Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry.
Table of Contents
page
General information 2
X-ray crystallography 3
General procedure for acid chloride formation 4
Compound characterization data and procedures 4-37
Optimization experiments for the S-Ac and S-Trt strategies 38-39
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 40-83
Computational chemistry 84-105
References 106

General information

Except where stated, all reagents were purchased from commercial sources and used without further purification. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, THF and DMF were obtained from an Innovative Technology Inc. PureSolv ${ }^{\oplus}$ solvent purification system. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer, operating at 400 MHz and 100 MHz . All spectral data was acquired at 295 K unless stated otherwise. Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peaks, $\delta_{H} 7.26$ and $\delta_{\mathrm{c}} 77.16$ for CDCl_{3} were used as a reference. Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.1 Hz . The multiplicity abbreviations used are: br s broad singlet, s singlet, d doublet, br d broad doublet, t triplet, br t broad triplet, q quartet, p pentet, dd, doublet of doublets, ddd doublet of doublet of doublets, dddd doublet of doublet of doublet of doublets, $d t$ doublet of triplets, $d d t$ doublet of doublet of triplets, td triplet of doublets, m multiplet. Signal assignment was achieved by analysis of DEPT, COSY, HMBC and HSQC experiments where required. Infrared (IR) spectra were recorded on a PerkinElmer UATR 2 spectrometer as a thin film dispersed from either $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CDCl_{3}. Mass spectra (high-resolution) were obtained by the University of York Mass Spectrometry Service, using Electrospray Ionisation (ESI) on a Bruker Daltonics, Microtof spectrometer. Melting points were determined using Gallenkamp apparatus. Thin layer chromatography was carried out on Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained with basic aqueous potassium permanganate. In most cases, flash column chromatography was carried out using slurry packed Fluka silica gel $\left(\mathrm{SiO}_{2}\right), 35-70$ $\mu \mathrm{m}, 60 \AA$, under a light positive pressure, eluting with the specified solvent system. When noted in the procedures, products were purified by using a Teledyne ISCO NextGen 300+ automated flash column chromatography unit equipped with UV-Vis (200-800 nm) and evaporative light scattering (ELS) detectors. Crude materials were loaded onto pre-packed RediSep Rf Gold columns ($\mathrm{SiO}_{2}: 40-60$ mesh) either by direct liquid injection or dry loading from adsorbed Celite.

X-ray crystallography

Diffraction data were collected at 110 K on an Oxford Diffraction SuperNova diffractometer with CuK_{α} radiation $(\lambda=1.54184 \AA$) using an EOS CCD camera. The crystal was cooled with an Oxford Instruments Cryojet. Diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement was carried out with "Crysalis". ${ }^{1}$ Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ${ }^{2}$ OLEX2 ${ }^{3}$ was used for overall structure solution, refinement and preparation of computer graphics and publication data. Within OLEX2, the algorithms used for structure solution were Superflip charge-flipping ${ }^{4}$ (24b) or SheIXT dual-space ${ }^{5}$ ($\mathbf{2 0}_{\text {RE }}$ \& 24I). Refinement by full-matrix least-squares used the SHELXL-97 ${ }^{6}$ algorithm within OLEX2. ${ }^{3}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions. 24b was a non-merohedral twin modelled using Crysalis ${ }^{1}$ with two components in the ratio $0.6144: 0.3856(11)$. The asymmetric unit of $\mathbf{2 4 I}$ contained two molecules, one of which exhibited disorder of two of the carbons (C6 \& C7). These were modelled in two positions in a refined ration of 0.901:0.099(3). The ADP of each pair of disordered atoms were constrained to be equal (C6 \& C6a, C7 \& C7a). CCDC 2040347 (24b), $1921223\left(\mathbf{2 0}_{\text {RE }}\right)$ and 2040346 (24I) contain the crystallographic data for these macrocyclic thiolactones, see: www.ccdc.cam.ac.uk/data_request/cif

General procedure for acid chloride formation

Oxalyl chloride (3 mmol) was added to a suspension of carboxylic acid (1 mmol) in DCM (5 mL), followed by a catalytic amount of DMF (1 drop/mmol of carboxylic acid). The resulting mixture was stirred at RT for 1 h and concentrated in vacuo to remove all the solvent and excess oxalyl chloride.

3-(Acetylthio)propanoic acid (28)

3-Bromopropionic acid ($3.84 \mathrm{~g}, 25.1 \mathrm{mmol}$) was added to a stirring solution of potassium thioacetate $(3.41 \mathrm{~g}, 29.9 \mathrm{mmol})$ in acetone $(500 \mathrm{~mL})$ and allowed to stir at RT for 6 h . Afterwards, all solvent was removed in vacuo and the residue taken up in ethyl acetate $(250 \mathrm{~mL})$ and water $(250 \mathrm{~mL})$. The organic layer was collected and the aqueous layer extracted with ethyl acetate ($3 \times 250 \mathrm{~mL}$). The combined organics were dried over MgSO_{4} and concentrated in vacuo to afford the title compound as a brown solid ($3.44 \mathrm{~g}, 92 \%$); $\mathrm{R}_{\mathrm{f}} 0.43$ (2:3 ethyl acetate: hexane); m.p. $49-53^{\circ} \mathrm{C} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (neat) 2925,1687 , $1408,1355,1244,1200,1131,1040,944,804,689,623,532,488 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.10(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{COOH}), 3.10\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $195.7(\mathrm{SCO}), 177.9(\mathrm{COOH}), 34.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NaO}_{3} \mathrm{~S}$, 171.0086. Found: [MNa] ${ }^{+}, 171.0086$ (-0.1 ppm error). This procedure was adapted from a literature method. ${ }^{7}$

1-[3-(Acetylsulfanyl)propanoyl]azocan-2-one (23a)

A mixture of 1-aza-2-cyclooctanone 21a ($381 \mathrm{mg}, 2.97 \mathrm{mmol}$), DMAP ($103 \mathrm{mg}, 0.840 \mathrm{mmol}$) and pyridine ($1.44 \mathrm{~mL}, 17.8 \mathrm{mmol}$) in DCM (30 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride (4.49 mmol , prepared using the general procedure) in DCM (30 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then
diluted with $\operatorname{DCM}(50 \mathrm{~mL})$ and washed with 10% aq. $\mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 25 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane) afforded the title compound as a light orange oil ($610 \mathrm{mg}, 80 \%$); $\mathrm{R}_{\mathrm{f}} 0.43$ ($2: 5$ ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2928, 2859, 1687, 1445, 1372, 1247, 1198, 1175, 1126, 1092, 998, 893, $774,692,628,594 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.92-3.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.19-3.09\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$ and $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.66-2.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}\right), 2.29-2.25\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.88-1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.71-1.63$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.60-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.46-1.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 195.9(\mathrm{COS}), 178.3$ (CON), $174.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 43.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.9\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 37.2\left(\mathrm{CH}_{2} \mathrm{CON}\right), 30.6\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 24.0\left(\mathrm{CH}_{2}\right)$; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}, 280.0978$. Found: [MNa$]^{+}, 280.0976$ (0.8 ppm error).

