH₂), 25.1 (CH₂), 25.0 (CH₂); HRMS (ESI): calcd. for C₁₅H₂₇NNaO₂S, 308.1655. Found: [MNa]⁺, 308.1646 (2.9 ppm error). For X-ray crystallographic data see CCDC 2040347.

The same product **24b** was also prepared using the S-Fm strategy- see compound **37** on pages 12 and 13.

3-(((9H-Fluoren-9-yl)methyl)thio)propanoic acid (S1)

Tosyl chloride (19.6 g, 100 mmol) in anhydrous pyridine (16.1 mL) was added slowly to a solution of 9fluorenylmethanol (19.6 g, 100 mmol) in CHCl₃ (100 mL) at 0 °C. After stirring for 2 h, the solution was washed with 10% aq. NaHCO₃ (2 × 25 mL), and brine (2 × 25 mL) and dried over anhydrous MgSO₄. After filtration, the solvent was removed *in vacuo*. The product was recrystallized by dissolving in CHCl₃ and adding hexane until loss of transparency in the solution was starting to become apparent. At this point, the mixture was left to stand at room temperature overnight to crystallize. The crystals were filtered by vacuum filtration to yield fluorenylmethyl *p*-toluenesulfonate (26.8 g, 76%); δ_{H} (400 MHz, CDCl₃) 7.78–7.69 (4H, m, ArH), 7.53 (2H, dt, *J* = 7.5, 1.0 Hz, ArH), 7.68 (2H, td, *J* = 7.5, 1.0 Hz, ArH), 7.32–7.23 (4H, m, ArH), 4.28–4.18 (3H, m, CH and CH₂), 2.41 (3H, s, CH₃); δ_{C} (100 MHz, CDCl₃) 145.0 (ArC), 142.6 (2 × ArC), 141.3 (2 × ArC), 132.8 (ArC), 130.0 (2 × ArCH), 128.2 (2 × ArCH), 128.0 (2 × ArCH), 127.3 (2 × ArCH), 125.3 (2 × ArCH), 120.2 (2 × ArCH), 72.0 (CH₂), 46.8 (CH), 21.8 (CH₃).⁸

To a solution of 3-thiopropionic acid (2.48 mL, 28.5 mmol) and fluorenyl methanol *p*-toluenesulfonate (9.99 g, 28.5 mmol) in DMF (50 mL) was added 1 Pr₂NEt (9.93 mL, 57.0 mmol). The reaction was stirred

at room temperature for 16 h and DMF was removed under reduced pressure (high vacuum). The residue was dissolved in ethyl acetate (300 mL), washed with 0.2N aq. HCl (5 × 100 mL), sat. aq. NaHCO₃ (2 × 100 mL), water (100 mL), brine (100 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude material was then suspended in chloroform and filtered to remove insoluble material (2 × 150 mL). The combined chloroform fractions were then concentrated and the solvent removed *in vacuo* to afford the *title compound* S1 as a yellow solid (3.85 g, 48%); R_f 0.27 (ethyl acetate); m.p. 91–95 °C; v_{max}/cm⁻¹ (thin film) 3039, 2912, 1706, 1477, 1448, 1263, 1197, 940, 739, 621; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.76 (2H, dt, *J* = 7.6, 1.0 Hz, ArH), 7.68 (2H, dq, *J* = 7.5, 1.0 Hz, ArH), 7.40 (2H, tt, *J* = 7.6, 1.0 Hz, ArH), 7.32 (2H, td, *J* = 7.5, 1.0 Hz, ArH), 4.12 (1H, t, *J* = 6.4 Hz, SCH₂CH), 3.11 (2H, d, *J* = 6.4 Hz, SCH₂CH), 2.80 (2H, t, *J* = 7.3 Hz, CH₂CH₂S), 2.63 (2H, t, *J* = 7.3 Hz, CH₂CH₂S); $\delta_{\rm C}$ (100 MHz, CDCl₃) 177.6 (COOH), 146.0 (2 × ArC), 141.2 (2 × ArC), 127.8 (2 × ArCH), 127.2 (2 × ArCH), 124.9 (2 × ArCH), 120.1 (2 × ArCH), 47.0 (SCH₂CH), 36.9 (SCH₂CH), 34.7 (CH₂CH₂S), 27.9 (CH₂CH₂S); HRMS (ESI): calcd. for C₁₇H₁₆NaO₂S, 307.0763. Found: [MNa]⁺, 307.0763 (0.2 ppm error). The synthetic procedure was adapted from a literature report.⁹

1,1'-(3,3'-Thiobis(propanoyl))bis(azacyclotridecan-2-one) (37)

A mixture of laurolactam (98.1 mg, 0.497 mmol), DMAP (7.4 mg, 0.061 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (10 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **34** (1.66 mmol, prepared from **S1** using the general procedure) in DCM (5 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (3 × 30 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was incomplete at this stage, therefore, an additional acylation reaction was performed. Thus, the reaction mixture was dissolved in DCM (15 mL) and to it was added DMAP (11.8 mg, 0.097 mmol) and pyridine (0.240 mL, 3.00 mmol). Then, another solution of acid chloride **34** (1.70 mmol, prepared from **S1** using the general procedure) in DCM (15 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (30 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed

by stirring at RT for 18 h, before the solvent was removed *in vacuo*. The crude product was dry loaded onto Celite and purified by automated flash column chromatography (using a 24 g pre-packed SiO₂ column, 0% → 100% ethyl acetate in hexanes) affording 17-membered ring thiolactone **24b** (76.7 mg, 54%; for data see pages 10 and 11) and the *title compound* **37** as a yellow crystalline solid (40.0 mg, 30%). Data for **37**: m.p. 53–59 °C; R_f 0.73 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 2928, 2860, 1689, 1463, 1446, 1363, 1243, 1179, 1121, 1099, 1047, 916, 732, 647; δ_{H} (400 MHz, CDCl₃) 3.70–3.62 (4H, m, CH₂N), 3.08 (4H, t, *J* = 7.2 Hz, CH₂), 2.83 (4H, t, *J* = 7.2 Hz, CH₂), 2.60–2.53 (4H, m, CH₂CON), 1.80–1.71 (4H, m, CH₂), 1.70–1.60 (4H, m, CH₂), 1.50–1.22 (28H, m, CH₂); δ_{C} (100 MHz, CDCl₃), 176.9 (2 × CON), 174.9 (2 × COCH₂CH₂), 43.2 (2 × CH₂N), 39.4 (2 × CH₂), 36.1 (2 × CH₂CON), 27.6 (2 × CH₂), 26.0 (2 × CH₂), 25.8 (2 × CH₂), 25.7 (2 × CH₂), 25.0 (2 × CH₂), 24.6 (4 × CH₂), 24.2 (2 × CH₂), 24.0 (2 × CH₂), 23.8 (2 × CH₂); HRMS (ESI): calcd. for C₃₀H₅₂N₂NaO₄S, 559.3540. Found: [MNa]⁺, 559.3543 (–0.5 ppm error).

1-(3-(((9H-Fluoren-9-yl)methyl)thio)propanoyl)azacyclotridecan-2-one (35b)

A mixture of laurolactam (198 mg, 1.00 mmol), DMAP (14.4 mg, 0.118 mmol) and pyridine (0.48 mL, 5.99 mmol) in DCM (10 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 34 (1.50 mmol, prepared from S1 using the general procedure) in DCM (10 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:3 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 3:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a yellow-white solid (380 mg, 82%); R_f 0.31 (1:4 ethyl acetate: hexane); m.p. 79–85 °C; v_{max}/cm⁻¹ (thin film) 2930, 2851, 1689, 1447, 1364, 1244, 1179, 1121, 907, 726, 647, 621, 580; δ_H (400 MHz, CDCl₃) 7.75 (2H, dt, J = 7.6, 1.0 Hz, ArH), 7.68 (2H, dq, J = 7.4, 1.0 Hz, ArH), 7.40 (2H, tt, J = 7.6, 1.0 Hz, ArH), 7.32 (2H, td, J = 7.4, 1.0 Hz, ArH), 4.12 (1H, t, J = 6.6 Hz, SCH₂CH), 3.70-3.62 (2H, m, CH₂N), 3.12-3.06 (4H, m, COCH₂CH₂S and SCH₂CH), 2.89 (4H, t, *J* = 7.1 Hz, COCH₂CH₂S), 2.60–2.52 (2H, m, CH₂CON), 1.82–1.73 $(2H, m, CH_2)$, 1.70–1.61 $(2H, m, CH_2)$, 1.50–1.24 $(14H, m, 7 \times CH_2)$; δ_C $(100 \text{ MHz}, CDCl_3)$ 176.8 (CON), 174.8 (COCH₂CH₂), 146.2 (2 × ArC), 141.1 (2 × ArC), 127.6 (2 × ArCH), 127.1 (2 × ArCH), 125.0 (2 × ArCH), 119.9 (2 × ArCH), 47.0 (SCH₂CH), 43.1 (CH₂N), 39.4 (COCH₂CH₂S), 37.0 (SCH₂CH), 36.0 (CH₂CON), 28.4 (COCH₂CH₂S), 25.9 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 24.9 (CH₂), 24.6 (CH₂), 24.5 (CH₂), 24.2 (CH₂), 24.0 (CH₂), 23.7 (CH₂); HRMS (ESI): calcd. for C₂₉H₃₈NO₂S, 464.2618. Found: [MH]⁺, 464.2617 (0.2 ppm error).

1-Thia-5-azacyclohexadecane-4,16-dione (24c)

A mixture of azacyclododecan-2-one¹⁰ (27.5 mg, 0.150 mmol), DMAP (1.8 mg, 0.015 mmol) and pyridine (73 μL, 0.90 mmol) in DCM (1 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 34 (0.469 mmol, prepared from S1 using the general procedure) in DCM (2 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (5 mL) and washed with 10% aq. HCl (5 mL). The aqueous layer was then extracted with DCM (3 × 5 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. The mixture was then re-dissolved in DCM (3 mL) and DBU (0.22 mL, 1.50 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed under a flow of nitrogen gas. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a yellow crystalline solid (15.2 mg, 37%); m.p. 76–83 °C; R_f 0.38 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3302, 2927, 2856, 1682, 1647, 1552, 1448, 1373, 1259, 1161, 1019, 733, 585; δ_H (400 MHz, CDCl₃) 5.53 (1H, br s, NH), 3.33–3.26 (2H, m, CH₂NH), 3.21–3.13 (2H, m, CH₂SCO), 2.58–2.53 (2H, m, CH₂COS), 2.52–2.47 (2H, m, COCH₂CH₂S), 1.74–1.66 (2H, m, CH₂), 1.54–1.46 (2H, m, CH₂), 1.36–1.27 (2H, m, 6 × CH₂); δ_C (100 MHz, CDCl₃) 200.8 (S**C**O), 170.6 (**C**O), 43.0 (CH₂COS), 39.3 (CH₂NH), 36.2 (COCH₂CH₂S), 28.6 (CH₂), 27.4 (CH₂), 26.81 (CH₂), 26.79 (CH₂), 26.71 (CH₂), 26.4 (CH₂), 25.3 (CH₂), 25.2 (CH₂), 25.0 (CH₂); HRMS (ESI): calcd. for C₁₄H₂₅NNaO₂S, 294.1498. Found: [MNa]⁺, 294.1499 (-0.4 ppm error).

1-Thia-5-azacyclopentadecane-4,15-dione (24d)

A mixture of azacycloundecan-2-one¹⁰ (86.7 mg, 0.512 mmol), DMAP (6.8 mg, 0.056 mmol) and pyridine (0.240 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **34** (1.51 mmol, prepared from **S1** using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture

was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded the *title compound* as a yellow crystalline solid (40.8 mg, 31%); m.p. 102–104 °C; R_f 0.34 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3299, 3089, 2928, 2856, 1680, 1646, 1552, 1442, 1398, 1355, 1258, 1202, 1140, 1008, 960, 919, 732, 583; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.53 (1H, br s, NH), 3.33–3.26 (2H, m, CH₂NH), 3.17–3.12 (2H, m, CH₂SCO), 2.58–2.51 (4H, m, CH₂COS and COCH₂CH₂S), 1.73–1.64 (2H, m, CH₂), 1.56–1.48 (2H, m, CH₂), 1.42–1.22 (10H, m, 5 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 201.3 (SCO), 170.6 (CO), 43.1 (CH₂COS), 38.7 (CH₂NH), 35.3 (COCH₂CH₂S), 28.3 (CH₂), 27.3 (CH₂), 26.5 (CH₂), 26.42 (CH₂), 26.39 (CH₂), 26.0 (CH₂), 25.5 (CH₂), 24.3 (CH₂); HRMS (ESI): calcd. for C₁₃H₂₃NNaO₂S, 280.1342. Found: [MNa]⁺, 280.1344 (–0.9 ppm error).

1-Thia-5-azacyclotetradecane-4,14-dione (24e)

A mixture of azacyclodecan-2-one¹⁰ (77.6 mg, 0.500 mmol), DMAP (6.4 mg, 0.052 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **34** (1.51 mmol, prepared from **S1** using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was complete at this stage. The crude material was then redissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded the *title compound* as a yellow crystalline solid (26.7 mg, 22%); m.p. 55–61 °C; R_f 0.31 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3304, 2929, 2858, 1679, 1649, 1551, 1444, 1376, 1258, 1168, 1043, 920, 731, 595; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.69 (1H, br s, NH), 3.30–3.24 (2H, m, CH₂NH), 3.20–3.14 (2H, m,

CH₂SCO), 2.58–2.52 (4H, m, 2 × CH₂ (CH₂COS and COCH₂CH₂S), 1.77–1.59 (4H, m, 2 × CH₂), 1.47–1.31 (8H, m, 4 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 201.4 (SCO), 170.6 (CO), 43.9 (CH₂COS), 39.1 (CH₂NH), 35.5 (COCH₂CH₂S), 28.0 (CH₂), 25.7 (CH₂), 25.45 (CH₂), 25.36 (CH₂), 25.29 (CH₂), 25.26 (CH₂), 23.2 (CH₂); HRMS (ESI): calcd. for C₁₂H₂₂NO₂S, 244.1366. Found: [MH]⁺, 244.1362 (1.4 ppm error).

1-Thia-5-azacyclotridecane-4,13-dione (24f)

A mixture of azonan-2-one¹⁰ (87.1 mg, 0.617 mmol), DMAP (8.5 mg, 0.070 mmol) and pyridine (0.240 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **34** (1.51 mmol, prepared from **S1** using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was complete at this stage. The crude material was then redissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a yellow crystalline solid (66.9 mg, 47%); m.p. 129–131 °C; R_f 0.19 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3243, 3080, 2924, 2857, 1678, 1634, 1562, 1459, 1434, 1412, 1360, 1286, 1269, 1204, 1174, 1151, 1123, 1042, 1018, 983, 960, 901, 853, 802, 771, 731, 690, 622, 604, 464; δ_H (400 MHz, CDCl₃) 5.93 (1H, br s, NH), 3.27–3.20 (2H, m, CH₂NH), 3.19–3.13 (2H, m, CH₂SCO), 2.65–2.56 (2H, m, COCH₂CH₂S), 2.54–2.45 (2H, m, CH₂COS), 1.78–1.67 (2H, m, CH₂), 1.55– 1.47 (2H, m, CH₂), 1.39 (2H, apparent p, J = 6.5 Hz, CH₂), 1.34–1.25 (4H, m, 2 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 201.6 (SCO), 170.3 (CO), 44.3 (CH₂COS), 39.6 (CH₂NH), 35.6 (COCH₂CH₂S), 27.9 (CH₂), 27.4 (2 × CH₂), 25.5 (CH₂), 25.1 (CH₂), 24.5 (CH₂); HRMS (ESI): calcd. for C₁₁H₂₀NO₂S, 230.1209. Found: [MH]⁺, 230.1209 (0.1 ppm error).