1-Thia-5-azacyclododecane-4,12-dione ($\mathbf{2 0}_{\text {RE }}$)

A mixture of 1-[3-(acetylsulfanyl)propanoyl]azocan-2-one 23a (130 mg, 0.505 mmol) and piperidine ($0.148 \mathrm{~mL}, 1.50 \mathrm{mmol}$) in DCM (5 mL) under an argon atmosphere was stirred at RT for 22 h . The mixture was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with $10 \% \mathrm{aq} . \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 19$ ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 9:1 ethyl acetate: methanol) afforded the title compound $\mathbf{2 0}_{\text {RE }}$ as an off white solid ($31.7 \mathrm{mg}, \mathbf{2 9 \%}$), along with recovered $\mathbf{2 3 a}(8.3 \mathrm{mg}, 6 \%)$ and $\mathbf{2 0}_{\mathrm{RO}}\left(3.4 \mathrm{mg}, 3 \%\right.$; for characterisation data for $\mathbf{2 0}_{\text {Ro }}$ see next page). Data for $\mathbf{2 0}_{\mathrm{re}}$: m.p. $152-155^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.28$ (9:1 ethyl acetate: methanol); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) $3294,3096,2924,2856,1688,1638,1562,1456,1434,1352,1263,1244,1219,1183,1144,1105$, 1071, 1035, 977, 936, 883, 858, 784, 729, 629, 566, 587; All ${ }^{1} \mathrm{H}$ signals are broadened due to rotamer interconversion. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.42-3.10\left(3 \mathrm{H}, \mathrm{m}, 1.5 \times \mathrm{CH}_{2}\right), 2.85-2.32(5 \mathrm{H}$, $\left.\mathrm{m}, 2.5 \times \mathrm{CH}_{2}\right), 1.67-1.56\left(1 \mathrm{H}, \mathrm{m}, 0.5 \times \mathrm{CH}_{2}\right), 1.56-1.28\left(7 \mathrm{H}, \mathrm{m}, 3.5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.5$ (SCO), $169.9(\mathrm{CO}), 43.5\left(\mathrm{CH}_{2} \mathrm{COS}\right), 38.4\left(\mathrm{CH}_{2} \mathrm{NH}\right), 37.7\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}\right), 23.5$ $\left(\mathrm{CH}_{2}\right)$, $22.3\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}, 216.1053$. Found: [MH] ${ }^{+}$, 216.1051 (0.6 ppm error). For X-ray crystallographic data, see CCDC 1921223.

The same product $\mathbf{2 0}_{\text {RE }}$ was also prepared using the S-Fm strategy, using the following procedure:

A mixture of 1-aza-2-cyclooctanone ($63.7 \mathrm{mg}, 0.501 \mathrm{mmol}$), DMAP ($7.5 \mathrm{mg}, 0.062 \mathrm{mmol}$) and pyridine $(0.240 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride $\mathbf{3 4}$ (1.50 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with $\operatorname{DCM}(10 \mathrm{~mL})$ and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then redissolved in DCM (10 mL) and DBU ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}$) was added, followed by stirring at RT for 14 h, before the solvent was removed in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 9\right.$ ethyl acetate: hexane $\rightarrow 1: 2$ ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane $\rightarrow 2: 1$ ethyl acetate: hexane) afforded the title compound as a yellow crystalline solid ($16.2 \mathrm{mg}, 15 \%$).

1-(3-Mercaptopropanoyl)azocan-2-one (20 $\mathrm{RO}_{\mathrm{RO}}$)

Data for $\mathbf{2 0}_{\text {RO }}$ (for synthesis see above): colorless oil; $R_{f} 0.74$ (9:1 ethyl acetate: methanol); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2925, 2857, 1685, 1445, 1370, 1339, 1285, 1258, 1197, 1174, 1125, 1091, 1018, 867, 799, $686,591,504 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.94-3.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.20\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 2.79$ ($2 \mathrm{H}, \mathrm{dt}, J=8.5,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$), $2.67-2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}\right), 1.90-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.74-1.66$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.63\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SH}\right), 1.61-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.48-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.4(\mathrm{CON}), 174.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 43.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 43.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.2\left(\mathrm{CH}_{2} \mathrm{CON}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{2} \mathrm{SH}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NNaO}_{2} \mathrm{~S}, 238.0872$. Found: [MNa] ${ }^{+}$, 238.0869 (1.3 ppm error).

1-[3-(Acetylsulfanyl)propanoyl]-1-azacyclotridecan-2-one (23b)

A mixture of laurolactam 21b (592 mg, 3.00 mmol), DMAP ($57.4 \mathrm{mg}, 0.473 \mathrm{mmol}$) and pyridine (1.45 $\mathrm{mL}, 18.0 \mathrm{mmol}$) in DCM (50 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride ($4.49 \mathrm{mmol}, 1.50$ eqv. prepared using the general procedure) in DCM (10 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM (50 mL) and washed with 10% aq. $\mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layer was then extracted with DCM ($3 \times 25 \mathrm{~mL}$) and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane) afforded the title compound as a colorless oil ($323 \mathrm{mg}, 33 \%$); $\mathrm{R}_{\mathrm{f}} 0.53$ (2:3 ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2930, 2861, 1690, 1364, 1180, 1133, 1047, 952, 626; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $3.67-3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.14-2.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$ and $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.61-2.45(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CON}$), $2.24-2.22\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.84-1.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.58\left(2 \mathrm{H}, \mathrm{p}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.44-1.18$ ($14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDzCl}_{3}\right), 195.7(\mathrm{COS}), 176.5(\mathrm{CON}), 174.4\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 43.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.0$ $\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 35.9\left(\mathrm{CH}_{2} \mathrm{CON}\right), 30.4\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.5$ $\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $24.5\left(\mathrm{CH}_{2}\right)$, $24.4\left(\mathrm{CH}_{2}\right)$, $24.0\left(\mathrm{CH}_{2}\right)$, $23.8\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}, 350.1760$. Found: [MNa] ${ }^{+}, 350.1760$ (0.1 ppm error).

Methyl 7-(3-sulfanylpropanamido)heptanoate (25) and methyl 7-[3-(\{2-[(7-methoxy-7-

 oxoheptyl)carbamoyl]ethyl\}disulfanyl)propanamido]heptanoate (26)

25

26

1-[3-(Acetylsulfanyl)propanoyl]azocan-2-one 21a ($25.7 \mathrm{mg}, 0.100 \mathrm{mmol}$) was dissolved in MeOH (1 mL) and sparged for 5 min with argon to remove oxygen. To this stirring solution was added $\mathrm{NaOH}(4 \mathrm{~N}$ aq., $0.03 \mathrm{~mL}, 1.2$ eqv.) and the solution was stirred for 2 hours at RT. The reaction mixture was then acidified with $\mathrm{HCl}(10 \%$ aq.) to pH 1 and diluted with ethyl acetate (3 mL) and water (5 mL). This was then extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and the organics washed with NaHCO_{3}. and sat. NaCl . The mixture was dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate:
hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded crude thiol 25 (containing 8\% disulfide 26 in ${ }^{1} \mathrm{H}$ NMR) as an off white solid ($4.7 \mathrm{mg}, 19 \%$) and disulfide 26 (as a $4.6: 1$ mixture of rotamers) as light yellow oil ($4.0 \mathrm{mg}, 16 \%$);

Data for 25: $\mathrm{R}_{\mathrm{f}} 0.49$ (9:1 ethyl acetate: methanol); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 5.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.65(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.25\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.80\left(2 \mathrm{H}, \mathrm{dt}, J=8.2,6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CON}$), $2.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.65-1.56\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and SH$), 1.55-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.37-1.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 174.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 170.7(\mathrm{CON}), 51.6\left(\mathrm{CH}_{3}\right), 40.6\left(\mathrm{CH}_{2} \mathrm{CON}\right)$, $39.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 34.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2} \mathrm{SH}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}, 270.1134$. Found: [MNa] ${ }^{+}, 270.1134$ (0.0 ppm error).