3-(((9H-Fluoren-9-yl)methyl)thio)-2-methylpropanoic acid (S2)

A solution of thiourea (2.65 g, 34.5 mmol), water (5 mL), and concentrated aq. HCl (37%, 3.16 mL) was stirred at 45 °C for 30 min. To this was added methacrylic acid (2.50 g, 2.46 mL) dropwise over 30 min and the temperature was then raised to 90 °C for 2 h with stirring. An aqueous solution of NaOH (4.03 g in 5 mL H₂O) was prepared and added dropwise over 30 min. The reaction mixture was stirred for 30 min and allowed to cool to RT. Concentrated HCl was added to adjust the pH to 5–6 and the reaction mixture extracted using ethyl acetate (3 × 10 mL). The combined organic fractions were collected and the solvent removed in vacuo to afford 3-mercapto-2-methylpropanoic acid as a yellow oil which was used without further purification (559 mg, 16%). [Data for 3-mercapto-2-methylpropanoic acid: Rf 0.47 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 2976, 2936, 1701, 1622, 1461, 1412, 1236, 1185, 1118, 1075, 918, 831, 620, 525; δ_H (400 MHz, CDCl₃) 12.04 (1H, s, COOH), 2.81–2.56 (3H, m, CH and CH₂), 1.55 (1H, t, J = 8.5 Hz, SH), 1.25 (3H, d, J = 6.8 Hz, CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 181.5 (COOH), 43.5 (CH), 27.5 (CH₂), 16.3 (**C**H₃); HRMS (ESI): calcd. for C₄H₇O₂S, 119.0172 Found: [M-H]⁻, 119.0170 (1.6 ppm error)]. To a solution of 3-mercapto-2-methylpropanoic acid (457 mg, 3.81 mmol) and fluorenyl methanol ptoluenesulfonate (1.41 g, 4.02 mmol- see S1 for its preparation) in DMF (7 mL) was added ⁱPr₂NEt (1.39 mL, 8.00 mmol). The reaction was stirred at room temperature for 25 h. The reaction mixture was dissolved in ethyl acetate (40 mL), washed with 0.2N aq. HCl (5 × 15 mL), sat. aq. NaHCO₃ (2 × 15 mL), water (15 mL), brine (15 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude material was then suspended in chloroform and filtered to remove insoluble material (2 × 10 mL). The combined chloroform fractions were concentrated and solvent removed in vacuo to afford the title compound S2 as an orange solid (637 mg, 56%); Rf 0.40 (ethyl acetate); m.p. 59–70 °C; v_{max}/cm⁻¹ (thin film) 2933, 1704, 1610, 1477, 1448, 1294, 1232, 1101, 1006, 919, 765, 734, 621; δ_H (400 MHz, CDCl₃) 7.81–7.61 (4H, m, ArH), 7.44–7.27 (4H, m, ArH), 4.10 (1H, t, J = 6.5 Hz, SCH₂CH), 3.14–3.02 (2H, m, SCH₂CH), 2.89 (1H, dd, J = 12.8, 6.8 Hz, CH(CH₃)CHH'), 2.69 (1H, apparent sextet, J = 6.9 Hz, CH(CH₃)CHH'), 2.60 (1H, dd, J = 12.8, 6.8 Hz, CH(CH₃)CHH'), 1.25 (3H, d, J = 6.9 Hz, CH₃); δ_c (100 MHz, CDCl₃) 181.1 (COOH), 146.1 (2 × ArC), 141.1 (2 × ArC), 127.7 (2 × ArCH), 127.1 (2 × ArCH), 125.0 (ArCH), 124.9 (ArCH), 120.0 (2 × ArCH), 47.0 (SCH₂CH), 40.2 ((CH(CH₃)CH₂),), 37.2 (SCH₂CH), 36.3 (CH(CH₃)CH₂), 16.7 (CH₃); HRMS (ESI): calcd. for C₁₈H₁₈NaO₂S, 321.0920. Found:

[MNa]⁺, 321.0917 (1.0 ppm error). The synthetic procedure was adapted from a method reported in a patent.^{11a}

3-(((9H-Fluoren-9-yl)methyl)thio)-butanoic acid (S3)

A solution of thiourea (1.75 g, 23.0 mmol), water (25 mL), and concentrated HCl (37%, 15.8 mL) was stirred at 45 °C for 30 min. To this was added crotonoic acid (12.5 g, 145 mmol) and the temperature was then raised to 90 °C for 2 h. An aqueous solution of NaOH (20 g in 25 mL of H₂O) was prepared and added dropwise over 30 min. The reaction mixture was stirred for 30 min and allowed to cool to RT. Concentrated aq. HCl was added to adjust the pH to 5–6 and the reaction mixture extracted using ethyl acetate (3 × 50 mL). The combined organic fractions were collected, and the solvent removed in vacuo to afford 3-mercapto-butanoic acid as a yellow oil which was used without further purification (14.6 g, 84%) [Data for 3-mercapto-butanoic acid: Rf 0.33 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 2969, 2926, 1704, 1408, 1380, 1296, 1263, 1228, 1176, 1115, 1086, 1028, 917, 886, 691, 642, 488; δ_H (400 MHz, CDCl₃) 10.47 (1H, s, COOH), 3.42–3.29 (1H, m, CH), 2.72–2.57 (2H, m, CH₂), 1.86 (1H, t, J = 6.9 Hz, SH), 1.39 (3H, d, J = 6.9 Hz, CH₃); δ_c (100 MHz, CDCl₃) 177.5 (COOH), 45.7 (CH₂), 31.0 (CH), 24.9 (CH₃); HRMS (ESI): calcd. for C₄H₇O₂S, 119.0172 Found: [M-H]⁻, 119.0171 (1.1 ppm error)]. To a solution of 3mercapto-butanoic acid (484 mg, 4.03 mmol) and fluorenyl methanol p-toluenesulfonate (1.40 g, 4.03 mmol- see S1 for its preparation) in DMF (7.0 mL) was added ⁱPr₂NEt (1.39 mL, 8.06 mmol). The reaction was stirred at room temperature for 17 h. The reaction mixture was dissolved in ethyl acetate (40 mL), washed with 0.2N aq. HCl (5×15 mL), sat. aq. NaHCO₃ (2×15 mL), water (15 mL), brine (15mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford the title compound as a yellow solid (582 mg, 48%); Rf 0.51 (ethyl acetate); m.p. 140–152 °C; v_{max}/cm⁻¹ (thin film) 2916, 1706, 1477, 1447, 1374, 1293, 1241, 1166, 1100, 1021, 938, 726, 637, 621, 571; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.77–7.64 (4H, m, ArH), 7.43–7.27 (4H, m, ArH), 4.11 (1H, t, J = 6.6 Hz, SCH₂CH), 3.29– 3.18 (1H, m, CHH'CH(CH₃)), 3.10 (2H, d, J = 6.6 Hz, SCH₂CH), 2.67 (1H, dd, J = 15.9, 6.4 Hz, CHH'CH(CH₃)), 2.51 (1H, dd, J = 15.9, 8.0 Hz, CHH'CH(CH₃)), 1.34 (3H, d, J = 6.8 Hz, CH₃); δ_C (100 MHz, CDCl₃) 176.0 (COOH), 146.1 (2 × ArC), 141.1 (2 × ArC), 127.7 (2 × ArCH), 127.2 (2 × ArCH), 125.00 (ArCH), 124.97 (ArCH), 120.0 (2 × ArCH), 47.0 (SCH₂CH), 42.0 (CH₂CH(CH₃)), 37.2 (CH₂CH(CH₃)), 35.4 (SCH₂CH), 21.6 (CH₃); HRMS (ESI): calcd. for $C_{18}H_{18}NaO_2S$, 321.0920. Found: [MNa]⁺, 321.0926 (-2.0 ppm error). The synthetic procedure was adapted from a method reported in a patent.^{11a}

3-(((9H-Fluoren-9-yl)methyl)thio)-2-phenylpropanoic acid (S4)

A solution of thiourea (13.3 g, 174 mmol), water (25 mL), and concentrated aq. HCl (37%, 15.8 mL) was stirred at 45°C for 30 min. To this was added atropic acid (2.96 g, 30.0 mmol) and the temperature was then raised to 90 °C for 2 h. An aqueous solution of NaOH (20 g in 25 mL of H₂O) was prepared and added dropwise over 30 min. The reaction mixture was stirred for 30 min and allowed to cool to RT. Concentrated HCl was added to adjust the pH to 5–6 and the reaction mixture extracted using ethyl acetate (3 × 50 mL). The combined organic fractions were collected and the solvent removed in vacuo to afford 3-mercapto-2-phenylpropanoic acid as a white paste which was used without further purification (3.72 g, 70%) [Data for 3-mercapto-2-phenylpropanoic acid: Rf 0.37 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3019, 2259, 1705, 1601, 1496, 1455, 1419, 1277, 1242, 1180, 1005, 924, 717, 697, 645, 615, 503; δ_H (400 MHz, CDCl₃) 9.81 (1H, s, COOH), 7.40 – 7.22 (5H, m, ArH), 3.77 (1H, dd, J = 9.0, 6.4 Hz, CH), 3.15 (1H, dt, J = 13.8, 9.0 Hz, CHCHH'SH), 2.84 (1H, ddd, J = 13.8, 7.9, 6.4 Hz, CHCHH'SH), 1.54 (1H, dd, J = 9.0, 7.9 Hz, SH); δ_c (100 MHz, CDCl₃) 178.2 (COOH), 136.9 (ArC), 129.1 (2 × ArCH), 128.3 (ArCH), 128.1 (2 × ArCH), 55.8 (CH), 27.2 (CH₂); HRMS (ESI): calcd. for C₉H₉O₂S, 181.0329 Found: [M-H]⁻, 181.0324 (2.4 ppm error)]. To a solution of 3-mercapto-2-phenylpropanoic acid (1.46 g, 8.00 mmol) and fluorenyl methanol p-toluenesulfonate (2.82 g, 8.04 mmol- see S1 for its preparation) in DMF (14 mL) was added ⁱPr₂NEt (2.78 mL, 16.0 mmol). The reaction was stirred at room temperature for 16 h. The reaction mixture was dissolved in ethyl acetate (80 mL), washed with 0.2N HCl (5 × 30 mL), sat. NaHCO₃ (2 × 30 mL), water (30 mL), brine (30 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure. The combined organics were concentrated and solvent removed in vacuo to afford the title compound as a yellow solid (1.93 g, 67%); R_f 0.45 (ethyl acetate); m.p. 69–85 °C; v_{max}/cm^{-1} (thin film) 3052, 1714, 1611, 1450, 1012, 736; δ_{H} (400 MHz, CDCl₃) 7.73 (2H, dt, J = 7.5, 0.9 Hz, ArH), 7.61 (2H, ddt, J = 13.8, 7.5, 0.9 Hz, ArH), 7.44-7.24 (9H, m, ArH), 4.04 (1H, t, J = 6.6 Hz, SCH₂CH), 3.77 (1H, dd, J = 8.9, 6.4 Hz, CH(Ph)CHH'), 3.23 (1H, dd, J = 13.3, 8.9 Hz, CH(Ph)CHH'), 3.06–2.95 (2H, m, SCH₂CH), 2.88 (1H, dd, J = 13.3, 6.4 Hz, CH(Ph)CHH'); δ_C (100 MHz, CDCl₃) 177.7 (COOH), 146.1 (ArC), 146.0 (ArC), 141.1 (2 × ArC), 137.4 (ArC), 129.0 (2 × ArCH), 128.1 (3 × ArCH), 127.7 $(2 \times \text{Ar}CH)$, 127.2 (ArCH), 127.1 (ArCH), 125.0 (2 × ArCH), 120.0 (2 × ArCH), 52.5 ((CH(Ph)CH₂), 46.9 (SCH₂CH), 37.3 (SCH₂CH), 36.0 (CH(Ph)CH₂); HRMS (ESI): calcd. for C₂₃H₁₉O₂S, 359.1111. Found: [M-H]⁻, 359.1118 (-1.9 ppm error). The synthetic procedure was adapted from a method reported in a patent.^{11a}

3-(((9H-Fluoren-9-yl)methyl)thio)-3-phenylpropanoic acid (S5)

A solution of thiourea (12.2 g, 160 mmol), water (80 mL), and concentrated aq. HCl (37%, 70.4 mL) was stirred at 120 °C for 2 h. The reaction mixture was then cooled to RT. Trans-cinnamic acid (5.92 g, 40 mmol) was added and the temperature was then raised back to 120 °C and stirred for 18 h, before the reaction mixture was then cooled to 0 °C. An aqueous solution of NaOH (62.6 g in 244 mL H₂O) was prepared and added dropwise at 0 °C until the pH was 14. The reaction mixture was stirred and heated to 90 °C for 1.5 h and then was cooled to 0 °C. Concentrated aq. HCl was added to adjust the pH to 5-6 and the reaction mixture extracted using toluene (3×100 mL). The combined organic fractions were collected, washed with water (300 mL), dried over anhydrous MgSO₄, filtered, and the solvent removed in vacuo to afford a sample that is predominantly made up of 3-mercapto-3phenylpropanoic acid, contaminated with a small amount (ca. 20%) trans-cinnamic acid, as a white solid, with this mixture was used without further purification (5.21 g of material isolated). [Data for 3mercapto-3-phenylpropanoic acid: Rf 0.33 (ethyl acetate); δ_H (400 MHz, CDCl₃) 11.21 (1H, s, COOH), 7.40 – 7.17 (5H, m, ArH), 4.50 (1H, ddd, J = 8.0, 7.0, 6.1 Hz, CH), 3.10 – 3.05 (2H, m, CH₂), 2.30 (1H, t, J = 6.1 Hz, SH); HRMS (ESI): calcd. for C₉H₉O₂S, 181.0329 Found: [M-H]⁻, 181.0329 (1.1 ppm error)]. To a portion of this mixture (calculated to contain 1.19 g, 6.54 mmol, of 3-mercapto-3-phenylpropanoic acid) and fluorenyl methanol p-toluenesulfonate (2.33 g, 6.64 mmol- see S1 for its preparation) in DMF (12 mL) was added ⁱPr₂NEt (2.31 mL, 13.3 mmol). The reaction was stirred at room temperature for 72 h. The reaction mixture was dissolved in ethyl acetate (65 mL), washed with 0.2N aq. HCl (5 × 25 mL), sat. aq. NaHCO₃ (2 × 25 mL), water (25 mL), brine (25 mL) and dried over anhydrous Na₂SO₄. The combined organics were concentrated and solvent removed in vacuo to afford the title compound as a light orange solid (1.63 g, 69%); R_f 0.48 (ethyl acetate); m.p. 126–140 °C; v_{max}/cm⁻¹ (thin film) 3031, 1704, 1448, 1297, 1153, 918, 733, 698, 666, 621, 528; δ_H (400 MHz, CDCl₃) 7.77–7.69 (2H, m, Ar**H**), 7.65 (1H, d, J = 7.6 Hz, ArH), 7.43–7.21 (10H, m, ArH), 4.38 (1H, t, J = 7.6 Hz, SCH₂CH), 3.94 (1H, dd, J = 6.7 Hz, CHH'CH(Ph)), 2.95–2.87 (3H, m, SCH₂CH and CHH'CH(Ph)), 2.73 (1H, dd, J = 13.0, 7.3 Hz, CHH'CH(Ph)); δ_{c} (100 MHz, CDCl₃) 176.4 (COOH), 146.1 (ArC), 146.0 (ArC), 141.1 (3 × ArC), 128.9 (2 × ArCH), 128.0 (2 × ArCH), 127.9 (ArCH), 127.64 (ArCH), 127.60 (ArCH), 127.1 (2 × ArCH), 125.1 (ArCH), 124.8 (ArCH), 119.9 (2 × ArCH), 46.4 (CH₂CH(Ph)), 45.6 (SCH₂CH), 41.4 (SCH₂CH), 35.5 (CH₂CH(Ph)); HRMS (ESI): calcd. for C₂₃H₂₀NaO₂S, 383.1076. Found: [MNa]⁺, 383.1077 (-0.2 ppm error). The synthetic procedure was adapted from a method reported in a patent.^{11b}

3-Methyl-1-thia-5-azacycloheptadecane-4,17-dione (24g)

A mixture of laurolactam 21b (98.5 mg, 0.499 mmol), DMAP (6.1 mg, 0.05 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9H-fluoren-9-yl)methyl)thio)-2-methylpropanoyl chloride (1.50 mmol, prepared from S2 using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×10 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.750 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded the *title compound* as a yellow crystalline solid (86.7 mg, 58%); m.p. 73–80 °C; R_f 0.53 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3297, 2927, 2856, 1684, 1643, 1549, 1456, 1367, 1248, 1189, 1122, 1028, 947, 732; δ_H (400 MHz, CDCl₃) 5.74 (1H, br s, NH), 3.62–3.52 (1H, m, CHH'NH), 3.06–2.91 (3H, m, CHH'NH and CH₂SCO)), 2.62– 2.36 (3H, m, COCH(CH₃)CH₂S and CH₂COS), 1.76–1.50 (3H, m, 1.5 × CH₂), 1.45–1.24 (15H, m, 7.5 × CH₂), 1.21 (3H, d, J = 6.9 Hz, CH₃); δ_{C} (100 MHz, CDCl₃) 201.1 (SCO), 174.3 (CO), 43.7 (CH₂COS), 42.2 (COCH(CH₃)CH₂S), 39.4 (CH₂NH), 32.7 (CH₂SCO), 28.9 (CH₂), 27.50 (CH₂), 27.47 (CH₂), 27.3 (CH₂), 27.1 (CH₂), 27.0 (CH₂), 26.4 (CH₂), 25.3 (CH₂), 25.2 (CH₂), 18.3 (CH₃); HRMS (ESI): calcd. for C₁₆H₂₉NNaO₂S, 322.1811. Found: [MNa]⁺, 322.1808 (1.0 ppm error).