Data for 26: $R_{f} 0.39$ (9:1 ethyl acetate: methanol); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3307, 2927, 2853, 1735, 1636, 1546, 1438, 1416, 1365, 1260, 1196, 1018, 800, 726; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.98$ ($4 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}$, both), $3.65\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$, both rotamers), $3.24\left(8 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.1,5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$, both rotamers), $3.15(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}$, minor), 2.97 ($4 \mathrm{H}, \mathrm{dt}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}$, major), $2.64\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CON}\right.$, minor), 2.55 $\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CON}\right.$, major), $2.29\left(8 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$, both rotamers), $1.67-1.56(8 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.55-1.46\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38-1.27\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; Only one rotamer was clearly observable by ${ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 174.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 171.0(\mathrm{CON}), 51.6\left(\mathrm{CH}_{3}\right), 39.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 35.9\left(\mathrm{CH}_{2} \mathrm{CON}\right)$, $34.4\left(\mathrm{CH}_{2} \mathrm{~S}\right), 34.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}_{2}, 515.2220$. Found: [MNa] ${ }^{+} 515.2224$ (-0.8 ppm error).

1-[3-(Tritylthio)propanoyl]-1-azacyclotridecan-2-one (31b)

Oxalyl chloride ($1.14 \mathrm{~mL}, 13.3 \mathrm{mmol}$) was added to a suspension of 3-(tritylthio) propanoic acid (1.57 $\mathrm{g}, 4.51 \mathrm{mmol}$) in toluene (45 mL), followed by a catalytic amount of DMF (4 drops). The resulting mixture was stirred at RT for 1 h and concentrated in vacuo to remove all solvent and excess oxalyl chloride. The resulting 3-(tritylthio)propanoyl chloride $\mathbf{3 0}$ was added to a pre-stirred mixture of laurolactam 21b ($577 \mathrm{mg}, 2.92 \mathrm{mmol}$), DMAP ($49.0 \mathrm{mg}, 0.401 \mathrm{mmol}$) and pyridine ($1.44 \mathrm{~mL}, 17.9$ mmol) in DCM (50 mL) under an argon atmosphere. The reaction mixture was then heated to $50^{\circ} \mathrm{C}$ and stirred for 18 hours. The mixture was then cooled, diluted with DCM (30 mL) and washed with 10% aq. $\mathrm{HCl}(90 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$ and the combined
organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 19$ ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane) afforded the title compound as a clear viscous oil ($1.21 \mathrm{~g}, 78 \%)^{*}$; $\mathrm{R}_{\mathrm{f}} 0.74$ (1:9 methanol: ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2929, 2859, 1691, 1595, 1489, 1445, 1364, 1229, 1180, 1132, 1099, 1034, 909, 737, 699, 676, $620 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.34-7.18(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.65-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.61-2.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}\right.$ [overlapping]), $2.53(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ [overlapping]), $1.75\left(2 \mathrm{H}, \mathrm{p}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.65-1.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.48-1.25(14 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 176.8(\mathrm{CON}), 174.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 144.9(3 \times \mathrm{ArC}), 129.8(6 \times \mathrm{ArCH}), 128.0(6$ $\times \mathrm{ArCH}), 126.7(3 \times \mathrm{ArCH}), 66.9\left(\mathrm{CPh}_{3}\right), 43.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 38.2\left(\mathrm{CH}_{2} \mathrm{CON}\right), 36.3\left(\mathrm{COCH}_{2} \mathbf{C H}_{2} \mathrm{~S}\right), 27.3$ $\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}\right)$, $23.9\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NNaO}_{2} \mathrm{~S}, 550.2750$. Found: [MNa] ${ }^{+}$, 550.2753 (-0.5 ppm error).
*The purified product also contains traces of triphenylmethanol that we were unable to remove completely, although the purity of 31b was sufficient for the product to be used in subsequent steps. Characteristic NMR data for triphenylmethanol can be seen at: $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 147.0(\mathrm{ArC})$, $128.04(\mathrm{ArCH}), 127.37(\mathrm{ArCH}), 81.9\left(\mathrm{Ph}_{3} \mathrm{COH}\right)$.

1-(3-Mercaptopropanoyl)azacyclotridecan-2-one (32)

To a solution of 1-(3-(tritylthio)propanoyl)azacyclotridecan-2-one 31b (1.02 g, 1.94 mmol) in DCM (10 mL) under an argon atmosphere was added TFA ($1.20 \mathrm{~mL}, 15.7 \mathrm{mmol}$) and the solution stirred for 3 min . Next, triisopropylsilane ($0.550 \mathrm{~mL}, 2.69 \mathrm{mmol}$) was added and the solution stirred for a further 30 min . The mixture was then diluted with $\mathrm{DCM}(5 \mathrm{~mL})$ and washed with water $(20 \mathrm{~mL})$. The aqueous layer was then extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 19$ ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the title compound as a yellow oil ($268 \mathrm{mg}, 48 \%$), along with a small amount of compound 33 ($38.0 \mathrm{mg}, 7 \%$; data for 33 is given below). Data for 32 : $R_{f} 0.64$ (1:1 ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2928, 2860, 1689, 1463, 1445, 1365, 1247, 1230, 1179, 1132, 1121, 1099, $1047,762,716,605 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.63-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.03\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right)$, $2.71\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.4,6.6 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 2.53-2.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}\right), 1.73-1.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.63-$
$1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ [overlapping]), $1.58\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{SH}\right.$ [overlapping]), $1.41-1.15\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $176.5(\mathrm{CON})$, $174.3\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 42.9\left(2 \times \mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{~N}\right.\right.$ and $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$), 35.8 $\left(\mathrm{CH}_{2} \mathrm{CON}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}, 308.1655$. Found: [MNa] ${ }^{+}$, 308.1646 (2.7 ppm error).
(E)-6,7,8,9,10,11,12,13,14,15-Decahydro-2H-[1,3]thiazino[3,2-a][1]azacyclotridecin-4(3H)-one (33)

Data for 33 (for synthesis see above): off white pasty solid; $R_{f} 0.55$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $3317,2927,2856,1651,1549,1443,1355,1258,1117,1028,918,733,702,605 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $5.47\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.82-3.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.01-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.71-2.65(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.22-2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.69-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.54-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38-1.24$ $\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 169.8(\mathrm{CON}), 133.0\left(\mathrm{C}\right.$ quat), $121.1\left(\mathrm{CHCH}_{2}\right), 46.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 35.5$ $\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 28.7\left(\mathrm{CHCH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.80$ $\left(\mathrm{CH}_{2}\right), 24.75\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 24.1\left(\mathrm{CH}_{2}\right) ; \mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NNaOS}, 290.1549$. Found: [MNa] ${ }^{+}$, 290.1546 (1.1 ppm error).

1-Thia-5-azacycloheptadecane-4,17-dione (24b)

To a solution of 1-(3-(tritylthio)propanoyl)azacyclotridecan-2-one 31b (1.02 g, 1.93 mmol$)$ in DCM (20 mL) under an argon atmosphere was added TFA ($1.95 \mathrm{~mL}, 25.5 \mathrm{mmol}$) and the solution stirred for 3 min . Next, triisopropylsilane ($0.44 \mathrm{~mL}, 2.15 \mathrm{mmol}$) was added and the solution stirred for a further 30 min. The solvent and TFA were removed in vacuo. The crude material was then re-dissolved in DCM $(20 \mathrm{~mL})$ and DBU ($2.87 \mathrm{~mL}, 19.3 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. The reaction mixture was then diluted with DCM (20 mL) and washed with 10% aq. $\mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$ and the
combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane $\rightarrow 1: 4$ ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a white crystalline solid ($307 \mathrm{mg}, 56 \%$), along with a small amount of laurolactam 21b ($13.3 \mathrm{mg}, 4 \%$). Data for 24b: m.p. 88-95 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.17$ (1:1 ethyl acetate: hexane); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3299, 2927, 2856, 1684, 1647, 1555, 1459, 1355, 1261, 1203, 1026,$717 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.31-3.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.17-3.09(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{SCO}\right), 2.55-2.47\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{COS}\right), 1.64\left(2 \mathrm{H}\right.$, apparent pentet, $\left.\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.51-$ $1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.37-1.18\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 201.1$ (SCO), $171.0(\mathrm{CO}), 43.7$ $\left(\mathrm{CH}_{2} \mathrm{COS}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{NH}\right), 36.1\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 28.8\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 27.43\left(\mathrm{CH}_{2}\right), 27.40\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}$, 308.1655. Found: $[\mathrm{MNa}]^{+}, 308.1646$ (2.9 ppm error). For X-ray crystallographic data see CCDC 2040347.