2-Methyl-1-thia-5-azacycloheptadecane-4,17-dione (24h)

A mixture of laurolactam 21b (98.6 mg, 0.500 mmol), DMAP (6.2 mg, 0.051 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9H-fluoren-9-yl)methyl)thio)-butanoyl chloride (1.50 mmol, prepared from S3 using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% ag. HCl (10 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded the *title compound* as a yellow crystalline solid (87.2 mg, 58%); m.p. 54–56 °C; $R_f 0.48$ (ethyl acetate); v_{max}/cm^{-1} (thin film) 3299, 2926, 2856, 1683, 1645, 1553, 1447, 1373, 1291, 1118, 1020, 732; δ_H (400 MHz, CDCl₃) 5.86 (1H, br s, NH), 3.90–3.80 (1H, m, COCH₂CH(CH₃)S), 3.38–3.16 (2H, m, CH₂NH), 2.62–2.41 (4H, m, 2 × CH₂ (CH₂CON and CH₂COS)), 1.78–1.55 (3H, m, 1.5 × CH₂), 1.54–1.45 (2H, m, CH₂), 1.42 (3H, d, *J* = 7.0 Hz, CH₃), 1.40–1.22 (13H, m, 6.5 × CH₂); δ_{C} (100 MHz, CDCl₃) 200.5 (COS), 170.3 (CON), 43.9 (CH₂CO), 43.7 (CH₂CO), 39.4 (CH₂NH), 37.0 (COCH₂CH(CH₃)S), 29.0 (CH₂), 27.6 (CH₂), 27.4 (CH₂), 27.1 (CH₂), 26.99 (CH₂), 26.97 (CH₂), 26.4 (CH₂), 25.5 (CH₂), 24.6 (CH₂), 21.8 (CH₃); HRMS (ESI): calcd. for C₁₆H₂₉NNaO₂S, 322.1811. Found: [MNa]⁺, 322.1812 (-0.2 ppm error).

3-Phenyl-1-thia-5-azacycloheptadecane-4,17-dione (24i)

A mixture of laurolactam **21b** (99.3 mg, 0.503 mmol), DMAP (8.0 mg, 0.066 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a

solution of 3-(((9H-fluoren-9-yl)methyl)thio)-2-phenylpropanoyl chloride (1.50 mmol, prepared from S4 using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×10 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed *in vacuo*. Purification by repeated flash column chromatography (SiO₂, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a yellow solid (52.5 mg, 29%); m.p. 82–86 °C; R_f 0.73 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3301, 3063, 2927, 2856, 1682, 1647, 1548, 1495, 1450, 1393, 1353, 1243, 1187, 1030, 909, 760, 729, 697; δ_H (400 MHz, CDCl₃) 7.42–7.26 (5H, m , Ar**H**), 5.46 (1H, br d, J = 8.3 Hz, NH), 3.75 (1H, dddd, J = 13.3, 8.3, 8.3, 3.4 Hz, CHH'NH), 3.58 (1H, dd, J = 9.2, 5.4 Hz, COCH(Ph)CH₂S), 3.31-3.26 (2H, m, CH₂SCO), 2.84-2.74 (1H, m, CHH'NH), 2.64 (1H, ddd, J = 14.2, 8.7, 5.4, CHH'COS), 2.50 (1H, ddd, J = 14.2, 7.2, 5.4, CHH'COS), 1.84–1.71 (2H, m, CH₂), 1.70–1.52 (2H, m, CH₂), 1.45–1.21 (14H, m, 7 × CH₂); δ_C (100 MHz, CDCl₃) 201.3 (**C**OS), 171.5 (**C**ON), 139.3 (Ar**C**), 129.0 (2 × ArCH), 127.8 (ArCH), 127.7 (2 × ArCH), 53.5 (COCH(Ph)CH₂S), 43.8 (CH₂COS), 39.5 (CH₂NH), 32.6 (CH₂SCO), 29.1 (CH₂), 27.8 (CH₂), 27.51 (CH₂), 27.49 (2 × CH₂), 27.46 (CH₂), 26.5 (CH₂), 25.7 (CH₂), 25.1 (CH₂); HRMS (ESI): calcd. for C₂₁H₃₁NNaO₂S, 384.1968. Found: [MNa]⁺, 384.1970 (-0.5 ppm error).

1-[(2E)-3-Phenylprop-2-enoyl]azacyclotridecan-2-one (S6)

A mixture of laurolactam **21b** (98.2 mg, 0.498 mmol), DMAP (6.1 mg, 0.050 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9*H*-fluoren-9-yl)methyl)thio)-3-phenylpropanoyl chloride (1.51 mmol, prepared from **S5** using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL,

5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:10 ethyl acetate: hexane \rightarrow 1:0 Hz, CH_2N), 2.69 (2H, t, J = 7.2 Hz, CH_2CON), 1.84–1.75 (2H, m, CH_2), 1.21 (2H, apparent p, J = 7.0 Hz, CH_2), 1.31.9 (ArC), 130.3

2-Phenyl-1-thia-5-azacycloheptadecane-4,17-dione (24j)

A mixture of laurolactam **21b** (156mg, 0.792 mmol), DMAP (10.5 mg, 0.086 mmol) and pyridine (0.36 mL, 4.50 mmol) in DCM (10 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9*H*-fluoren-9-yl)methyl)thio)-3-phenylpropanoyl chloride (2.25 mmol, prepared from **S5** using the general procedure) in DCM (5 mL) was added and the resulting mixture was stirred at RT for 18 h. The solvent was concentrated *in vacuo*, loaded onto a short silica plug and eluted (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) to remove the majority of excess carboxylic acid and pyridine residues, and concentrated *in vacuo* to afford the crude imide product 1-(3-(((*9*H-fluoren-9-yl)methyl)thio)3-phenylpropanoyl)azacyclotridecan-2-one as a yellow oil (273 mg). The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL, 5.00 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded the *title compound* as an orange solid (22.6 mg, 8%); m.p. 79–82 °C; R_f 0.35 (1:1 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 3295, 3078, 2927, 2856, 1689, 1645, 1554, 1494, 1452, 1361, 766, 733, 698; δ_{H} (400 MHz, CDCl₃) 7.38–7.19 (5H, m, ArCH), 5.86 (1H,

br t, J = 5.6 Hz, NH), 5.02 (1H, dd, J = 9.7, 5.1 Hz, COCH₂CH(Ph)S), 3.53–3.41 (1H, m, CHH'NH), 3.14 (1H, app dq, J = 13.2, 5.6 Hz, CHH'NH), 2.90–2.74 (2H, m, CH₂CON), 2.62–2.43 (2H, m, CH₂COS), 1.90–1.67 (1H, m, 0.5 × CH₂), 1.61–1.47 (3H, m, 1.5 × CH₂), 1.45–1.21 (14H, m, 7 × CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 198.7 (COS), 169.5 (CON), 142.0 (ArC), 128.8 (2 × ArCH), 127.7 (ArCH), 127.5 (2 × ArCH), 44.7 (COCH₂CH(Ph)S), 43.4 (CH₂CO), 43.3 (CH₂CO), 39.5 (CH₂NH), 29.0 (CH₂), 27.7 (CH₂), 27.2 (CH₂), 27.1 (2 × CH₂), 26.9 (CH₂), 26.5 (CH₂), 25.5 (CH₂), 24.5 (CH₂); HRMS (ESI): calcd. for C₂₁H₃₁NNaO₂S, 384.1968. Found: [MNa]⁺, 384.1966 (0.5 ppm error).

2-(((9H-Fluoren-9-yl)methyl)thio)acetic acid (S7)

To 9-fluorenemethanol (9.80 g, 50 mmol) was added thionyl chloride (50 mL) and the solution was heated at reflux at 80 °C for 2 h. Excess thionyl chloride was removed in vacuo and the residue was taken up in a pentane: DCM (60:40) mixture. Purification by flash column chromatography (SiO₂, 85:15 pentane: DCM) afforded 9-fluorenylmethyl chloride as a pale yellow oil (1.88 g, 17%) [Data for 9fluorenylmethyl chloride: R_f 0.35 (85:15 pentane: DCM); v_{max}/cm⁻¹ (thin film) 3066, 2952, 1477, 1448, 1303, 1263, 1100, 1031, 936, 814, 763, 736, 706, 638, 621, 579, 530; δ_{H} (400 MHz, CDCl₃) 7.81 – 7.67 (4H, m, ArH), 7.46 – 7.32 (4H, m, ArH), 4.27 (1H, t, J = 6.6 Hz, CH), 3.92 (1H, t, J = 6.6 Hz, CH₂); δ_c (100 MHz, CDCl₃) 144.2 (2 × ArC), 141.3 (2 × ArC), 128.2 (2 × ArCH), 127.3 (2 × ArCH), 125.1 (2 × ArCH), 120.2 (2 × Ar**C**H), 49.5 (CH₂**C**H), 47.1 (**C**H₂CH); HRMS (APCI): calcd. for C₁₄H₁₂Cl, 215.062204. Found: $[MH]^+$, 215.062158 (–0.2 ppm error)].¹² To a solution of thioglycolic acid (86 μ L, 1.23 mmol) and 9fluorenylmethyl chloride (245 mg, 1.14 mmol) in THF (5 mL) was added ⁱPr₂NEt (0.61 mL, 3.51 mmol). The reaction was stirred at room temperature for 17 h and THF was removed under reduced pressure. The residue was taken up in sat. aq. Na₂CO₃ (10 mL) bringing the pH to 8. The mixture was extracted with $CHCl_3$ (3 × 30 mL), and the aqueous layer acidified with aq. HCl (10%) to pH 1 and extracted with ethyl acetate (5 \times 30 mL). The combined ethyl acetate extracts were dried over MgSO₄ and concentrated in vacuo to afford the title compound as an orange-yellow solid paste (310 mg, 100%); R_f 0.20 (ethyl acetate); m.p. 94–101 °C; v_{max}/cm⁻¹ (thin film) 2919, 1703, 1477, 1448, 1295, 1129, 1155, 1031, 765, 736, 621; δ_H (400 MHz, CDCl₃) 10.24 (1H, br s, COOH), 7.80 – 7.64 (4H, m, ArH), 7.44 – 7.29 (4H, m, ArH), 4.17 (1H, t, J = 6.3 Hz, SCH₂CH), 3.25 (2H, d, J = 6.3 Hz, SCH₂CH), 3.23 (2H, s, SCH₂COOH); δ_c (100 MHz, CDCl₃) 176.2 (COOH), 145.7 (2 × ArC), 141.2 (2 × ArC), 127.8 (2 × ArCH), 127.2 (2 × ArCH),

124.9 (2 × Ar**C**H), 120.1 (2 × Ar**C**H), 46.6 (SCH₂**C**H), 36.8 (S**C**H₂CH), 34.2 (S**C**H₂COOH); HRMS (ESI): calcd. for C₁₆H₁₄NaO₂S, 293.0607. Found: [MNa]⁺, 293.0604 (0.9 ppm error).¹³

A mixture of laurolactam 21b (198 mg, 1.00 mmol), DMAP (13.6 mg, 0.111 mmol) and pyridine (0.480 mL, 6.00 mmol) in DCM (20 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 2-(((9H-fluoren-9-yl)methyl)thio)acetyl chloride (3.14 mmol, prepared from S7 using the general procedure) in DCM (20 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 3:1 ethyl acetate: hexane) afforded the *title compound* as an orange solid (299 mg, 66%); R_f 0.31 (1:3 ethyl acetate: hexane); m.p. 65 – 71 °C; v_{max}/cm⁻¹ (thin film) 2929, 2860, 1682, 1447, 1360, 1276, 1177, 1120, 1047, 909, 764, 736, 621; δ_H (400 MHz, CDCl₃) 7.73 (4H, t, *J* = 16.3, 7.5 Hz, Ar**H**), 7.42–7.28 (4H, m, Ar**H**), 4.13 (1H, t, J = 6.7 Hz, SCH₂CH), 3.84 (2H, s, SCH₂CON), 3.71–3.63 (2H, m, CH₂N), 3.12 (2H, t, J = 6.7 Hz, SCH₂CH), 2.59–2.50 (2H, m, CH₂CON), 1.83–1.72 (2H, m, CH₂), 1.71–1.58 (2H, m, CH₂), 1.52–1.41 (4H, m, 2 × CH₂), 1.40–1.21 (10H, m, 5 × CH₂); δ_{C} (100 MHz, CDCl₃) 176.8 (CON), 172.6 (CON), 146.1 (2 × ArC), 141.1 (2 × ArC), 127.7 (2 × ArCH), 127.1 (2 × ArCH), 125.1 (2 × ArCH), 120.0 (2 × ArCH), 46.7 (SCH₂CH), 43.4 (CH₂N), 39.1 (SCH₂CON), 36.3 (SCH₂CH), 35.7 (CH₂CON), 25.92 (CH₂), 25.87 (CH₂), 25.4 (CH₂), 24.9 (CH₂), 24.6 (CH₂), 24.4 (CH₂), 24.1 (CH₂), 23.9 (CH₂), 23.7 (CH₂); HRMS (ESI): calcd. for C₂₈H₃₆NO₂S, 450.2461. Found: [MH]⁺, 450.2462 (-0.2 ppm error).

(9*H*-Fluoren-9-yl)methyl benzyl(2-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-2oxoethyl)carbamate (S9)

A mixture of 1-thia-5-azacycloheptadecane-4,17-dione 24b (150 mg, 0.526 mmol), DMAP (6.1 mg, 0.050 mmol) and pyridine (0.240 mL, 3.00 mmol) in DCM (2.5 mL) under an argon atmosphere was stirred for 5 mins. Next, a solution of (9H-fluoren-9-yl)methyl benzyl(2-chloro-2-oxoethyl)carbamate (0.754 mmol, prepared from N-(((9H-fluoren-9-yl)methoxy)carbonyl)-N-benzylglycine¹⁰ using the general procedure) in DCM (5 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The crude mixture was concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* **S9** as a 1:1 mixture of rotamers as a fluffy white solid; m.p. 44–59 °C (261 mg, 76%); R_f 0.56 (1:1 ethyl acetate: hexane); v_{max}/cm^{-1} (thin film) 2927, 2856, 1694, 1451, 1424, 1389, 1220, 1112, 1004, 953, 892, 759, 740, 699, 621, 598, 534; $\delta_{\rm H}$ (400 MHz, CDCl₃) ¹H NMR signals are for both rotamers unless stated 7.74 (2H, d, J = 7.4 Hz, Ar**H**), 7.72 (2H, d, J = 7.6 Hz, ArH), 7.53 (2H, d, J = 7.5 Hz, ArH), 7.47 (2H, d, J = 7.5 Hz, ArH), 7.42–7.12 (18H, m, ArH), 4.58–4.54 (4H, m, 2 × CH₂Ph), 4.51 (2H, d, J = 6.5 Hz, COCH₂CH), 4.49–4.47 (2H, m, NCH₂CNO, [overlapping]), 4.48–4.45 (2H, m, COCH₂CH, [overlapping]), 4.26 (2H, s, NCH₂CNO), 4.26–4.19 (2H, m, 2 × COCH₂CH), 3.62–3.56 (2H, m, CH₂CH₂NCO, rotamer A), 3.51–3.44 (2H, m, CH₂CH₂NCO, rotamer B), 3.11 (4H, apparent q, J = 6.4 Hz, 2 × SCH₂CH₂CON), 2.83 (4H, apparent dt, J = 13.8, 6.6 Hz, 2 × SCH₂CON), 2.60 – 2.52 (4H, m, 2 × CH₂COS), 1.73 – 1.62 (4H, m, 2 × CH₂), 1.56 – 1.47 (2H, m, CH₂), 1.45 – 1.14 (30H, m, 15 × CH₂); δ_{C} (100 MHz, CDCl₃), 200.02 (SCO), 199.99 (SCO), 173.9 (CO), 173.8 (CO), 172.4 (CO), 172.2 (CO), 156.72 (NCO₂), 156.70 (NCO₂), 144.01 (2 × ArC), 143.95 (2 × ArC), 141.35 (2 × ArC), 141.33 (2 × ArC), 137.3 (ArC), 137.1 (ArC), 128.8 (2 × ArCH), 128.6 (2 × ArCH), 128.0 (2 × ArCH), 127.7 (4 × ArCH), 127.53 (ArCH), 127.51 (ArCH), 127.4 (2 × ArCH), 127.1 (4 × ArCH), 125.1 (2 × Ar**C**H), 124.9 (2 × Ar**C**H), 119.98 (2 × Ar**C**H), 119.95 (2 × Ar**C**H), 67.9 (**C**H₂CH), 67.3 (**C**H₂CH), 54.2 (NCH₂CNO), 53.3 (NCH₂CNO), 51.7 (CH₂Ph), 51.6 (CH₂Ph), 47.4 (CH), 47.2 (CH), 44.5 (CH₂CH₂N), 44.4 (CH₂CH₂N), 43.7 (2 × CH₂COS), 37.4 (2 × COCH₂CH₂S), 27.80 (2 × CH₂), 27.75 (CH₂), 27.71 (2 × CH₂), 27.64 (CH₂), 27.3 (2 × CH₂), 27.2 (2 × CH₂), 26.70 (CH₂), 26.66 (2 × CH₂), 26.60 (CH₂), 25.10 (CH₂), 25.07 (CH₂), 25.01 (CH₂), 24.97 (CH₂), 23.59 (2 × COCH₂CH₂S); HRMS (ESI): calcd. for C₃₉H₄₆N₂NaO₅S, 677.3020. Found: [MNa]⁺, 677.3012 (1.1 ppm error).

5-Benzyl-5,8-diaza-1-thiacycloicosane-4,7,20-trione (24)

To a solution of (9H-fluoren-9-yl)methyl benzyl(2-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-2oxoethyl)carbamate S9 (261 mg, 0.398 mmol) in DCM (10 mL) under an argon atmosphere DBU (0.75 mL, 0.50 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in *vacuo*. Purification by flash column chromatography (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a white crystalline solid (106 mg, 62%; 47% over 2 steps from 24b) as a 5:4 (A:B) mixture of rotamers; m.p. 84–98 °C; Rf 0.67 (9:1 ethyl acetate: methanol); v_{max}/cm⁻¹ (thin film) 3318, 2927, 2856, 1655, 1543, 1496, 1443, 1358, 1265, 1236, 1198, 1081, 1021, 910, 730, 699; δ_{H} (400 MHz, CDCl₃) 7.34–7.17 (8H, m, ArH), 7.13–7.07 (2H, m, ArH), 6.49 (1H, t, J = 5.7 Hz, NH, rotamer A), 6.09 (1H, t, J = 5.8 Hz, NH, rotamer B), 4.60 (2H, s, PhCH₂, rotamer B), 4.58 (2H, s, PhCH₂, rotamer A), 3.96 (2H, s, NCH₂CO, rotamer A), 3.87 (2H, s, NCH₂CO, rotamer B), 3.20–3.09 (8H, m, 4 × CH₂), 2.71 (2H, t, J = 6.2 Hz, CH₂), 2.61–2.43 (6H, m, 3 × CH₂), 1.71–1.56 (4H, m, 2 × CH₂), 1.50–1.12 (32H, m, 16 × CH₂); δ_c (100 MHz, CDCl₃): 200.2 (SCO), 200.1 (SCO), 172.7 (CO), 171.8 (CO), 168.9 (CO), 167.7 (CO), 136.7 (ArC), 135.5 (ArC), 129.2 (2 × ArCH), 128.9 (2 × ArCH), 128.6 (2 × ArCH), 128.1 (ArCH), 128.0 (ArCH), 126.6 (2 × ArCH), 52.7 (PhCH₂, rotamer A), 51.5 (NCH₂CO, rotamer A), 50.7 (NCH₂CO, rotamer B), 50.3 (PhCH₂, rotamer B), 43.4 (CH₂), 43.3 (CH₂), 39.5 (2 × CH₂), 33.9 (CH₂), 33.5 (CH₂), 29.2 (CH₂), 29.1 (CH₂), 28.6 (CH₂), 28.4 (CH₂), 27.9 (CH₂), 27.8 (CH₂), 27.6 (CH₂), 27.4 (CH₂), 27.18 (CH₂), 27.15 (CH₂), 26.99 (2 × CH₂), 26.95 (CH₂), 26.6 (CH₂), 26.3 (CH₂), 25.9 (CH₂), 25.0 (CH₂), 24.8 (CH₂), 24.7 (CH₂), 24.6 (CH₂); HRMS (ESI): calcd. for C₂₄H₃₆N₂NaO₃S, 455.2339. Found: [MNa]⁺, 455.2332 (1.5 ppm error). For X-ray crystallographic data, see CCDC 2040346.

5-Benzyl-1-thia-5,9-diazacyclohenicosane-4,8,21-trione (24m)

A mixture of 1-thia-5-azacycloheptadecane-4,17-dione 24b (143 mg, 0.502 mmol), DMAP (8.6 mg, 0.070 mmol) and pyridine (0.24 mL, 3.00 mmol) in DCM (5 mL) under an argon atmosphere was stirred for 5 mins. Next, a solution of 3-((((9H-fluoren-9-yl)methoxy)carbonyl)(benzyl)amino)propanoyl chloride (0.755 mmol, prepared from 3-((((9*H*-fluoren-9yl)methoxy)carbonyl)(benzyl)amino)propanoic acid using the general procedure) in DCM (5 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. TLC analysis indicated that the acylation was incomplete, and so another solution of 3-((((9H-fluoren-9yl)methoxy)carbonyl)(benzyl)amino)propanoyl chloride (0.748 mmol) in DCM (10 mL) was prepared and added to the reaction mixture, with heating at reflux for an additional 18 h at 50 °C. The crude mixture was then concentrated in vacuo. Rough purification by flash column chromatography (SiO₂, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded a crude product consisting of predominantly (9H-fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3oxopropyl)carbamate, as a roughly 1:1 mixture of rotamers, as a light yellow paste (283 mg of material isolated, used directly in the next step). [Selected data for the intermediate (9H-fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3-oxopropyl)carbamate: Rf 0.71 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 2927, 2856, 1688, 1451, 1420, 1369, 1210, 1112, 1031, 910, 759, 729, 700, 621; Diagnostic ¹H NMR resonances: δ_{H} (400 MHz, CDCl₃), 4.56 (2H, d, J = 6.1 Hz, COCH₂CH), 4.50 – 4.47 (2H, m, CH₂Ph, [overlapping]), 4.50 – 4.45 (2H, m, COCH₂CH, [overlapping]), 4.43 (2H, s, CH₂Ph), 4.27 (1H, t, J = 6.1 Hz, COCH₂CH), 4.20 (1H, t, J = 6.4 Hz, COCH₂CH); Diagnostic ¹³C NMR resonances: δ_{c} (100 MHz, CDCl₃), 200.2 (2 × SCO), 174.3 (CO), 174.0 (CO), 173.9 (CO), 173.7 (CO), 156.6 (NCO₂), 156.2 (NCO₂), 67.5 (CH₂CH), 67.3 (CH₂CH), 51.1 (PhCH₂), 50.9 (PhCH₂), 47.5 (CH), 47.4 (CH); HRMS (ESI): calcd. for C₄₀H₄₈N₂NaO₅S, 691.3176 Found: [MNa]⁺, 691.3176 (0.0 ppm error)]. To a solution of this sample of (9*H*-fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3oxopropyl)carbamate in DCM (8.2 mL) under an argon atmosphere, DBU (0.610 mL, 4.04 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow 4:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the *title compound* as a 2:1 mixture of rotamers as a white pasty solid (31.6 mg, 14% from 24b); m.p. 62–75°C; R_f 0.34 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3311, 2925, 2854, 1638, 1549, 1439, 1365, 1197, 1026, 727, 698; δ_H (400 MHz, CDCl₃), 7.37 – 7.22 (8H, m, ArCH, both rotamers), 7.15–7.08 (2H, m, ArCH, both rotamers), 6.46 (1H, br t, J = 5.7 Hz, NH, major rotamer), 5.77 (1H, br t, J = 5.7 Hz, NH, minor rotamer), 4.60 (2H, s, CH₂Ph, minor rotamer), 4.57 (2H, s, CH₂Ph, major rotamer), 3.70-3.64 (2H, m, CON(CH₂Ph)CH₂, major rotamer), 3.60-3.54 (2H, m, CON(CH₂Ph)CH₂, minor rotamer), 3.30–3.17 (4H, m, 2 × CH₂), 3.14 (2H, t, J = 6.7 Hz, CH₂), 2.75–2.69 (2H, m, CH₂, minor rotamer), 2.63 (2H, t, J = 6.7 Hz, CH₂, major rotamer), 2.58 (2H, t, J = 7.0 Hz, CH₂, minor rotamer), 2.55–2.47 (4H, m, 2 × CH₂), 2.39 – 2.33 (2H, m, CH₂, minor rotamer), 1.74–1.61 (4H, m, 2 × CH₂), 1.59–1.43 (4H, m, 2 × CH₂), 1.38–1.21 (30H, m, 15 × CH₂, both rotamers); δ_{C} (100 MHz, CDCl₃) data for major rotamer A, 200.1 (COS), 172.4 (CON), 171.0 (CON), 136.4 (ArC), 129.1 (2 × ArCH), 127.8 (ArCH), 126.3 (2 × ArCH), 52.0 (CH₂Ph), 43.5 (CH₂), 43.2 (CON(CH₂Ph)CH₂), 39.8 (CH₂), 35.5 (CH₂), 33.9 (CH₂), 29.4 (CH₂), 28.9 (CH₂), 28.2 (CH₂), 27.8 (CH₂), 27.52 (CH₂), 27.49 (CH₂), 27.2 (CH₂), 26.7 (CH₂), 24.9 (CH₂), 24.6 (CH₂); Diagnostic ¹³C NMR resonances for the minor rotamer: δ_c (100 MHz, CDCl₃), 201.1 (COS), 171.2 (CON), 169.7 (CON), 49.2 (CH₂Ph); HRMS (ESI): calcd. for C₂₅H₃₈N₂NaO₃S, 469.2495 Found: [MNa]⁺, 469.2500 (-0.9 ppm error).

5-(3-Mercaptopropanoyl)-1-thia-5-azacycloheptadecane-4,17-dione (39)

Oxalyl chloride (0.19 mL, 2.25 mmol) was added to a suspension of 3-(tritylthio)propanoic acid (525 mg, 1.51 mmol) in DCM (7.5 mL), followed by a catalytic amount of DMF (1 drop). The resulting mixture was stirred at RT for 30 min and concentrated *in vacuo* to remove all solvent and excess oxalyl chloride. The resulting 3-(tritylthio)propanoyl chloride **30** was dissolved in DCM (3 mL) and added to a prestirred mixture of 1-thia-5-azacycloheptadecane-4,17-dione **24b** (149 mg, 0.521 mmol), DMAP (7.0 mg, 0.057 mmol) and pyridine (0.240 mL, 3.00 mmol) in DCM (7 mL) under an argon atmosphere. The reaction mixture was then heated to 50 °C and stirred for 18 h. The solvent was removed *in vacuo*, and the product mixture was loaded onto a short silica plug and eluted (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) to remove the majority of the excess carboxylic acid and pyridine

residues, and concentrated in vacuo to afford a sample of crude 5-(3-(tritylthio)propanoyl)-1-thia-5azacycloheptadecane-4,17-dione (38) as a white solid, which was used without further purification, 274 mg of this crude material was obtained. [Data for crude 38: m.p. 31 - 45 °C; R_f 0.79 (ethyl acetate); v_{max}/cm^{-1} (thin film) 3058, 2928, 2856, 1819, 1690, 1595, 1489, 1444, 1370, 1132, 1106, 1034, 908, 730, 698, 676, 619, 506; δ_H (400 MHz, CDCl₃), 7.49 – 7.41 (5H, m, Ar**H**), 7.33 – 7.18 (10H, m, Ar**H**), 3.59 - 3.51 (2H, m, CH₂CH₂CH₂NCO), 3.15 (2H, t, J = 6.5 Hz, COSCH₂CH₂CON), 2.90 (2H, t, J = 6.5 Hz, COSCH₂CH₂CON), 2.76 (2H, t, J = 7.0 Hz, CH₂CH₂SC(Ph)₃), 2.62 – 2.57 (2H, m, CH₂CH₂COS), 2.54 (2H, t, J = 7.0 Hz, CH₂CH₂SC(Ph)₃), 1.76 – 1.66 (2H, m, CH₂), 1.53 – 1.43 (2H, m, CH₂), 1.41 – 1.18 (14H, m, 7 × CH₂); δ_C (100 MHz, CDCl₃), 200.1 (COS), 174.5 (CO), 173.7 (CO), 144.8 (3 × ArC), 129.7 (6 × ArCH), 127.9 (6 × ArCH), 126.7 (3 × ArCH), 66.9 (CPh₃), 44.1 (CH₂CH₂CH₂NCO), 43.7 (CH₂COS), 38.5 (CH₂CH₂SC(Ph)₃), 37.9 (COSCH₂CH₂CON), 27.9 (CH₂), 27.84 (CH₂), 27.77 (CH₂), 27.2 (2 × CH₂), 27.1 (CH₂), 26.8 (CH₂), 26.6 (CH₂), 25.14 (CH₂), 25.05 (CH₂), 23.8 (COSCH₂); HRMS (ESI): calcd. for C₃₇H₄₅NNaO₃S₂, 638.2733. Found: [MNa]⁺, 638.2738 (–0.7 ppm error)]. This mixture was then dissolved in DCM (4.4 mL) under an argon atmosphere, before TFA (0.44 mL, 5.7 mmol) was added and the solution stirred for 3 min. Next, triisopropylsilane (0.11 mL, 0.53 mmol) was added and the solution stirred for a further 30 min. The mixture was then diluted with DCM (1.5 mL) and washed with water (5 mL). The aqueous layer was then extracted with DCM (3 \times 1.5 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane) afforded the *title compound* as a colorless oil (52.6 mg, 27% from **24b**); $R_f 0.27$ (4:1 hexane: ethyl acetate); v_{max}/cm^{-1} (thin film) 2926, 2855, 1687, 1460, 1371, 1206, 1132, 1105, 1016, 948, 732, 698, 600; δ_H (400 MHz, CDCl₃), 3.63–3.56 (2H, m, CH₂CH₂CH₂NCO), 3.18–3.11 (4H, m, CH₂CH₂SH and COSCH₂), 2.90 (2H, t, J = 6.6 Hz, COSCH₂CH₂CON), 2.78 (2H, dt, J = 8.4, 6.6 Hz, CH₂CH₂SH), 2.59–2.53 (2H, m, CH₂CH₂CO₂), 1.72– 1.60 (2H, m, CH₂ [overlapping]), 1.64 (1H, t, J = 8.4 Hz, CH₂CH₂CH₂SH [overlapping]), 1.55–1.45 (2H, m, CH₂), 1.38–1.15 (14H, m, 7 × CH₂); δ_{C} (100 MHz, CDCl₃), 200.2 (COS), 174.3 (CO), 173.9 (CO), 44.3 (CH₂CH₂CH₂NCO), 43.8 (CH₂COS), 43.6 (CH₂CH₂SH), 37.9 (COSCH₂CH₂CON), 27.94 (CH₂), 27.85 (CH₂), 27.8 (CH₂), 27.3 (CH₂), 27.2 (CH₂), 26.8 (CH₂), 26.7 (CH₂), 25.2 (CH₂), 25.1 (CH₂), 23.9 (COSCH₂), 19.9 (CH₂CH₂SH); HRMS (ESI): calcd. for C₁₈H₃₂NO₃S₂, 374.1818. Found: [MH]⁺, 374.1819 (-0.1 ppm error).