The same product 24b was also prepared using the S-Fm strategy- see compound 37 on pages 12 and 13.

3-(((9H-Fluoren-9-yl)methyl)thio)propanoic acid (S1)

Tosyl chloride ($19.6 \mathrm{~g}, 100 \mathrm{mmol}$) in anhydrous pyridine (16.1 mL) was added slowly to a solution of 9fluorenylmethanol ($19.6 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 2 h , the solution was washed with 10% aq. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$, and brine $(2 \times 25 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. After filtration, the solvent was removed in vacuo. The product was recrystallized by dissolving in CHCl_{3} and adding hexane until loss of transparency in the solution was starting to become apparent. At this point, the mixture was left to stand at room temperature overnight to crystallize. The crystals were filtered by vacuum filtration to yield fluorenylmethyl p-toluenesulfonate ($26.8 \mathrm{~g}, 76 \%$); $\delta_{H}(400 \mathrm{MHz}$, CDCl_{3}) $7.78-7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.5,1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.68(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.5,1.0 \mathrm{~Hz}, \mathrm{ArH})$, 7.32-7.23 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 4.28-4.18 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and CH_{2}), $2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 145.0$ (ArC), $142.6(2 \times \mathrm{ArC}), 141.3(2 \times \mathrm{ArC}), 132.8(\mathrm{ArC}), 130.0(2 \times \mathrm{ArCH}), 128.2(2 \times \mathrm{ArCH}), 128.0(2 \times \mathrm{ArCH})$, $127.3(2 \times \mathrm{ArCH}), 125.3(2 \times \mathrm{ArCH}), 120.2(2 \times \mathrm{ArCH}), 72.0\left(\mathrm{CH}_{2}\right), 46.8(\mathrm{CH}), 21.8\left(\mathrm{CH}_{3}\right)^{8}$

To a solution of 3-thiopropionic acid ($2.48 \mathrm{~mL}, 28.5 \mathrm{mmol}$) and fluorenyl methanol p-toluenesulfonate $(9.99 \mathrm{~g}, 28.5 \mathrm{mmol})$ in $\mathrm{DMF}(50 \mathrm{~mL})$ was added ${ }^{\prime} \mathrm{Pr}_{2} \mathrm{NEt}(9.93 \mathrm{~mL}, 57.0 \mathrm{mmol})$. The reaction was stirred
at room temperature for 16 h and DMF was removed under reduced pressure (high vacuum). The residue was dissolved in ethyl acetate (300 mL), washed with 0.2 N aq. $\mathrm{HCl}(5 \times 100 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude material was then suspended in chloroform and filtered to remove insoluble material $(2 \times 150 \mathrm{~mL})$. The combined chloroform fractions were then concentrated and the solvent removed in vacuo to afford the title compound $\mathbf{S 1}$ as a yellow solid (3.85 g, 48\%); $\mathrm{R}_{\mathrm{f}} 0.27$ (ethyl acetate); m.p. $91-95^{\circ} \mathrm{C} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3039, 2912, 1706, 1477, 1448, $1263,1197,940,739,621 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.76(2 \mathrm{H}, \mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.68(2 \mathrm{H}, \mathrm{dq}, J=7.5$, $1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.40(2 \mathrm{H}, \mathrm{tt}, J=7.6,1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.32(2 \mathrm{H}, \mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, \mathrm{ArH}), 4.12(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{SCH}_{2} \mathrm{CH}\right), 3.11\left(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 2.80\left(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.63(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.6(\mathrm{COOH}), 146.0(2 \times \mathrm{ArC}), 141.2(2 \times \mathrm{ArC}), 127.8(2 \times \mathrm{ArCH}), 127.2$ $(2 \times \mathrm{ArCH}), 124.9(2 \times \mathrm{ArCH}), 120.1(2 \times \mathrm{ArCH}), 47.0\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 36.9\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 34.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 27.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{2} \mathrm{~S}, 307.0763$. Found: [MNa] ${ }^{+}$, 307.0763 (0.2 ppm error). The synthetic procedure was adapted from a literature report. ${ }^{9}$

1,1'-(3,3'-Thiobis(propanoyl))bis(azacyclotridecan-2-one) (37)

A mixture of laurolactam ($98.1 \mathrm{mg}, 0.497 \mathrm{mmol}$), DMAP ($7.4 \mathrm{mg}, 0.061 \mathrm{mmol}$) and pyridine (0.24 mL , $3.00 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ under an argon atmosphere was stirred at RT for 30 mins . Next, a solution of acid chloride 34 (1.66 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (5 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM (30 mL) and washed with 10% aq. $\mathrm{HCl}(30 \mathrm{~mL})$. The aqueous layer was then extracted with DCM $(3 \times 30 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was incomplete at this stage, therefore, an additional acylation reaction was performed. Thus, the reaction mixture was dissolved in DCM $(15 \mathrm{~mL})$ and to it was added DMAP ($11.8 \mathrm{mg}, 0.097 \mathrm{mmol}$) and pyridine ($0.240 \mathrm{~mL}, 3.00 \mathrm{mmol}$). Then, another solution of acid chloride $\mathbf{3 4}$ (1.70 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (15 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM $(30 \mathrm{~mL})$ and washed with 10% aq. $\mathrm{HCl}(30 \mathrm{~mL})$. The aqueous layer was then extracted with DCM $(3 \times 30 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. The crude material was then re-dissolved in DCM (10 mL) and DBU ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}$) was added, followed
by stirring at RT for 18 h , before the solvent was removed in vacuo. The crude product was dry loaded onto Celite and purified by automated flash column chromatography (using a 24 g pre-packed SiO_{2} column, $0 \% \rightarrow 100 \%$ ethyl acetate in hexanes) affording 17-membered ring thiolactone $\mathbf{2 4 b}$ (76.7 mg , 54%; for data see pages 10 and 11) and the title compound 37 as a yellow crystalline solid (40.0 mg , $30 \%)$. Data for 37 : m.p. $53-59^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.73$ (ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2928, 2860, 1689, 1463, $1446,1363,1243,1179,1121,1099,1047,916,732,647 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.70-3.62(4 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{~N})$, $3.08\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.83\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.60-2.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}\right), 1.80-1.71(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.70-1.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.50-1.22\left(28 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 176.9(2 \times \mathrm{CON}), 174.9(2$ $\left.\times \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 43.2\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 39.4\left(2 \times \mathrm{CH}_{2}\right), 36.1\left(2 \times \mathrm{CH}_{2} \mathrm{CON}\right), 27.6\left(2 \times \mathrm{CH}_{2}\right), 26.0\left(2 \times \mathrm{CH}_{2}\right), 25.8(2$ $\left.\times \mathrm{CH}_{2}\right), 25.7\left(2 \times \mathrm{CH}_{2}\right), 25.0\left(2 \times \mathrm{CH}_{2}\right), 24.6\left(4 \times \mathrm{CH}_{2}\right), 24.2\left(2 \times \mathrm{CH}_{2}\right), 24.0\left(2 \times \mathrm{CH}_{2}\right), 23.8\left(2 \times \mathrm{CH}_{2}\right) ; \mathrm{HRMS}$ (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}, 559.3540$. Found: [MNa] ${ }^{+}$, 559.3543 (-0.5 ppm error).