1,5-Dithia-9-azacyclohenicosane-4,8,21-trione (40)

5-(3-Mercaptopropanoyl)-1-thia-5-azacycloheptadecane-4,17-dione (39) (45 mg, 0.120 mmol) was dissolved in CDCl₃ (0.7 mL) and transferred to an NMR tube. To it was added triethylamine (33 μ L, 0.240 mmol) in CDCl₃ (0.2 mL), and then the reaction mixture was heated to 55 °C in an oil bath for 8 h (doing the reaction in an NMR tube enabled us to monitor progress of the rearrangement using ¹H NMR). The mixture was then concentrated and purified by flash column chromatography (SiO₂, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded some recovered starting material **39** (6.6 mg, 15%) and the *title compound* **40** a pasty white solid (13.9 mg, 31%). Data for **40**: m.p. 87–89 °C; R_f 0.12 (1:1 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 3300, 2925, 2854, 1687, 1645, 1549, 1409, 1262, 1161, 1052, 958, 731, 698, 601; $\delta_{\rm H}$ (400 MHz, CDCl₃), 5.79 (1H, br t, *J* = 6.0 Hz, NH), 3.28 (2H, q, J = 6.0 Hz, CH₂NHCO), 3.22–3.17 (2H, m, SCH₂CH₂CONH), 3.14 (2H, t, J = 6.7 Hz, COSCH₂CH₂COS), 2.83 (2H, t, *J* = 6.7 Hz, COSCH₂CH₂COS), 2.58–2.51 (2H, m, CH₂CH₂CH₂COS), 2.50–2.44 (2H, m, SCH₂CH₂CONH), 1.70 (2H, t, J = 6.7 Hz, CH₂), 1.55–1.44 (2H, m, CH₂), 1.38–1.18 (14H, m, 7 × CH₂); δ_C (100 MHz, CDCl₃), 199.6 (COS), 197.8 (COS), 170.9 (CON), 44.0 (CH₂CH₂CH₂COS), 43.8 (COSCH₂CH₂COS), 39.7 (CH₂NHCO), 36.6 (SCH₂CH₂CONH), 29.3 (CH₂), 28.9 (CH₂), 28.7 (CH₂), 28.5 (CH₂), 28.2 (CH₂), 28.1 (CH₂), 28.0 (CH₂), 26.5 (CH₂), 25.6 (COSCH₂CH₂CONH), 25.3 (CH₂), 24.3 (COSCH₂CH₂COS); HRMS (ESI): calcd. for C₁₈H₃₂NO₃S₂, 374.1818. Found: [MH]⁺, 374.1812 (1.5 ppm error).

5-(3-Mercaptopropanoyl)-1-oxa-5-azacycloheptadecane-4,17-dione (43)

Oxalyl chloride (0.340 mL, 4.00 mmol) was added to a suspension of 3-(tritylthio)propanoic acid (467 mg, 1.34 mmol) in DCM (13.5 mL), followed by a catalytic amount of DMF (1 drop). The resulting mixture was stirred at RT for 30 min and concentrated in vacuo to remove all solvent and excess oxalyl chloride. The resulting 3-(tritylthio)propanoyl chloride was added to a pre-stirred mixture of 1-oxa-5azacycloheptadecane-4,17-dione **41**¹⁴ (120 mg, 0.445 mmol), DMAP (6.7 mg, 0.055 mmol) and pyridine (0.220 mL, 2.67 mmol) in DCM (9.0 mL) under an argon atmosphere. The reaction mixture was then heated at reflux at 50 °C and stirred for 18 h. The solvent was removed in vacuo, and the reaction mixture loaded onto a short silica plug and eluted (SiO₂, 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) to remove the majority of the excess carboxylic acid and pyridine residues, and then concentrated in vacuo to afford crude 5-(3-(tritylthio)propanoyl)-1-thia-5-azacycloheptadecane-4,17dione (42) as a colorless oil which was used without further purification, with 220 mg of this crude material obtained. [Data for crude **42**: R_f 0.67 (1:1 hexane: ethyl acetate); v_{max}/cm⁻¹ (thin film) 3057, 2929, 2857, 1733, 1696, 1642, 1489, 1445, 1368, 1104, 1034, 910, 742, 699, 676, 620; δ_H (400 MHz, CDCl₃), 7.51–7.42 (5H, m, Ar**H**), 7.35–7.17 (10H, m, Ar**H**), 4.42 (2H, t, *J* = 6.0 Hz, CO₂CH₂CH₂CON), 3.53 (2H, m, CH₂CH₂CH₂NCO), 3.01 (2H, t, J = 6.0 Hz, CO₂CH₂CON), 2.59 (4H, m, CH₂CH₂S and CH₂CH₂S), 2.33 (2H, m, CH₂CH₂CO₂), 1.70–1.60 (2H, m, CH₂), 1.53–1.43 (2H, m, CH₂), 1.42–1.24 (14H, m, 7 × CH₂); Diagnostic ¹³C NMR resonances: δ_c (100 MHz, CDCl₃), 174.4 (**C**O), 173.8 (**C**O), 172.7 (**C**O), 59.6 (CO₂CH₂CH₂CON), 43.8 (CH₂CH₂CH₂NCO), 37.6 (CH₂), 37.2 (CO₂CH₂CH₂CON), 34.1 (CH₂CH₂CO₂); HRMS (ESI): calcd. for C₃₇H₄₅NNaO₄S, 622.2962. Found: [MNa]⁺, 622.2973 (-1.2 ppm error)]. This mixture was then dissolved in DCM (4.3 mL) under an argon atmosphere, before TFA (0.420 mL, 5.6 mmol) was added and the solution stirred for 3 min. Next, triisopropylsilane (0.100 mL, 0.47 mmol) was added and the solution stirred for a further 30 min. The mixture was then diluted with DCM (1.5 mL) and washed with water (5 mL). The aqueous layer was then extracted with DCM (3×1.5 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) afforded the *title compound* as a colorless oil (47.3 mg, 30% from **41**); R_f 0.14 (4:1 hexane: ethyl acetate); v_{max}/cm⁻¹ (thin film) 2927, 2856, 1732, 1693, 1460, 1367, 1208, 1131, 1102, 732; δ_H (400 MHz, CDCl₃), 4.43 (2H, t, *J* = 6.3 Hz, CO₂CH₂CH₂CON), 3.66–3.60 (2H, m, CH₂CH₂CH₂NCO), 3.09 (2H, t, J = 6.5 Hz, CH₂CH₂SH), 3.01 (2H, t, J = 6.3 Hz, CO₂CH₂CH₂CON), 2.80 (2H, dt, J = 8.5, 6.5 Hz, CH₂CH₂SH), 2.35 – 2.29 (2H, m, CH₂CH₂CO₂), 1.67 (1H, t, J = 8.5 Hz, CH₂CH₂SH [overlapping]), 1.68–1.60 (2H, m, CH₂ [overlapping]), 1.59–1.50 (2H, m, CH₂), 1.41–1.21 (14H, m, 7 × CH₂); δ_{c} (100 MHz, CDCl₃), 174.2 (CO), 174.0 (CO), 172.9 (CO), 59.6 (CO₂CH₂CH₂CON), 44.0 (CH₂CH₂CH₂NCO), 42.8 (CH₂CH₂SH), 36.9 (CO₂CH₂CH₂CON), 34.2 (CH₂CH₂CO₂), 27.92 (CH₂), 27.85 (CH₂), 27.6 (CH₂), 27.2 (CH₂), 27.1 (CH₂), 27.0 (CH₂), 26.7 (CH₂), 25.1 (CH₂), 24.8 (CH₂), 19.8 (CH₂CH₂SH); HRMS (ESI): calcd. for C₁₈H₃₂NO₄S, 358.2047. Found: [MH]⁺, 358.2029 (5.0 ppm error).

1-Oxa-5-thia-9-azacyclohenicosane-4,8,21-trione (44)

5-(3-Mercaptopropanoyl)-1-oxa-5-azacycloheptadecane-4,17-dione (**43**) (47.3 mg, 0.132 mmol) was dissolved in CDCl₃ (1.5 mL) and transferred to a round bottomed flask under argon. To it was added triethylamine (37 μ L, 0.265 mmol) in CDCl₃ (0.5 mL). The reaction mixture was heated to 55 °C in an oil bath for 12 h. Purification by flash column chromatography (SiO₂, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded the *title compound* **44** (8.0 mg, 17%) as an off white solid, along with disulfide **45** (7.3 mg, 16%; see next page for data for **45**). Data for **44**: m.p. 78 – 80 °C; R_f 0.14 (1:1 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 3301, 2926, 2855, 1737, 1690, 1647, 1551, 1459, 1256, 1167, 1097, 1020, 715; δ_{H} (400 MHz, CDCl₃), 5.80 (1H, br s, NH), 4.38 (2H, t, *J* = 5.9 Hz, CO₂CH₂CH₂COS), 3.30 (2H, q, *J* = 5.8 Hz, CH₂NHCO), 3.18 (2H, t, *J* = 6.8 Hz, SCH₂CH₂), 2.85 (2H, t, *J* = 5.9 Hz, CO₂CH₂CH₂COS), 2.47 (2H, t, *J* = 6.8 Hz, SCH₂CH₂), 2.34 – 2.27 (2H, m, CH₂CH₂CO₂), 1.67 – 1.58 (2H, m, CH₂), 1.55 – 1.46 (2H, m, CH₂), 1.39 – 1.21 (14H, m, 7 × CH₂); δ_{C} (100 MHz, CDCl₃), 197.0 (COS), 173.8 (CO₂), 170.9 (CON), 59.7 (CO₂CH₂CH₂COS), 43.4 (CO₂CH₂CH₂COS), 39.6 (CH₂NHCO), 36.8 (SCH₂CH₂), 34.1 (CH₂CH₂CO₂), 28.9 (CH₂), 28.5 (CH₂), 28.32 (2 × CH₂), 28.28 (2 × CH₂), 27.9 (CH₂), 26.0 (CH₂), 25.7 (SCH₂CH₂), 24.7 (CH₂); HRMS (ESI): calcd. for C₁₈H₃₁NNaO₄S, 380.1866. Found: [MNa]⁺, 380.1866 (0.1 ppm error).

5,5'-(3,3'-Disulfanediylbis(propanoyl))bis(1-oxa-5-azacycloheptadecane-4,17-dione) (45)

Data for **45** (for synthetic procedure, see above): $R_f 0.58$ (1:1 ethyl acetate: hexane); v_{max}/cm^{-1} (thin film) 2926, 2855, 1733, 1695, 1459, 1366, 1260, 1131, 1100, 1020, 913, 802, 732, 470; δ_H (400 MHz, CDCl₃), 4.43 (4H, t, *J* = 6.2 Hz, 2 × CO₂CH₂CH₂CON), 3.68 – 3.56 (4H, m, 2 × CH₂CH₂CH₂NCO), 3.18 (4H, t, *J* = 6.8 Hz, 2 × CH₂CH₂CJ₂), 3.01 (4H, t, *J* = 6.2 Hz, 2 × CO₂CH₂CH₂CON), 2.96 (4H, t, *J* = 6.8 Hz, 2 × CH₂CH₂S), 2.34–2.28 (4H, m, 2 × CH₂CH₂CO₂), 1.70–1.60 (4H, m, 2 × CH₂), 1.59–1.50 (4H, m, 2 × CH₂), 1.39–1.18 (28H, m, 14 × CH₂); δ_C (100 MHz, CDCl₃), 174.4 (2 × CO), 174.0 (2 × CO), 173.0 (2 × CO), 59.7 (2 × CO₂CH₂CH₂CON), 44.2 (2 × CH₂CH₂CH₂NCO), 38.4 (2 × CH₂CH₂S), 37.0 (2 × CO₂CH₂CH₂CON), 34.2 (2 × CH₂CH₂CO₂), 33.3 (2 × CH₂CH₂S), 28.0 (2 × CH₂), 27.9 (2 × CH₂), 27.7 (2 × CH₂), 27.23 (2 × CH₂), 27.19 (2 × CH₂), 27.0 (2 × CH₂), 26.7 (2 × CH₂), 25.2 (2 × CH₂), 24.8 (2 × CH₂); HRMS (ESI): calcd. for C₃₆H₆₀N₂NaO₈S₂, 735.3683. Found: [MNa]⁺, 735.3709 (-3.5 ppm error).

5-Benzyl-1-(3-(tritylthio)propanoyl)-1,5-diazacycloheptadecane-2,6-dione (47)

A mixture of 5-benzyl-1,5-diazacycloheptadecane-2,6-dione¹⁰ (327.0 mg, 0.912 mmol), DMAP (11.2 mg, 0.092 mmol) and pyridine (0.44 mL, 5.47 mmol) in DCM (10 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride **30** (1.37 mmol, prepared from 3- (tritylthio)propanoic acid using the general procedure) in DCM (13 mL) was added and the resulting mixture was heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (5 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3 × 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated *in vacuo*. TLC analysis indicated that acylation was incomplete at this stage, so an additional acylation sequence was performed. Thus, the crude reaction mixture was dissolved in DCM (10 mL) and to it was added DMAP (11.2 mg, 0.092 mmol) and pyridine (0.44 mL, 5.47 mmol). Then, another solution of acid chloride **30** (1.36 mmol, 1.5 eqv. prepared using the general procedure) in DCM (13 mL) was added and the resulting mixture was

heated at reflux at 50 °C for 18 h. The mixture was then diluted with DCM (5 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3×10 mL) and the combined organic extracts dried over MgSO4 and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the title compound as a 2:1 mixture of rotamers as a fluffy white solid (343mg, 55 %)*; m.p. 38-48 °C; R_f 0.45 (1:1 ethyl acetate: hexane); v_{max}/cm⁻¹ (thin film) 2929, 1694, 1637, 1445, 1371, 1131, 1105, 1034, 907, 726, 698, 647, 619, 506; δ_{H} (400 MHz, CDCl₃) 7.47–7.15 (40H, m, ArH, both rotamers), 4.65 (2H, s, NCH₂Ph, major), 4.58 (2H, s, NCH₂Ph, minor), 3.66–3.60 (4H, m, CH₂, both), 3.54–3.47 (2H, m, CH₂, major), 3.37–3.30 (2H, m, CH₂, minor), 2.87 (2H, t, J = 6.5 Hz, CH₂, major), 2.83 (2H, t, J = 6.8 Hz, CH₂, minor), 2.69 (2H, t, J = 7.1 Hz, CH₂, major), 2.54 (2H, t, J = 7.0 Hz, CH₂, minor), 2.51–2.39 (6H, m, CH₂, both), 2.38–2.33 (2H, m, CH₂, major), 1.81–1.62 (4H, m CH₂, both), 1.53–1.18 (32H, m, CH₂, both); δ_C (100 MHz, CDCl₃), 174.4 (CO), 174.2 (CO), 174.1 (CO), 174.0 (CO), 173.6 (CO), 173.4 (CO), 144.8 (ArC), 144.7 (ArC), 138.2 (ArC), 137.1 (ArC), 129.7 (ArCH), 129.6 (ArCH), 129.0 (ArCH), 128.6 (ArCH), 128.0 (ArCH), 127.9 (ArCH), 127.7 (ArCH), 127.2 (ArCH), 126.8 (ArCH), 126.6 (ArCH), 126.5 (ArCH), 67.0 (CPh₃), 66.8 (CPh₃), 52.7 (NCH₂Ph, major), 48.7 (NCH₂Ph, minor), 44.3 (CH₂), 43.8 (CH₂), 43.2 (CH₂), 43.1 (CH₂), 38.4 (CH₂), 37.3 (CH₂), 37.2 (CH₂), 35.6 (CH₂), 33.3 (CH₂), 32.5 (CH₂), 31.7 (CH₂), 27.8 (CH₂), 27.5 (CH₂), 27.3 (CH₂), 27.2 (CH₂), 27.1 (CH₂), 27.0 (CH₂), 26.9 (CH₂), 26.8 (CH₂), 26.6 (CH₂), 26.5 (CH₂), 26.3 (CH₂), 26.1 (CH₂), 24.9 (CH₂), 24.8 (CH₂), 24.3 (CH₂); HRMS (ESI): calcd. for C₄₄H₅₂N₂NaO₃S, 711.3591. Found: [MNa]⁺, 711.3614 (-3.2 ppm error).

*Trace trityl impurities were visible in the NMR spectra of this product, but its purity was judged to be sufficient to proceed with the ring expansion sequence.
5-Benzyl-1-thia-5,18-diazacyclohenicosane-2,6,19-trione (49)

A mixture of 5-benzyl-1-(3-(tritylthio)propanoyl)-1,5-diazacycloheptadecane-2,6-dione (307 mg, 0.445 mmol) in DCM (5 mL) under an argon atmosphere was added TFA (0.46 mL, 6.01 mmol) and the solution stirred for 3 min. Next, triisopropylsilane (0.10 mL, 0.495 mmol) was added and the solution stirred for a further 30 min. The solvent and TFA were removed in vacuo. The crude material (containing thiol 48) was then re-dissolved in DCM (5 mL) and DBU (0.67 mL, 4.50 mmol) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. The reaction mixture was then diluted with DCM (10 mL) and washed with 10% aq. HCl (10 mL). The aqueous layer was then extracted with DCM (3 \times 10 mL) and the combined organic extracts dried over MgSO₄ and concentrated in vacuo. Purification by flash column chromatography (SiO₂, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a 5:3:1 (A:B:C) mixture of rotamers as a colorless oil (33.5 mg, 17%); Rf 0.34 (ethyl acetate); v_{max}/cm⁻¹ (thin film) 3308, 2925, 2854, 1635, 1551, 1495, 1432, 1363, 1260, 1201, 1163, 1059, 1030, 978, 915, 803, 728, 698, 645, 613; δ_H (400 MHz, CDCl₃), 7.39 – 7.09 (15H, m, ArCH, all rotamers), 7.03 (1H, br t, J = 5.7 Hz, NH, rotamer C), 6.79 (1H, br t, J = 5.9 Hz, NH, rotamer A), 5.76 (1H, br m, NH, rotamer B), 4.63 (2H, s, CH₂Ph, rotamer C), 4.59 (2H, s, CH₂Ph, rotamer B), 4.57 (2H, s, CH₂Ph, rotamer A), 3.72 – 3.67 (2H, m, CON(CH₂Ph)CH₂, rotamer A), 3.66 – 3.61 (2H, m, CON(CH₂Ph)CH₂, rotamer C), 3.59 – 3.52 (2H, m, CON(CH₂Ph)CH₂, rotamer B), 3.33 – 3.24 (6H, m, 3 × CH₂, all rotamers), 3.19 - 3.08 (4H, m, 2 × CH₂), 2.76 - 2.66 (4H, m, 2 × CH₂), 2.57 - 2.47 (4H, m, 2 × CH₂, rotamer C), 2.45 – 2.28 (10H, m, 5 × CH₂), 1.78 – 1.57 (8H, m, 4 × CH₂), 1.55 – 1.43 (6H, m, 3 × CH₂), 1.41 – 1.19 (42H, m, 21 × CH₂, all rotamers); δ_c (100 MHz, CDCl₃) data for major rotamer A, 197.5 (COS), 174.2 (CON), 171.4 (CON), 136.6 (ArC), 129.1 (2 × ArCH), 127.8 (ArCH), 126.5 (2 × ArCH), 51.2 (CH₂Ph), 42.7 (CH₂), 42.1 (CH₂), 39.4 (CH₂), 36.0 (CH₂), 33.0 (CH₂), 28.9 (CH₂), 28.0 (CH₂), 27.9 (CH₂), 27.8 (CH₂), 27.6 (CH₂), 27.4 (CH₂), 27.0 (CH₂), 26.1 (CH₂), 25.7 (CH₂), 24.6 (CH₂); Diagnostic ¹³C NMR resonances of rotamer B: δ_c (100 MHz, CDCl₃), 197.0 (COS), 173.4 (CON), 170.4 (CON), 48.4 (CH₂Ph); Diagnostic ¹³C NMR resonances of rotamer C: δ_c (100 MHz, CDCl₃), 175.1 (CON), 171.2 (CON), 52.1 (CH₂Ph); HRMS (ESI): calcd. for C₂₅H₃₈N₂NaO₃S, 469.2495 Found: [MNa]⁺, 469.2495 (0.0 ppm error).

Table S1. Optimisation experiments for the S-Ac strategy

All reactions were performed at RT. ^a Isolated following column chromatography. ^b Yield (in parentheses) is only reported for side products when the product was isolated without impurities; see ESI spectroscopic characterisation data relating to the side products **25**, **26** and **28**.

\langle	O O STrt	i) Trt cleavage (see belo ii) DBU (10 equiv) DCM, RT, 18 h	w) 17 24b		
310			Scavenger	Vield ^b	
Entry	Step ii performed	Acid	reagent	24b/%	Side products ^b
		TFA	<i>i</i> -Pr₃SiH	12 3	
1	No	(8 equiv.)	(1.4 equiv.)		32 (48%), 33 (7%)
2	Vac	TFA	<i>i</i> -Pr₃SiH	56	21h (40/) 22G
2	Yes	(13 equiv.)	(1.2 equiv.)	50	210 (4%), 33
2	Voc		<i>i</i> -Pr₃SiH	0	No reaction
5	Tes	ACON	(1.2 equiv.)	0	No reaction
4	Vee		<i>i</i> -Pr₃SiH	0	No resetion
4	Yes	HCI ²	(1.2 equiv.)	U	Noreaction
5	Yes	TFA ^e	<i>i</i> -Pr₃SiH	trace	316 (30/) 316 (000/)
		(1.1 equiv.)	(1.2 equiv.)		210 (3%), 310 (80%)
6	Yes	TFA	Et₃SiH	36	31 (40/) 33 (70/)
		(13 equiv.)	(1.3 equiv.)		21D (4%), 33 (7%)

^a Unless stated, the following protocol was used for step i) - the stated acid was added to **31b** in DCM at RT and stirred for 3 min, before adding the scavenger reagent and stirring at RT for a further 30 min (for full synthetic procedures, see ESI). ^b Yields refer to material isolated cleanly following column chromatography. ^c**33** observed by TLC but not isolated. ^d 4 M in 1,4-dioxane. ^e at 0 °C

p3471kyp Kleo Palate - KP144_C_1H 0 0 -1.6 0 11 IJ l -1.5 N S[^] -1.4 8 -1.3 1 -1.2 -1.1 F (m) 1.43 -1.0 D (m) 1.68 -0.9 C (dtd) 1.85 B (m) 2.63 A (m) 3.89 -0.8 E (ddt) 1.56 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 2.12-11.00-2.13-10.99-2.18 J1.08 2.21 J1.04 2.12 J1.08 4.15-3.00 L --0.1 5.0 f1 (ppm) 4.0 2.5 1.5 .0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 3.5 3.0 2.0 1.0 0.5 0.0

23a

$\boldsymbol{20}_{\text{RE}}$

RO

23b

24b

Fluorenylmethyl p-toluenesulfonate

35b

10 200

f1 (ppm)

-0.02 --0.00 ---0.02

24c

24e

24f

24g

24h

24i

24j

9-Fluorenylmethyl chloride

100

90

80

70

maladar period a substance in the second state of the second state of the second state of the second state of t

60

50

40

30

20

I

120

110 f1 (ppm)

in the second

130

n a the fail is the distance of the second secon

180

170

160

150

140

190

0 200

-0.03 --0.02 --0.01

-0.00 . --0.01

24I
9H-Fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3-oxopropyl)carbamate

24m

38 (crude)

42 (crude)

78

100 90

80

70 60 50

40 30

120 110 f1 (ppm)

Í

170 160 150

140 130

20 210

200 190 180

-0.1

0.0

150 140 130 120

en en en de la de la

0 200

f1 (ppm)

i na kalendari na ka

-0.00

0 200

f1 (ppm) -0.000

-0.005

47 (contains trace impurities- used in this form towards the synthesis of 49)

Computational Studies

The structures were drawn in PCModel,¹⁵ and a conformational analysis was performed using the Molecular Mechanics Force Field (MMFF) level of theory.¹⁶ The structures within 3.5 kcal/mol of the lowest energy conformation were kept and the geometry of each optimised in Gaussian 09, Revision D.01,¹⁷ at the B3LYP/6-31G* level of theory.^{18,19} The structure with the lowest calculated electronic energy was then resubmitted for a frequency calculation, which confirmed that the structures were minima due to the absence of imaginary frequencies. The SCF energies were corrected for their zeropoint energies, thermal energies and entropies at 298 K (obtained from the frequency calculations). For compound **20**_{RE}, where x-ray crystallography data was available,²⁰ the crystal structure geometry was optimised at the B3LYP/6-31G* level of theory with subsequent frequency calculation, with no initial conformational search performed. No symmetry constraints were applied. Energies in Hartrees and xyz coordinates are provided.

Energies and xyz Coordinates

15_{RO}

F(DD21VD) = 0FF 40700002F

SCF Done:	E(RB3LYP) = -	955.40799092	.5
Zero-point	correction=	0	.236721
Thermal co	prrection to Gi	bbs Free Energ	y= 0.195657
Н	-3.25898800	1.05310000	-0.81456900
С	-2.69732800	1.23711200	0.11129300
н	-2.95655200	2.24358900	0.44748600
С	-3.09798800	0.19821300	1.18358100
н	-2.36922400	0.22505400	2.00501800
н	-4.05416200	0.51779200	1.61516300
С	-1.98851800	-1.83544400	0.03505600
Н	-2.22790800	-2.83106800	-0.36027100
Н	-1.21373100	-1.98398200	0.79836200
С	-1.39140500	-1.00477200	-1.10959700
Н	-0.71427500	-1.61897100	-1.69964100
Н	-2.17668600	-0.63931400	-1.77937600
Ν	-0.57832300	0.14774700	-0.65664600
С	-1.20165800	1.31444500	-0.17733700
0	-0.58895400	2.34842300	0.03095600
С	0.82940600	-0.02009700	-0.74698000
0	1.27571600	-1.04896300	-1.23335100
С	1.76165700	1.05987100	-0.22125900
Н	1.45223100	1.37143500	0.77963200
Н	1.63994500	1.95307100	-0.84566800
С	3.22418900	0.61306500	-0.22902200
Н	3.85656000	1.47023500	0.01939600
Н	3.52106700	0.25009500	-1.21492900
Н	3.01977200	-1.68260800	0.42238300
С	-3.25431100	-1.23402300	0.65740300
Н	-4.05584200	-1.24258400	-0.09646700
Н	-3.59744800	-1.88111500	1.47461900
S	3.66157100	-0.66280400	1.02785800

SCF Done: E(RB3LYP) = -955.387781518

Zero-poin ⁻	t correction=	0	.240416
Thermal c	orrection to Gi	bbs Free Energ	gy= 0.202686
н	3.00970800	2.18935200	-0.35144900
С	2.40073800	1.34679900	0.00219200
н	2.15251500	1.55779400	1.04996100
С	2.51302500	-1.20567700	0.36483700
С	1.18762500	-1.51554200	-0.35585500
н	0.94856900	-2.57487300	-0.19646100
н	1.28345700	-1.38923400	-1.43962400
С	-0.04178500	-0.73513300	0.15416300
С	1.10356000	1.33158100	-0.82054000
0	-0.12018900	-0.82129300	1.57545400
н	-0.40415800	-1.72638200	1.78799800
Ν	-0.04238600	0.67311100	-0.17380500
Н	3.18300500	-2.06201500	0.21559100
Н	2.31693000	-1.14451800	1.44131500
н	0.76476800	2.35259700	-0.99297600
н	1.27933700	0.86990700	-1.80104000
С	-1.12624100	1.47501700	0.17184700
0	-1.10027200	2.69297600	0.05462800
С	-2.38655300	0.75114500	0.62459300
Н	-3.16548700	1.51480300	0.69705300
Н	-2.23183600	0.31119700	1.61298200
С	-2.81118300	-0.32805600	-0.37949000
Н	-3.72166700	-0.82915800	-0.03932100
Н	-3.01698300	0.12352400	-1.35473500
С	3.22896600	0.06269700	-0.11354300
Н	4.16171400	0.17863200	0.45366800
Н	3.52528700	-0.06953700	-1.16519400
S	-1.52710500	-1.63027000	-0.60193800

 15_{RE}

SCF Done: E(RB3LYP) = -955.405834775

Zero-point correction= 0.239231 Thermal correction to Gibbs Free Energy= 0.199612 3.00970800 2.18935200 -0.35144900 Н С 2.40073800 1.34679900 0.00219200 Н 2.15251500 1.55779400 1.04996100 С 2.51302500 -1.20567700 0.36483700 С 1.18762500 -1.51554200 -0.35585500 Н 0.94856900 -2.57487300 -0.19646100 1.28345700 -1.38923400 -1.43962400 Н С -0.04178500 -0.73513300 0.15416300 С 1.10356000 1.33158100 -0.82054000 0 -0.12018900 -0.82129300 1.57545400 Н -0.40415800 -1.72638200 1.78799800 Ν -0.04238600 0.67311100 -0.17380500 3.18300500 -2.06201500 0.21559100 Н Н 2.31693000 -1.14451800 1.44131500 Н 0.76476800 2.35259700 -0.99297600 Н 1.27933700 0.86990700 -1.80104000 С -1.12624100 1.47501700 0.17184700 0 -1.10027200 2.69297600 0.05462800 С -2.38655300 0.75114500 0.62459300 н -3.16548700 1.51480300 0.69705300 Н -2.23183600 0.31119700 1.61298200 С -2.81118300 -0.32805600 -0.37949000 Н -3.72166700 -0.82915800 -0.03932100 Н -3.01698300 0.12352400 -1.35473500 С 3.22896600 0.06269700 -0.11354300 Н 4.16171400 0.17863200 0.45366800 Н 3.52528700 -0.06953700 -1.16519400 S -1.52710500 -1.63027000 -0.60193800

RO

SCF Done: E(RB3LYP) = -612.565466747

Zero-point	correction=	0.254925		
Thermal c	orrection to Gil	bbs Free Energ	y= 0.214718	
Н	2.53071200	0.90028700	-1.53807500	
С	2.26923900	1.30122200	-0.55004500	
н	2.46632400	2.37529200	-0.57329300	
С	3.13936200	0.63018200	0.53761100	
Н	2.71595400	0.85410900	1.52620500	
н	4.12802800	1.10442700	0.51571400	
С	2.01427300	-1.69051000	0.35671600	
н	1.52205100	-1.64497400	1.33690000	
н	2.25628300	-2.74680700	0.18198100	
С	1.00593800	-1.25431600	-0.71661700	
н	1.51236100	-1.04393500	-1.66458100	
н	0.29040900	-2.05401400	-0.89421300	
N	0.18881100	-0.07725600	-0.34223000	
С	0.76671500	1.20411600	-0.29998900	
0	0.12821700	2.21140300	-0.04363300	
С	-1.16526300	-0.35568200	0.00275300	
0	-1.54087500	-1.52019200	0.00726200	
С	-2.11733900	0.77361200	0.35437400	
н	-1.70227500	1.34658900	1.18971800	
н	-2.16516600	1.47670400	-0.48258800	
С	-3.51936100	0.25794300	0.68879600	
н	-4.10998700	1.11786500	1.02653400	
н	-3.45377600	-0.44305500	1.53816900	
н	-3.72942800	-1.19145500	-0.71079800	
С	3.31800700	-0.88296600	0.36444300	
н	3.97385600	-1.26086500	1.15920400	
н	3.84858200	-1.06526500	-0.58216200	
N	-4.17522400	-0.30048900	-0.49883700	
н	-5.14718600	-0.51198300	-0.27853400	

SCF Done: E(RB3LYP) = -612.550689069

Zero-point	correction=	0.256472		
Thermal co	orrection to Gil	bbs Free Energ	y= 0.219205	
Н	2.50206700	2.29384900	0.81753400	
С	2.02107100	1.32423700	0.63313900	
Н	1.81141900	0.88311400	1.61298500	
С	2.57227000	-1.01134600	-0.31210000	
С	1.17105300	-1.21992600	-0.90078400	
Н	1.04470600	-2.28808700	-1.11517800	
Н	1.07012600	-0.68948200	-1.85713500	
С	-0.02402100	-0.83055200	0.01340600	
С	0.70912900	1.64252600	-0.09406200	
0	0.26310300	-1.06881400	1.39327400	
Н	0.31145100	-2.03651700	1.48371600	
Ν	-0.34665400	0.60524500	-0.08687900	
Н	3.29102400	-1.53096100	-0.95903900	
Н	2.61767000	-1.50696500	0.66465400	
Н	0.24656400	2.52157800	0.35553400	
Н	0.92994600	1.91785200	-1.13660500	
С	-1.63940100	1.09403300	-0.12946700	
0	-1.87547100	2.29578700	-0.20373900	
С	-2.79512100	0.09929400	-0.14813800	
Н	-3.18169900	0.09166400	-1.17744100	
Н	-3.58941900	0.52376700	0.47420600	
С	-2.39785900	-1.30721600	0.28216200	
Н	-2.25489000	-1.35174600	1.36574100	
Н	-3.16344600	-2.04510600	0.02001100	
С	3.00219600	0.45018000	-0.15895200	
Н	3.98605500	0.47761700	0.32761000	
Н	3.14165700	0.89510300	-1.15588900	
N	-1.13171300	-1.70314300	-0.34072500	
Н	-1.23162500	-1.73355700	-1.35497600	