1-(3-(((9H-Fluoren-9-yl)methyl)thio)propanoyl)azacyclotridecan-2-one (35b)

A mixture of laurolactam (198 mg, 1.00 mmol$)$, DMAP ($14.4 \mathrm{mg}, 0.118 \mathrm{mmol}$) and pyridine (0.48 mL , $5.99 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 34 (1.50 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (10 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 9\right.$ ethyl acetate: hexane $\rightarrow 1: 3$ ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane \rightarrow 3:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a yellow-white solid ($380 \mathrm{mg}, 82 \%$); $\mathrm{R}_{\mathrm{f}} 0.31$ (1:4 ethyl acetate: hexane); m.p. $79-85^{\circ} \mathrm{C}$; $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2930 , 2851, 1689, 1447, 1364, 1244, 1179, 1121, 907, 726, 647, 621, 580; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.75(2 \mathrm{H}, \mathrm{dt}$, $J=7.6,1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.68(2 \mathrm{H}, \mathrm{dq}, J=7.4,1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.40(2 \mathrm{H}, \mathrm{tt}, J=7.6,1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.32(2 \mathrm{H}, \mathrm{td}, J$ $=7.4,1.0 \mathrm{~Hz}, \mathrm{ArH}), 4.12\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.70-3.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.12-3.06(4 \mathrm{H}, \mathrm{m}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ and $\left.\mathrm{SCH}_{2} \mathrm{CH}\right), 2.89\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.60-2.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}\right), 1.82-1.73$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70-1.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.50-1.24\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.8$ (CON), $174.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 146.2(2 \times \mathrm{ArC}), 141.1(2 \times \mathrm{ArC}), 127.6(2 \times \mathrm{ArCH}), 127.1(2 \times \mathrm{ArCH}), 125.0(2 \times$ $\mathrm{ArCH}), 119.9(2 \times \mathrm{ArCH}), 47.0\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 43.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.4\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 37.0\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 36.0\left(\mathrm{CH}_{2} \mathrm{CON}\right)$, $28.4\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 24.0$ $\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{~S}, 464.2618$. Found: [MH] ${ }^{+} 464.2617$ (0.2 ppm error).

1-Thia-5-azacyclohexadecane-4,16-dione (24c)

A mixture of azacyclododecan-2-one ${ }^{10}$ ($27.5 \mathrm{mg}, 0.150 \mathrm{mmol}$), DMAP ($1.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) and pyridine ($73 \mu \mathrm{~L}, 0.90 \mathrm{mmol}$) in DCM $(1 \mathrm{~mL})$ under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 34 (0.469 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (2 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM (5 mL) and washed with 10% aq. $\mathrm{HCl}(5 \mathrm{~mL})$. The aqueous layer was then extracted with $\operatorname{DCM}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. The mixture was then re-dissolved in DCM (3 mL) and DBU ($0.22 \mathrm{~mL}, 1.50 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed under a flow of nitrogen gas. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a yellow crystalline solid ($15.2 \mathrm{mg}, 37 \%$); m.p. 76-83 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.38$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3302, 2927, 2856, 1682, 1647, 1552, 1448, 1373, 1259, 1161, 1019, 733, 585; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.33-3.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.21-3.13$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SCO}$), 2.58-2.53 (2H, m, CH2COS), 2.52-2.47(2H, m, COCH $\left.2 \mathrm{CH}_{2} \mathrm{~S}\right), 1.74-1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.54-1.46 (2H, m, CH2), 1.36-1.27 (2H, m, $6 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.8(\mathrm{SCO}), 170.6(\mathrm{CO}), 43.0$ $\left(\mathrm{CH}_{2} \mathrm{COS}\right)$, $39.3\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $36.2\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 28.6\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.81\left(\mathrm{CH}_{2}\right), 26.79\left(\mathrm{CH}_{2}\right), 26.71\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S}, 294.1498$. Found: $[\mathrm{MNa}]^{+}, 294.1499$ (-0.4 ppm error).

1-Thia-5-azacyclopentadecane-4,15-dione (24d)

A mixture of azacycloundecan-2-one ${ }^{10}(86.7 \mathrm{mg}, 0.512 \mathrm{mmol})$, DMAP ($6.8 \mathrm{mg}, 0.056 \mathrm{mmol}$) and pyridine ($0.240 \mathrm{~mL}, 3.00 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride $\mathbf{3 4}$ (1.51 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture
was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with DCM ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU $(0.75 \mathrm{~mL}, 5.00 \mathrm{mmol})$ was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 9\right.$ ethyl acetate: hexane $\rightarrow 1: 2$ ethyl acetate: hexane $\rightarrow 2: 1$ ethyl acetate: hexane) afforded the title compound as a yellow crystalline solid ($40.8 \mathrm{mg}, 31 \%$); m.p. $102-104{ }^{\circ} \mathrm{C}$; R_{f} 0.34 (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3299, 3089, 2928, 2856, 1680, 1646, 1552, 1442, 1398, 1355, $1258,1202,1140,1008,960,919,732,583 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.53$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 3.33-3.26 (2H, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}$), 3.17-3.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SCO}$), 2.58-2.51 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COS}$ and $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 1.73-1.64 ($2 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.56-1.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.42-1.22 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.3(\mathrm{SCO}), 170.6(\mathrm{CO})$, $43.1\left(\mathrm{CH}_{2} \mathrm{COS}\right), 38.7\left(\mathrm{CH}_{2} \mathrm{NH}\right), 35.3\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 28.3\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.42\left(\mathrm{CH}_{2}\right), 26.39$ $\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}, 280.1342$. Found: [MNa] ${ }^{+}$, 280.1344 (-0.9 ppm error).

1-Thia-5-azacyclotetradecane-4,14-dione (24e)

A mixture of azacyclodecan-2-one ${ }^{10}(77.6 \mathrm{mg}, 0.500 \mathrm{mmol})$, DMAP ($6.4 \mathrm{mg}, 0.052 \mathrm{mmol}$) and pyridine $(0.24 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins . Next, a solution of acid chloride $\mathbf{3 4}$ (1.51 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with DCM ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then redissolved in DCM (10 mL) and DBU $(0.75 \mathrm{~mL}, 5.00 \mathrm{mmol})$ was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography (SiO_{2}, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane) afforded the title compound as a yellow crystalline solid ($26.7 \mathrm{mg}, 22 \%$); m.p. $55-61^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.31$ (ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3304, 2929, 2858, 1679, 1649, 1551, 1444, 1376, 1258, 1168, 1043, 920, 731, 595; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.30-3.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.20-3.14(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \mathrm{SCO}\right), 2.58-2.52\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{COS}\right.\right.$ and $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 1.77-1.59\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.47-1.31$ $\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.4(\mathrm{SCO}), 170.6(\mathrm{CO}), 43.9\left(\mathrm{CH}_{2} \mathrm{COS}\right), 39.1\left(\mathrm{CH}_{2} \mathrm{NH}\right), 35.5$ $\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 28.0\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.45\left(\mathrm{CH}_{2}\right), 25.36\left(\mathrm{CH}_{2}\right), 25.29\left(\mathrm{CH}_{2}\right), 25.26\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}, 244.1366$. Found: [MH] ${ }^{+}, 244.1362$ (1.4 ppm error).