RE

SCF Done: E(RB3LYP) = -612.581654597

Zero-poin	t correction=	0	.256312
Thermal correction to Gil		bbs Free Energ	y= 0.218084
н	-3.29285300	-0.09347100	-1.35202900
С	-2.81897800	0.02468800	-0.36731800
н	-3.63639100	0.24043400	0.33438400
С	-1.10993400	1.56648500	0.85891000
С	0.21735000	2.32921300	0.61749700
Н	0.63714200	2.64817100	1.57996000
Н	0.04257600	3.22312500	0.01156600
С	-2.18830500	-1.32144700	0.05419200
Ν	-0.90740300	-1.57268800	-0.59799400
Н	-1.75926800	2.17782200	1.49858500
Н	-0.89129100	0.65701400	1.43153600
Н	-1.98123200	-1.35364200	1.12586200
Н	-2.89156700	-2.13645800	-0.16084400
С	0.25515600	-1.72818100	0.10226400
0	0.28354600	-1.90184100	1.32017300
С	1.53810600	-1.58603500	-0.71359700
Н	2.00880800	-2.56987500	-0.83037600
Н	1.32958500	-1.19093500	-1.71216900
С	2.51525800	-0.63903500	0.02424700
Н	-0.83337800	-1.36719100	-1.58498800
С	1.22475400	1.46038500	-0.13590700
0	1.41972400	1.56053500	-1.34466700
Н	3.01571600	-1.17729800	0.83159300
Н	3.27327400	-0.28255100	-0.67716800
С	-1.84409500	1.21309000	-0.44906200
н	-2.39856000	2.09373600	-0.79888800
н	-1.10201200	1.00949000	-1.22886500
Ν	1.85655000	0.51500300	0.63074100
н	1.47339200	0.34088500	1.55122300

 $\mathbf{17}_{RO}$

SCF Done: E(RB3LYP) = -651.874769263

Zero-point correction=		0.283135		
Thermal correction to Gib		bbs Free Energ	y= 0.240916	
C	1 21042600	1 27256900	0 10095 400	
	-1.31942600	1.27550800	-0.19985400	
U	-0.72044600	2.31252300	0.02209800	
N C	-0.67198400	0.08930600	-0.59722500	
	0.74075700	-0.08394100	-0.00981700	
	-1.46330700	-1.09395400	-1.00058500	
H C	-0.75950700	-1.74632800	-1.51889600	
	-2.11570000	-1.84773300	0.16143500	
н	-2.21566500	-0.77787100	-1./3663200	
н	-1.38281500	-1.93169200	0.97432400	
H	-2.32484400	-2.8/216400	-0.1/282200	
ι.	-3.41926600	-1.21898600	0.66804200	
Н	-4.1/535400	-1.28/52500	-0.12853200	
C	-3.30296800	0.24/36400	1.10198800	
Н	-3.80532500	-1.81231300	1.506/4100	
Н	-2.63063900	0.33730800	1.96599700	
H	-4.28679000	0.58918700	1.44561600	
С	-2.83266200	1.21130300	-0.01136900	
Н	-3.33303600	0.96234100	-0.95669300	
Н	-3.11179100	2.23705700	0.23967400	
0	1.19609100	-1.16503000	-0.95850500	
С	1.65663700	1.04868600	-0.17985000	
Н	1.38840800	1.36518200	0.83319400	
С	3.13463800	0.65474600	-0.23430600	
Н	1.46468200	1.92052900	-0.81220900	
Н	3.40357300	0.36059900	-1.26593300	
Н	3.72174800	1.55211100	0.00089100	
Ν	3.46682700	-0.36706900	0.75442700	
С	4.89617500	-0.65000200	0.80990700	
Н	2.97221200	-1.21552100	0.48621300	
н	5.07885300	-1.46889200	1.51405200	
н	5.34656700	-0.92689600	-0.16261700	
н	5.43139400	0.23297600	1.18092800	

SCF Done: E(RB3LYP) = -651.855610717

Zero-point	t correction=	0.284632		
Thermal c	orrection to Gil	bbs Free Energ	gy= 0.245582	
Н	2.71414500	-0.27705500	1.31622800	
С	2.64574200	0.49507600	0.54370900	
н	3.48983800	1.17791400	0.70905200	
С	1.99889900	-1.48158600	-0.93819800	
С	0.47000900	-1.35410500	-0.92524800	
н	0.05167600	-2.36527700	-0.98154900	
н	0.14354500	-0.82348400	-1.82742000	
С	-0.18547600	-0.63540100	0.27913600	
С	1.38742100	1.34655900	0.74824900	
0	0.36838000	-1.18268200	1.45508600	
Н	-0.16668000	-0.82040700	2.18425500	
Ν	0.09475000	0.82394100	0.24380100	
Н	2.27288100	-1.99307700	-1.87076500	
Н	2.30865300	-2.14382500	-0.12016400	
Н	1.28286800	1.57742900	1.81744700	
Н	1.50892900	2.30483500	0.24222900	
С	-0.81725700	1.79503200	-0.11913300	
0	-0.54485400	2.99171100	-0.09368600	
С	-2.21831200	1.35873000	-0.51389400	
Н	-2.49365100	1.91876800	-1.41311600	
Н	-2.87496400	1.71139600	0.29063000	
С	-2.38548000	-0.14019300	-0.70033000	
Н	-3.44099600	-0.41718000	-0.60480300	
Н	-2.07290900	-0.45388200	-1.71272600	
С	2.78366000	-0.16844900	-0.83295300	
Н	3.84355600	-0.38870600	-1.01438100	
Н	2.47345200	0.52812700	-1.62545900	
Ν	-1.64344200	-0.83620000	0.34781200	
С	-2.05566500	-2.23575700	0.46608800	
Н	-2.04330700	-2.78558500	-0.49058800	
Н	-1.40511700	-2.75437400	1.17171300	
Н	-3.08053400	-2.26146600	0.85237500	

SCF Done: E(RB3LYP) = -651.885859098

Zero-point	correction=	0.283816		
Thermal co	prrection to Gil	bbs Free Energ	y= 0.243013	
С	-1.19404700	1.26559800	0.14484900	
0	-1.38142700	2.25012600	-0.56646400	
N	-1.98028100	0.13577000	0.01929700	
С	-3.06550800	0.15194600	-0.95690500	
С	-1.83998600	-1.09629700	0.79094700	
Н	-2.96372100	-0.67202300	-1.67494800	
н	-4.03620800	0.04894600	-0.45442400	
Н	-3.03122400	1.10110500	-1.48907900	
Н	-2.84969900	-1.47648000	0.98680500	
С	-1.02747700	-2.19928400	0.07048400	
Н	-1.39108700	-0.89077300	1.76436400	
Н	-1.40251100	-2.32553700	-0.95244800	
Н	-1.17393300	-3.14436100	0.60201900	
С	0.47166700	-1.91270600	0.09564200	
0	1.16834500	-2.23963400	1.05348100	
Ν	0.96957000	-1.23434200	-0.97711200	
С	2.36275600	-0.78975400	-1.03494000	
Н	2.57056200	-0.52383600	-2.07716200	
Н	2.99414700	-1.64557000	-0.77559200	
С	2.68899800	0.38679400	-0.10052000	
Н	3.76661400	0.57717300	-0.18673700	
Н	2.52668400	0.04558200	0.92745000	
С	1.89285700	1.68644000	-0.38149400	
Н	2.58530400	2.48044700	-0.68658700	
Н	1.21523000	1.54703300	-1.23381600	
С	1.06680800	2.20488900	0.80940200	
С	-0.09831200	1.28792100	1.21519900	
Н	1.72433000	2.33383000	1.67942000	
Н	0.65811400	3.18857400	0.55997300	
Н	0.27397000	0.29132000	1.46013300	
Н	-0.56216700	1.67639000	2.13374000	
Н	0.32867900	-0.91903500	-1.69053400	

RO

SCF Done: E(RB3LYP) = -632.432710989

Zero-point correction= 0.242378			.242378
Thermal co	prrection to Gil	bbs Free Energ	gy= 0.202557
С	-0.77979900	1.22843500	-0.35576700
0	-0.12380300	2.24561800	-0.21233700
С	-2.30041700	1.30297300	-0.44985200
Н	-2.51655800	2.37327400	-0.42076900
С	-3.05537900	0.57784500	0.68786100
Н	-2.64621900	0.93119600	-1.42368600
Н	-4.04451600	1.04238800	0.77948700
С	-3.24166200	-0.92898700	0.47111000
Н	-2.54199600	0.76555700	1.64075300
Н	-3.83309300	-1.34045000	1.29889900
Н	-3.84320800	-1.07829200	-0.43802300
С	-1.94000700	-1.72787400	0.33434200
С	-1.00976000	-1.23260800	-0.78206900
Н	-1.38171500	-1.72662300	1.27953400
Н	-2.18928000	-2.77603500	0.12481700
Ν	-0.19423400	-0.05243000	-0.41007300
Н	-1.57720000	-0.99442000	-1.68753600
Н	-0.29208100	-2.00932000	-1.03703500
С	1.16833200	-0.31203100	-0.11907200
0	1.57979300	-1.46506300	-0.20824800
С	2.09991500	0.80612600	0.31248600
Н	2.23596900	1.49435800	-0.52863000
Н	1.63134300	1.40477600	1.09974900
С	3.45523700	0.25644700	0.77609800
Н	3.30934700	-0.39132900	1.65527000
0	4.16596300	-0.41359100	-0.24787300
н	4.08052300	1.09879700	1.08970400
Н	3.61395100	-1.18453000	-0.46518500

SCF Done: E(RB3LYP) = -632.422019516

Zero-point	correction=	0.243615		
Thermal correction to G		bbs Free Energ	y= 0.206324	
Н	2.50586700	2.28772500	0.83064700	
С	2.02174800	1.32090500	0.64061000	
Н	1.85974900	0.85196100	1.61678400	
С	2.56087200	-0.99416000	-0.36169300	
С	1.14400300	-1.22472200	-0.90038300	
Н	1.00299000	-2.29528600	-1.08958100	
Н	1.00154600	-0.72106900	-1.86377600	
С	-0.02286100	-0.81812600	0.02881700	
С	0.67842900	1.65967300	-0.01405400	
0	0.26170100	-1.08397400	1.39903200	
н	0.49044200	-2.02788400	1.45637000	
Ν	-0.35971800	0.60535800	-0.04118700	
н	3.26334400	-1.49923700	-1.03712900	
н	2.65955000	-1.49200200	0.61122700	
н	0.22039700	2.49937800	0.51066600	
н	0.85290900	2.00758100	-1.04291700	
С	-1.65670600	1.07233300	-0.14278500	
0	-1.90603800	2.26943700	-0.22649300	
С	-2.78127600	0.04727600	-0.19296800	
н	-3.12987200	0.00805500	-1.23259800	
н	-3.60685400	0.43831300	0.40964900	
С	-2.33096600	-1.32749600	0.26144900	
н	-2.19221300	-1.36846700	1.34800500	
н	-3.02654900	-2.11644600	-0.03561400	
С	2.97085100	0.47422800	-0.21844700	
н	3.97988200	0.51548900	0.21211300	
н	3.04496200	0.93108000	-1.21671300	
0	-1.09474800	-1.62498300	-0.39655200	

SCF Done: E(RB3LYP) = -632.445665857

Zero-point correction= 0.243274				
Thermal correction to Gi		bbs Free Energ	y= 0.204596	
н	-0.36715300	3.46379100	-0.31930700	
С	-0.16403600	2.38563400	-0.36474600	
н	-0.49548500	2.06494000	-1.36299200	
С	-2.35379900	1.14526800	0.31062300	
С	-2.33484100	-0.03375700	-0.69321700	
н	-1.89450100	0.26102400	-1.64977800	
н	-3.36353100	-0.36141000	-0.87782200	
С	1.35742900	2.16337400	-0.27653300	
Ν	1.73594600	0.81093500	-0.67600600	
н	-2.89610800	0.81254500	1.20303400	
н	-2.93894100	1.96304100	-0.13056700	
н	1.88231300	2.88074100	-0.91924500	
Н	1.71999700	2.29965700	0.74542900	
С	1.99615800	-0.18912000	0.22175900	
0	2.18140600	0.00090600	1.41804300	
С	1.97375500	-1.59889800	-0.37486500	
н	2.73513800	-2.19801800	0.13348900	
Н	2.20061000	-1.59139700	-1.44756800	
С	0.60298700	-2.23649800	-0.13334500	
Н	1.43299600	0.51774500	-1.59550600	
С	-1.56437000	-1.20322500	-0.11250600	
0	-1.91535100	-1.85879200	0.84232300	
Н	0.53836800	-3.23225100	-0.58374300	
Н	0.38188700	-2.31469400	0.93291700	
С	-0.96418300	1.65283700	0.73546200	
н	-0.37921700	0.81126800	1.12271800	
н	-1.08874400	2.32966200	1.58992100	
0	-0.38028700	-1.37922300	-0.75845700	

RO

SCF Done: E(RB3LYP) = -916.097724890

Zero-point correction=		0.207419		
Thermal correction to Gi		bbs Free Energ	y= 0.167679	
_				
С	1.45217600	1.08389100	0.02399900	
С	3.67064800	-0.25756800	0.15131200	
С	1.50907100	-1.42124800	-0.33863200	
С	2.79494000	-1.46452400	0.47691700	
Ν	0.78158300	-0.12852300	-0.21695600	
С	2.89974100	1.01453100	0.50466900	
Н	4.61733900	-0.28784200	0.70232400	
Н	1.72587900	-1.59701400	-1.40023300	
Н	3.30894600	-2.40605700	0.25144000	
Н	3.92433100	-0.26271100	-0.91749700	
Н	0.81647500	-2.20398900	-0.02962000	
н	2.55835300	-1.47627500	1.54952800	
0	0.90735600	2.16915400	-0.08885900	
С	-0.59461800	-0.20941800	-0.55323000	
0	-1.02888000	-1.27481500	-0.96534800	
С	-1.50604500	0.99141200	-0.36020000	
н	-1.23460900	1.75025700	-1.10387200	
н	-1.31295300	1.46091400	0.60778600	
С	-2.98257800	0.62189800	-0.51017200	
Н	-3.16760900	0.11657700	-1.46004500	
Н	-3.58003900	1.53785500	-0.49320100	
Н	-3.03603600	-1.54515700	0.50890800	
S	-3.67575700	-0.40861200	0.85241700	
н	2.84809700	1.12151200	1.59823700	
н	3.38504700	1.92081500	0.13194300	

SCF Done: E(RB3LYP) = -916.080235426

Zero-point correction= 0.211240			.211240
Thermal correction to G		bbs Free Energ	gy= 0.174785
C	0 22502700	_0 72271100	0 17802100
C C	2 76523000	-0.66801200	-0 1013/800
C C	1 /2208700	1 42160500	0.26820500
C C	2 65011000	0.82327900	-0.42482300
N	0 1831/1700	0.70/89700	-0.42482300
C C	1 46232800	-1 37016100	-0.00237300
ч	2 9/970900	-0.80245500	0.45228500
н	1 57311100	1 41813500	1 35757900
н	2 56076600	0.96228300	-1 51071900
н	3 60562200	-1 12672300	-0.63545600
н	1 27433700	2 46500600	-0.03395500
н	3 54697700	1 36571500	-0 10186300
0	0 26785800	-0.88521500	1 59514700
н	0.29115500	-1 83848300	1 78401800
C	-2.49855800	-0.58489000	0.25964500
н	-3.47612800	-1.00040900	-0.00037200
C	-0.96845400	1.48566200	-0.08530000
0	-0.90380100	2,70763500	-0.04011700
е Н	-2.37683600	-0.63654300	1.34548100
C	-2.34099600	0.83723300	-0.25900200
н	-2.56871000	0.86394600	-1.33235700
н	-3.04506400	1.51594600	0.23337200
S	-1.23249400	-1.64216000	-0.52139100
- H	1.48845400	-2.43283200	-0.22019700
н	1.32451900	-1.31924600	-1.57863900