1-Thia-5-azacyclotridecane-4,13-dione (24f)

A mixture of azonan-2-one ${ }^{10}(87.1 \mathrm{mg}, 0.617 \mathrm{mmol})$, DMAP ($8.5 \mathrm{mg}, 0.070 \mathrm{mmol}$) and pyridine (0.240 $\mathrm{mL}, 3.00 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride $\mathbf{3 4}$ (1.51 mmol , prepared from $\mathbf{S 1}$ using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with $\operatorname{DCM}(10 \mathrm{~mL})$ and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then redissolved in DCM (10 mL) and DBU ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h, before the solvent was removed in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 9\right.$ ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 2:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a yellow crystalline solid ($66.9 \mathrm{mg}, 47 \%$); m.p. $129-131{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.19$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3243, 3080, 2924, 2857, 1678, 1634, 1562, 1459, 1434, 1412, 1360, 1286, 1269, 1204, 1174, 1151, 1123, 1042, 1018, 983, 960, 901, 853, 802, 771, 731, 690, 622, 604, 464; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.27-3.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.19-3.13(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{SCO}$), 2.65-2.56 (2H, m, COCH $\mathrm{CH}_{2} \mathrm{~S}$), 2.54-2.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COS}$), 1.78-1.67 (2H, m, CH2), 1.55$1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.39\left(2 \mathrm{H}\right.$, apparent $\left.\mathrm{p}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.34-1.25\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 201.6(\mathrm{SCO}), 170.3(\mathrm{CO}), 44.3\left(\mathrm{CH}_{2} \mathrm{COS}\right), 39.6\left(\mathrm{CH}_{2} \mathrm{NH}\right), 35.6\left(\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.4(2 \times$ $\left.\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}, 230.1209$. Found: [MH] ${ }^{+}$, 230.1209 (0.1 ppm error).

3-(((9H-Fluoren-9-yl)methyl)thio)-2-methylpropanoic acid (S2)

A solution of thiourea ($2.65 \mathrm{~g}, 34.5 \mathrm{mmol}$), water (5 mL), and concentrated aq. $\mathrm{HCl}(37 \%, 3.16 \mathrm{~mL})$ was stirred at $45^{\circ} \mathrm{C}$ for 30 min . To this was added methacrylic acid ($2.50 \mathrm{~g}, 2.46 \mathrm{~mL}$) dropwise over 30 min and the temperature was then raised to $90^{\circ} \mathrm{C}$ for 2 h with stirring. An aqueous solution of $\mathrm{NaOH}(4.03$ g in $5 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$) was prepared and added dropwise over 30 min . The reaction mixture was stirred for 30 min and allowed to cool to RT . Concentrated HCl was added to adjust the pH to 5-6 and the reaction mixture extracted using ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic fractions were collected and the solvent removed in vacuo to afford 3-mercapto-2-methylpropanoic acid as a yellow oil which was used without further purification ($559 \mathrm{mg}, 16 \%$). [Data for 3-mercapto-2-methylpropanoic acid: $\mathrm{R}_{\mathrm{f}} 0.47$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2976, 2936, 1701, 1622, 1461, 1412, 1236, 1185, 1118, 1075, 918, 831, 620, 525; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.04(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 2.81-2.56\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=8.5 \mathrm{~Hz}, \mathrm{SH}), 1.25\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.5(\mathrm{COOH}), 43.5(\mathrm{CH}), 27.5\left(\mathrm{CH}_{2}\right)$, $16.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}, 119.0172$ Found: [M-H] ${ }^{-}, 119.0170$ (1.6 ppm error)]. To a solution of 3-mercapto-2-methylpropanoic acid ($457 \mathrm{mg}, 3.81 \mathrm{mmol}$) and fluorenyl methanol ptoluenesulfonate (1.41 g , 4.02 mmol - see $\mathbf{S 1}$ for its preparation) in DMF (7 mL) was added ${ }^{1} \operatorname{Pr}_{2} \mathrm{NEt}$ (1.39 $\mathrm{mL}, 8.00 \mathrm{mmol})$. The reaction was stirred at room temperature for 25 h . The reaction mixture was dissolved in ethyl acetate (40 mL), washed with 0.2 N aq. $\mathrm{HCl}(5 \times 15 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$, water (15 mL), brine (15 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude material was then suspended in chloroform and filtered to remove insoluble material $(2 \times 10 \mathrm{~mL})$. The combined chloroform fractions were concentrated and solvent removed in vacuo to afford the title compound S2 as an orange solid ($637 \mathrm{mg}, 56 \%$); $\mathrm{R}_{\mathrm{f}} 0.40$ (ethyl acetate); m.p. $59-70^{\circ} \mathrm{C} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2933, 1704, 1610, 1477, 1448, 1294, 1232, 1101, 1006, 919, $765,734,621 ; \delta_{\text {н }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81-7.61(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44-7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.14-3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right), 2.89\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHH}^{\prime}\right), 2.69(1 \mathrm{H}$, apparent sextet, $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHH}^{\prime}\right), 2.60\left(1 \mathrm{H}, \mathrm{dd}, J=12.8,6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHH}^{\prime}\right), 1.25(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.1(\mathrm{COOH}), 146.1(2 \times \mathrm{ArC}), 141.1(2 \times \mathrm{ArC}), 127.7(2 \times \mathrm{ArCH})$, $127.1(2 \times \mathrm{ArCH}), 125.0(\mathrm{ArCH}), 124.9(\mathrm{ArCH}), 120.0(2 \times \mathrm{ArCH}), 47.0\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 40.2\left(\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)\right.$, $)$, $37.2\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 36.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)$, $16.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}$, 321.0920. Found:
[MNa$]^{+}, 321.0917$ (1.0 ppm error). The synthetic procedure was adapted from a method reported in a patent. ${ }^{11 a}$

3-(((9H-Fluoren-9-yl)methyl)thio)-butanoic acid (S3)

A solution of thiourea ($1.75 \mathrm{~g}, 23.0 \mathrm{mmol}$), water (25 mL), and concentrated $\mathrm{HCl}(37 \%, 15.8 \mathrm{~mL})$ was stirred at $45^{\circ} \mathrm{C}$ for 30 min . To this was added crotonoic acid ($12.5 \mathrm{~g}, 145 \mathrm{mmol}$) and the temperature was then raised to $90^{\circ} \mathrm{C}$ for 2 h . An aqueous solution of $\mathrm{NaOH}\left(20 \mathrm{~g}\right.$ in 25 mL of $\mathrm{H}_{2} \mathrm{O}$) was prepared and added dropwise over 30 min . The reaction mixture was stirred for 30 min and allowed to cool to RT. Concentrated aq. HCl was added to adjust the pH to 5-6 and the reaction mixture extracted using ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic fractions were collected, and the solvent removed in vacuo to afford 3-mercapto-butanoic acid as a yellow oil which was used without further purification (14.6 g, 84\%) [Data for 3-mercapto-butanoic acid: $\mathrm{R}_{\mathrm{f}} 0.33$ (ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2969, $2926,1704,1408,1380,1296,1263,1228,1176,1115,1086,1028,917,886,691,642,488 ; \delta_{\text {H }}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.47(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 3.42-3.29(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.72-2.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.86(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $\mathrm{SH}), 1.39\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.5(\mathrm{COOH}), 45.7\left(\mathrm{CH}_{2}\right), 31.0(\mathrm{CH}), 24.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~S}, 119.0172$ Found: $[\mathrm{M}-\mathrm{H}]^{-}, 119.0171$ (1.1 ppm error)]. To a solution of 3-mercapto-butanoic acid ($484 \mathrm{mg}, 4.03 \mathrm{mmol}$) and fluorenyl methanol p-toluenesulfonate ($1.40 \mathrm{~g}, 4.03$ mmol- see S1 for its preparation) in DMF (7.0 mL) was added ${ }^{~} \operatorname{Pr}_{2} N E t(1.39 \mathrm{~mL}, 8.06 \mathrm{mmol})$. The reaction was stirred at room temperature for 17 h . The reaction mixture was dissolved in ethyl acetate $(40 \mathrm{~mL})$, washed with 0.2 N aq. $\mathrm{HCl}(5 \times 15 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$, water $(15 \mathrm{~mL})$, brine (15 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to afford the title compound as a yellow solid ($582 \mathrm{mg}, 48 \%$); $\mathrm{R}_{\mathrm{f}} 0.51$ (ethyl acetate); m.p. $140-152{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2916, 1706, 1477, 1447, 1374, 1293, 1241, 1166, 1100, 1021, 938, 726, 637, 621, 571; $\delta_{\text {H }}$ (400 MHz, CDCl $)^{2} 7.77-7.64(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43-7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.11\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.29-$ $3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}{ }^{\prime} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 3.10\left(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 2.67\left(1 \mathrm{H}, \mathrm{dd}, J=15.9,6.4 \mathrm{~Hz}, \mathrm{CHH}{ }^{\prime} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, $2.51\left(1 \mathrm{H}, \mathrm{dd}, J=15.9,8.0 \mathrm{~Hz}, \mathrm{CHH}{ }^{\prime} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 1.34\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.0$ $(\mathrm{COOH}), 146.1(2 \times \mathrm{ArC}), 141.1(2 \times \mathrm{ArC}), 127.7(2 \times \mathrm{ArCH}), 127.2(2 \times \mathrm{ArCH}), 125.00(\mathrm{ArCH}), 124.97$ (ArCH), $120.0(2 \times \mathrm{ArCH}), 47.0\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 42.0\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 37.2\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 35.4\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 21.6$
$\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2} \mathrm{~S}, 321.0920$. Found: [MNa] ${ }^{+}, 321.0926$ (-2.0 ppm error). The synthetic procedure was adapted from a method reported in a patent. ${ }^{11 a}$

3-(((9H-Fluoren-9-yl)methyl)thio)-2-phenylpropanoic acid (S4)

A solution of thiourea ($13.3 \mathrm{~g}, 174 \mathrm{mmol}$), water (25 mL), and concentrated aq. $\mathrm{HCl}(37 \%, 15.8 \mathrm{~mL})$ was stirred at $45^{\circ} \mathrm{C}$ for 30 min . To this was added atropic acid ($2.96 \mathrm{~g}, 30.0 \mathrm{mmol}$) and the temperature was then raised to $90^{\circ} \mathrm{C}$ for 2 h . An aqueous solution of $\mathrm{NaOH}\left(20 \mathrm{~g} \mathrm{in} 25 \mathrm{~mL}\right.$ of $\mathrm{H}_{2} \mathrm{O}$) was prepared and added dropwise over 30 min . The reaction mixture was stirred for 30 min and allowed to cool to RT. Concentrated HCl was added to adjust the pH to $5-6$ and the reaction mixture extracted using ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic fractions were collected and the solvent removed in vacuo to afford 3-mercapto-2-phenylpropanoic acid as a white paste which was used without further purification ($3.72 \mathrm{~g}, 70 \%$) [Data for 3-mercapto-2-phenylpropanoic acid: $\mathrm{R}_{\mathrm{f}} 0.37$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3019, 2259, 1705, 1601, 1496, 1455, 1419, 1277, 1242, 1180, 1005, 924, 717, 697, $645,615,503 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.81(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 7.40-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0$, $6.4 \mathrm{~Hz}, \mathrm{CH}), 3.15(1 \mathrm{H}, \mathrm{dt}, J=13.8,9.0 \mathrm{~Hz}, \mathrm{CHCHH} \mathrm{SH}), 2.84(1 \mathrm{H}, \mathrm{ddd}, J=13.8,7.9,6.4 \mathrm{~Hz}, \mathrm{CHCHH} \mathrm{SH})$, $1.54(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.9 \mathrm{~Hz}, \mathrm{SH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.2(\mathrm{COOH}), 136.9(\mathrm{ArC}), 129.1(2 \times \mathrm{ArCH})$, $128.3(\mathrm{ArCH}), 128.1(2 \times \mathrm{ArCH}), 55.8(\mathrm{CH}), 27.2\left(\mathrm{CH}_{2}\right)$; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}, 181.0329$ Found: [M-H]', 181.0324 (2.4 ppm error)]. To a solution of 3-mercapto-2-phenylpropanoic acid (1.46 g, 8.00 mmol) and fluorenyl methanol p-toluenesulfonate ($2.82 \mathrm{~g}, 8.04 \mathrm{mmol}$ - see $\mathbf{S 1}$ for its preparation) in DMF (14 mL) was added ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(2.78 \mathrm{~mL}, 16.0 \mathrm{mmol})$. The reaction was stirred at room temperature for 16 h . The reaction mixture was dissolved in ethyl acetate $(80 \mathrm{~mL})$, washed with $0.2 \mathrm{~N} \mathrm{HCl}(5 \times 30$ $\mathrm{mL})$, sat. $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, water $(30 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The combined organics were concentrated and solvent removed in vacuo to afford the title compound as a yellow solid ($1.93 \mathrm{~g}, 67 \%$); $\mathrm{R}_{\mathrm{f}} 0.45$ (ethyl acetate); m.p. $69-85^{\circ} \mathrm{C} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) $3052,1714,1611,1450,1012,736 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(2 \mathrm{H}$, $\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}, \mathrm{ArH}), 7.61(2 \mathrm{H}, \mathrm{ddt}, J=13.8,7.5,0.9 \mathrm{~Hz}, \mathrm{ArH}), 7.44-7.24(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.04(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=6.6 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J=8.9,6.4 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph}) \mathrm{CHH}^{\prime}\right), 3.23\left(1 \mathrm{H}, \mathrm{dd}, J=13.3,8.9 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph}) \mathrm{CHH}^{\prime}\right)$, 3.06-2.95 (2H, m, SCH 2 CH), $2.88\left(1 \mathrm{H}, \mathrm{dd}, J=13.3,6.4 \mathrm{~Hz}, \mathrm{CH}(\mathrm{Ph}) \mathrm{CHH}^{\prime}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.7$ $(\mathrm{COOH}), 146.1(\mathrm{ArC}), 146.0(\mathrm{ArC}), 141.1(2 \times \mathrm{ArC}), 137.4(\mathrm{ArC}), 129.0(2 \times \mathrm{ArCH}), 128.1(3 \times \mathrm{ArCH}), 127.7$
$(2 \times \mathrm{ArCH}), 127.2(\mathrm{ArCH}), 127.1(\mathrm{ArCH}), 125.0(2 \times \mathrm{ArCH}), 120.0(2 \times \mathrm{ArCH}), 52.5\left(\left(\mathrm{CH}(\mathrm{Ph}) \mathrm{CH}_{2}\right), 46.9\right.$ $\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 37.3\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 36.0\left(\mathrm{CH}(\mathrm{Ph}) \mathrm{CH}_{2}\right)$; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}, 359.1111$. Found: $[\mathrm{M}-\mathrm{H}]^{-}$, 359.1118 (-1.9 ppm error). The synthetic procedure was adapted from a method reported in a patent. ${ }^{11 a}$