SCF Done: E(RB3LYP) = -916.091242468

Zero-point correction= 0.210632			.210632
Thermal correction to Gi		bbs Free Energ	gy= 0.173111
С	0.50587400	-1.56157100	0.29550300
С	2.14133900	-0.08259800	-0.91455700
С	2.36459500	0.87720500	0.28250200
С	1.77015600	-1.54408400	-0.53151600
Н	3.05719800	-0.14472100	-1.51332400
Н	1.36519800	0.31677600	-1.57709500
н	3.30772900	1.42039900	0.14230900
0	0.50372600	-1.44818600	1.50584300
Н	2.48401000	0.30093300	1.20868000
С	1.26916100	1.94276600	0.48315600
н	1.56257100	2.60481900	1.30859100
н	1.16131700	2.55984700	-0.41196900
Ν	-0.05518500	1.39351800	0.75111900
С	-2.15188100	-0.79213900	0.50113300
н	-3.10718500	-1.32070700	0.45314300
н	-1.72067900	-0.97675400	1.48905500
С	-2.35846100	0.70551900	0.20219100
н	-2.86499200	1.16071600	1.06561700
н	-3.01374300	0.83299600	-0.66228900
С	-1.09593000	1.51538500	-0.12974500
0	-1.05020300	2.23109800	-1.12304600
н	-0.13241900	0.72549400	1.50638200
Н	2.56952200	-1.99109100	0.06924500
Н	1.64177700	-2.13485900	-1.44559500
S	-1.01383300	-1.60841600	-0.69281000

SCF Done: E(RB3LYP) = -994.716587754

Zero-point correction=		0.265962		
Thermal correction to Gib		bbs Free Energ	y= 0.223991	
L	2 26645000	1 90759000	1 54609000	
n C	-3.30043000	1.89738900	0.02000400	
	-2.81548500	1.18433200	0.92090400	
H	-2.29814700	0.51957400	1.62640200	
	-1.78497600	1.99184600	0.11440500	
Н	-1.09361200	2.49018800	0.80297300	
Н	-2.30263100	2.78692500	-0.44086100	
С	-0.96476500	1.19610500	-0.90789500	
Н	-1.60056700	0.83489100	-1.71564300	
Н	-0.20753000	1.84391400	-1.34931800	
Ν	-0.25224800	0.03960300	-0.32349600	
С	-0.89413600	-1.20322400	-0.16881200	
С	-3.82164400	0.36126300	0.08405900	
Н	-4.79959500	0.38901900	0.58071100	
Н	-3.97553300	0.84092300	-0.89399200	
С	-3.47055800	-1.12408800	-0.11358500	
С	-2.19703700	-1.45785300	-0.92494300	
Н	-3.38106900	-1.60813700	0.86796200	
Н	-4.31148000	-1.61351400	-0.62093100	
Н	-2.22589100	-0.97083500	-1.90422400	
Н	-2.18650200	-2.53748900	-1.09986900	
0	-0.44600500	-2.07980100	0.55348800	
С	1.03425600	0.32973700	0.19674300	
0	1.42050600	1.48979800	0.19204500	
С	1.92731300	-0.79314500	0.69988100	
Н	1.50689000	-1.16686500	1.64110500	
н	1.89103300	-1.64349200	0.01392500	
С	3.36631500	-0.32609600	0.92346600	
Н	3.39922700	0.54635200	1.57884000	
H	3.92942000	-1.13108500	1.40424800	
S	4.31601200	0.05120100	-0.61105000	
H	3.66027900	1.19236100	-0.90575000	

SCF Done: E(RB3LYP) = -994.691211656

Zero-poin	Zero-point correction= 0.269473		
Thermal correction to Gi		bbs Free Ener _ễ	gy= 0.230521
н	4.10530800	1.05401500	0.14038200
С	3.18093200	0.56839400	-0.19777900
Н	3.43645200	0.08260800	-1.15214900
С	2.15215000	1.68200000	-0.44379900
Н	2.59978000	2.41809100	-1.12643700
Н	1.94837300	2.21673000	0.49198200
С	0.80738800	1.27966700	-1.06187700
Н	0.31249200	2.18857000	-1.40683500
Н	0.95539900	0.64024900	-1.93679900
Ν	-0.16523000	0.63821900	-0.15368400
С	-0.28093900	-0.79439700	0.03009300
С	2.77249600	-0.49588300	0.84062300
Н	2.10579000	-0.04764800	1.58601100
Н	3.66692900	-0.81901800	1.38909800
С	2.12216200	-1.77035900	0.27949000
С	0.85685200	-1.62997200	-0.59081200
н	2.86107400	-2.31171200	-0.32786800
н	1.88576000	-2.42535000	1.12598000
н	0.45946500	-2.64086400	-0.74862900
н	1.09542600	-1.25816500	-1.58945700
0	-0.33281400	-1.01607400	1.43661500
С	-3.02426700	-0.09209000	-0.24023100
Н	-3.26857900	0.49413200	-1.13126800
С	-1.14750100	1.48107600	0.36392500
0	-1.02237000	2.69807100	0.33492700
Н	-3.94508200	-0.55946400	0.11926500
С	-2.43278000	0.82312400	0.84520400
Н	-3.13081000	1.63838600	1.05395100
Н	-2.25899800	0.26309300	1.76591100
S	-1.88459000	-1.45416800	-0.74143900
Н	-0.71623400	-1.89983000	1.56431500

re

SCF Done: E(RB3LYP) = -994.720705873

Zero-point correction= 0.268135		.268135	
Thermal correction to Gi		bbs Free Ener៖	gy= 0.227369
С	0.27138700	2.82804000	0.48045500
С	1.33785200	1.72199100	0.58558900
С	-0.99384300	2.46297100	-0.33262000
С	1.86731100	1.20945100	-0.76190500
С	2.97257300	0.14454200	-0.65547100
С	2.60838900	-1.12546600	0.13555900
С	-2.14070100	-1.57794000	-0.10372100
С	-0.94688800	-2.54201100	-0.18320800
Н	0.70558100	3.72893400	0.02658100
Н	-0.04484100	3.10189100	1.49293900
Н	0.92488400	0.88928500	1.16672700
Н	2.17635400	2.11807200	1.17642000
н	-0.76966600	2.37380400	-1.40014600
н	-1.73401100	3.26536200	-0.21792000
н	2.26187100	2.05381000	-1.34567600
н	1.03846100	0.79337200	-1.34685400
н	3.86460700	0.57516700	-0.17891000
н	3.28319100	-0.14078100	-1.67130000
н	2.44292800	-0.90208100	1.19118300
н	3.44559500	-1.83444500	0.07951100
н	-3.05707400	-2.06090800	-0.45164400
н	-2.28536100	-1.22688700	0.92246100
н	-0.75708400	-2.83737800	-1.22199300
н	-1.20334900	-3.45062000	0.37626700
С	-1.63071300	1.18001700	0.17884200
0	-1.93125800	0.99532800	1.33335800
S	-1.86657400	-0.07447000	-1.12416100
С	0.29209300	-1.93868900	0.48160500
0	0.27431000	-1.61779000	1.66535500
N	1.38639000	-1.77832400	-0.32132100
н	1.29918800	-2.00455600	-1.30227600

SCF Done: E(RB3LYP) = -1034.02371841

Zero-point correction= 0.294897			
Thermal co	orrection to Gil	bbs Free Energ	gy= 0.251696
<u> </u>	2 7705 6 6 0 0	0 00007500	0 50000700
C	3.77956600	-0.89927500	0.50808700
C	3.86365600	0.19153000	-0.57674500
C	2.39664500	-1.36636200	0.99407400
C	3.1/6/6900	1.542/1400	-0.2/302/00
C	1.46982400	-2.01456500	-0.04920800
С	1.73718000	1.74832300	-0.81202800
С	0.74164200	-1.05194800	-1.00409100
Н	4.33357800	-1.77595400	0.14285400
Н	4.33402000	-0.54106900	1.38712000
Н	3.50789600	-0.19532100	-1.54098100
Н	4.93220700	0.39022200	-0.73138000
Н	2.57164800	-2.10708800	1.78524900
Н	1.87296500	-0.54050600	1.49320500
Н	3.78070200	2.33614500	-0.72847900
Н	3.18201200	1.74550100	0.80580500
Н	0.70167000	-2.59618800	0.47098200
Н	2.03822700	-2.72798200	-0.66308900
Н	1.54590700	2.82605600	-0.82672800
Н	1.66562900	1.39623000	-1.84590600
Н	1.43779800	-0.56630900	-1.68471400
Н	0.02358600	-1.61249900	-1.60415000
С	0.60477600	1.21656400	0.06337000
0	0.23233500	1.87301400	1.02245800
N	-0.01337200	-0.00097200	-0.28960000
С	-1.29081200	-0.38530100	0.17611200
0	-1.66842800	-1.53304500	-0.01415800
С	-2.19617100	0.64051000	0.84210400
н	-2.12975100	1.60297400	0.32784000
н	-1.81201100	0.82336600	1.85266500
С	-3.64582900	0.15997700	0.91921700
н	-3.71013900	-0.81401700	1.40781500
н	-4.22670600	0.87394400	1.50997100
н	-3.86679100	-1.01548500	-1.15592500
S	-4.52647400	0.06825100	-0.69803400

SCF Done: E(RB3LYP) = -1034.00234866

Zero-poin	ero-point correction= 0.298354		
Thermal c	orrection to Gi	bbs Free Energ	gy= 0.258250
	2 00545400	0 40040000	0.000574.00
C	3.09515400	-0.40813900	-0.9835/100
C	1.76135600	-1.04888200	-1.39900300
C	3.14766300	0.41302600	0.31//3000
C	1.1/823000	-2.11420400	-0.45301200
C	2.16374200	1.59752100	0.43453300
C	0.50423100	-1.64519700	0.85288100
С	0.81850600	1.35029400	1.14074700
Н	3.85843800	-1.19768500	-0.91742900
Н	3.41477300	0.24745500	-1.80633700
Н	1.01428900	-0.27170000	-1.58574600
Н	1.93024400	-1.53846100	-2.36779000
Н	3.04274200	-0.24398900	1.19183200
Н	4.16744200	0.81446000	0.38925800
Н	0.45134600	-2.70847500	-1.01899800
Н	1.97529200	-2.81549000	-0.16646500
Н	2.65373000	2.38283700	1.02602500
Н	1.97084300	2.04491300	-0.54669800
Н	0.09749400	-2.53531800	1.35235800
Н	1.23790700	-1.23034100	1.54704900
Н	0.95810400	0.76190300	2.04941300
Н	0.41876700	2.31949500	1.44558300
С	-0.66745500	-0.63819800	0.76050100
Ν	-0.25052900	0.69957100	0.33674300
С	-1.00052500	1.59491900	-0.41620000
0	-0.60553900	2.74415100	-0.57914200
С	-2.30561400	1.17227100	-1.08536900
Н	-2.07287600	0.91992600	-2.12765700
Н	-2.91972800	2.07888900	-1.10684600
С	-3.04672300	0.01634900	-0.43201000
Н	-3.92337300	-0.28258500	-1.01341400
Н	-3.36877100	0.25998200	0.58476100
S	-1.92347300	-1.41765700	-0.36814500
0	-1.23797900	-0.44890600	2.05454600
н	-1.52064300	-1.32082500	2.37761500

SCF Done: E(RB3LYP) = -1034.03746475

Zero-point correction= 0.296886			.296886
Thermal c	orrection to Gil	bbs Free Energ	y= 0.254096
С	-3.21826300	0.01674000	0.23721600
С	-2.57563000	-1.38015300	0.10586900
С	-2.87634100	0.99903800	-0.89805400
С	-1.41887100	1.48509500	-0.98833900
С	-0.97432400	2.40629100	0.15899300
С	1.56507000	-2.25842100	0.29064000
С	0.49303100	2.88284500	0.03824200
С	2.60776300	-1.32999200	-0.34255300
С	1.50002000	2.13367900	0.92610800
н	-2.94909200	0.43296300	1.21418700
Н	-4.30597700	-0.12476600	0.25083200
Н	-3.53154100	1.87576900	-0.79428300
Н	-3.15246300	0.53041200	-1.85364200
Н	-0.73426800	0.63201000	-1.06858700
Н	-1.30459200	2.03598300	-1.93231600
Н	-1.11764700	1.90302000	1.12490500
н	-1.64255800	3.27831500	0.17360500
н	1.34401100	-2.00644700	1.33204400
Н	1.93979400	-3.28576700	0.27586600
Н	0.56231300	3.94360300	0.31415300
Н	0.82998800	2.81415800	-1.00332000
Н	2.72293700	-1.55444000	-1.40737900
Н	3.57906000	-1.56470200	0.11570100
Н	2.49620700	2.55946700	0.77781600
Н	1.22871400	2.26247000	1.98105700
С	2.47104300	0.19729100	-0.24167000
0	3.19349600	0.90693400	-0.93571000
Ν	1.60616100	0.69846600	0.68092300
Н	0.96563200	0.08665200	1.17282500
S	-0.05241900	-2.32214600	-0.58700400
С	-1.12094600	-1.42413700	0.54131200
0	-0.72724500	-0.91601900	1.57669000
Н	-2.68150700	-1.76923500	-0.91343900
Н	-3.09874400	-2.08136400	0.77114500

References

- 1 CrysAlisPro, Oxford Diffraction Ltd. Version 1.171.40.84a
- 2 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysAlisPro software, Oxford Diffraction Ltd. Version 1.171.34.40
- 3 "Olex2" crystallography software, J. Appl. Cryst., 2009, **42**, 339.
- 4 SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, L. Palatinus & G. J. Chapuis, *J. Appl. Cryst.* 2007, **40**, 786.
- 5 SHELXT Integrated space-group and crystal-structure determination G. M. Sheldrick, *Acta Cryst.* 2015, A71, 3-8
- 6 "Crystal structure refinement with SHELXL" G.M. Sheldrick, *Acta Cryst*. 2015, C71, 3-8.
- 7 T.-C Zheng, M. Burkart and D. E. Richardson *Tetrahedron Lett.* 1999, **40**, 603.
- 8 F. Albericio, E. Nicolás, J. Rizo, M. Ruiz-Gayo, E. Pedroso and E. Giralt *Synthesis* 1990, 119.
- 9 I. R. Vlahov, H. K. R. Santhapuram, Y. Wang, P. J. Kleindl, F. You, S. J. Howard, E. Westrick, J. A. Reddy and C. P. Leamon *J. Org. Chem.* 2007, **72**, 5968.
- 10 T. C. Stephens, M. Lodi, A. Steer, Y. Lin, M. Gill and W. P. Unsworth, *Chem. Eur. J.* 2017, **23**, 13314.
- (a) Papanna (Beijing) Technology Co., Ltd.; H. Wei, L. Binlong; X. Ge, C. Bin and Z. Xianjun CN106749168, 2017, A; (b) Miyata, Hideo; Ikeda, Haruhiko; Murofushi, Katsumi; Hattori, Yotaro; Urakawa, Katsuro US2010/29876, 2010, A1.
- 12 H. F. Koch, W. C. Pomerantz, E. L. Ruggles, M. van Laren and A.-M. van Roon *Collect. Czech. Chem. Commun.* 2002, **67**, 1505.
- L. Y. Foong, S. You, D. C. J. Jaikaran, Z. Zhang, V. Zunic and G. A. Woolley *Biochemistry* 1997, 36, 1343.
- 14 T. C. Stephens, A. Lawer, T. French and W. P. Unsworth, *Chem. Eur. J.* 2018, **24**, 13947
- 15 Pcmodel, Version 10, Kevin E. Gilbert, Serena Software, Bloomington, IN, 2013.
- 16 T. A. Halgren, *J. Comput. Chem.* 1996, **17**, 490.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- (a) A. D. Becke, *J. Chem. Phys.* 1992, **97**, 9173; (b) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 5648;
 (c) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B.* 1988, **37**, 785.
- (a) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213; (b) M. M. Franci, W. J.
 Pietro, W. J. Hehre, J. S. Blinkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654.
- 20 CCDC 1921223 (**20**_{RE}) contains the crystallographic data for this macrocyclic thiolactone, see: <u>www.ccdc.cam.ac.uk/data_request/cif</u>