3-(((9H-Fluoren-9-yl)methyl)thio)-3-phenylpropanoic acid (S5)

A solution of thiourea ($12.2 \mathrm{~g}, 160 \mathrm{mmol}$), water (80 mL), and concentrated aq. $\mathrm{HCl}(37 \%, 70.4 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then cooled to RT. Trans-cinnamic acid (5.92 g , 40 mmol) was added and the temperature was then raised back to $120^{\circ} \mathrm{C}$ and stirred for 18 h , before the reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$. An aqueous solution of $\mathrm{NaOH}(62.6 \mathrm{~g}$ in 244 mL H O) was prepared and added dropwise at $0^{\circ} \mathrm{C}$ until the pH was 14 . The reaction mixture was stirred and heated to $90^{\circ} \mathrm{C}$ for 1.5 h and then was cooled to $0^{\circ} \mathrm{C}$. Concentrated aq. HCl was added to adjust the pH to 5-6 and the reaction mixture extracted using toluene $(3 \times 100 \mathrm{~mL})$. The combined organic fractions were collected, washed with water (300 mL), dried over anhydrous MgSO_{4}, filtered, and the solvent removed in vacuo to afford a sample that is predominantly made up of 3-mercapto-3phenylpropanoic acid, contaminated with a small amount (ca. 20\%) trans-cinnamic acid, as a white solid, with this mixture was used without further purification (5.21 g of material isolated). [Data for 3-mercapto-3-phenylpropanoic acid: $\mathrm{R}_{\mathrm{f}} 0.33$ (ethyl acetate); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.21(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH})$, $7.40-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.50(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.0,6.1 \mathrm{~Hz}, \mathrm{CH}), 3.10-3.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=6.1 \mathrm{~Hz}, \mathrm{SH}$); HRMS (ESI): calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}, 181.0329$ Found: $[\mathrm{M}-\mathrm{H}]^{-}, 181.0329$ (1.1 ppm error)]. To a portion of this mixture (calculated to contain $1.19 \mathrm{~g}, 6.54 \mathrm{mmol}$, of 3-mercapto-3-phenylpropanoic acid) and fluorenyl methanol p-toluenesulfonate ($2.33 \mathrm{~g}, 6.64 \mathrm{mmol}$ - see $\mathbf{S 1}$ for its preparation) in DMF $(12 \mathrm{~mL})$ was added ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(2.31 \mathrm{~mL}, 13.3 \mathrm{mmol})$. The reaction was stirred at room temperature for 72 h. The reaction mixture was dissolved in ethyl acetate (65 mL), washed with $0.2 \mathrm{Naq} . \mathrm{HCl}(5 \times 25 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$, water (25 mL), brine (25 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organics were concentrated and solvent removed in vacuo to afford the title compound as a light orange solid ($1.63 \mathrm{~g}, 69 \%$); $\mathrm{R}_{\mathrm{f}} 0.48$ (ethyl acetate); m.p. $126-140^{\circ} \mathrm{C} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3031 , $1704,1448,1297,1153,918,733,698,666,621,528 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77-7.69(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.43-7.21(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.38\left(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{CHH}^{\prime} \mathrm{CH}(\mathrm{Ph})\right), 2.95-2.87\left(3 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right.$ and $\left.\mathrm{CHH}{ }^{\prime} \mathrm{CH}(\mathrm{Ph})\right), 2.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,7.3 \mathrm{~Hz}$,
$\left.\mathrm{CHH}^{\prime} \mathrm{CH}(\mathrm{Ph})\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.4(\mathrm{COOH}), 146.1(\mathrm{ArC}), 146.0(\mathrm{ArC}), 141.1(3 \times \mathrm{ArC}), 128.9(2 \times$ $\mathrm{ArCH}), 128.0(2 \times \mathrm{ArCH}), 127.9(\mathrm{ArCH}), 127.64(\mathrm{ArCH}), 127.60(\mathrm{ArCH}), 127.1(2 \times \mathrm{ArCH}), 125.1(\mathrm{ArCH})$, $124.8(\mathrm{ArCH}), 119.9(2 \times \mathrm{ArCH}), 46.4\left(\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Ph})\right), 45.6\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 41.4\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 35.5\left(\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Ph})\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NaO}_{2} \mathrm{~S}, 383.1076$. Found: [MNa] ${ }^{+}$, 383.1077 (-0.2 ppm error). The synthetic procedure was adapted from a method reported in a patent. ${ }^{11 \mathrm{~b}}$

3-Methyl-1-thia-5-azacycloheptadecane-4,17-dione (24g)

A mixture of laurolactam 21b ($98.5 \mathrm{mg}, 0.499 \mathrm{mmol}$), DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) and pyridine (0.24 $\mathrm{mL}, 3.00 \mathrm{mmol})$ in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9H-fluoren-9-yl)methyl)thio)-2-methylpropanoyl chloride (1.50 mmol , prepared from $\mathbf{S 2}$ using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with $10 \% \mathrm{aq} . \mathrm{HCl}$ $(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU $(0.750 \mathrm{~mL}$, 5.00 mmol) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by flash column chromatography (SiO_{2}, hexane $\rightarrow 1: 19$ ethyl acetate: hexane $\rightarrow 1: 2$ ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane $\rightarrow 2: 1$ ethyl acetate: hexane) afforded the title compound as a yellow crystalline solid ($86.7 \mathrm{mg}, 58 \%$); m.p. $73-80^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.53$ (ethyl acetate); $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ (thin film) 3297, 2927, 2856, 1684, 1643, 1549, 1456, 1367, 1248, 1189, 1122, 1028, 947, 732; $\delta_{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.74(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 3.62-3.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}^{\prime} \mathrm{NH}\right), 3.06-2.91\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHH}^{\prime} \mathrm{NH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{SCO}\right)$), 2.62$2.36\left(3 \mathrm{H}, \mathrm{m}, \mathrm{COCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~S}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{COS}\right), 1.76-1.50\left(3 \mathrm{H}, \mathrm{m}, 1.5 \times \mathrm{CH}_{2}\right), 1.45-1.24\left(15 \mathrm{H}, \mathrm{m}, 7.5 \times \mathrm{CH}_{2}\right)$, $1.21\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.1(\mathrm{SCO}), 174.3(\mathrm{CO}), 43.7\left(\mathrm{CH}_{2} \mathrm{COS}\right), 42.2$ $\left(\mathrm{COCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{~S}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{NH}\right), 32.7\left(\mathrm{CH}_{2} \mathrm{SCO}\right), 28.9\left(\mathrm{CH}_{2}\right), 27.50\left(\mathrm{CH}_{2}\right), 27.47\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.1$ $\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}$, 322.1811. Found: [MNa$]^{+}, 322.1808$ (1.0 ppm error).

2-Methyl-1-thia-5-azacycloheptadecane-4,17-dione (24h)

A mixture of laurolactam 21b ($98.6 \mathrm{mg}, 0.500 \mathrm{mmol}$), DMAP ($6.2 \mathrm{mg}, 0.051 \mathrm{mmol}$) and pyridine (0.24 $\mathrm{mL}, 3.00 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9H-fluoren-9-yl)methyl)thio)-butanoyl chloride (1.50 mmol , prepared from $\mathbf{S 3}$ using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at 50 ${ }^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM (10 mL) and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with DCM $(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by flash column chromatography (SiO_{2}, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane $\rightarrow 2: 1$ ethyl acetate: hexane) afforded the title compound as a yellow crystalline solid ($87.2 \mathrm{mg}, 58 \%$); m.p. $54-56{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.48$ (ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3299,2926 , $2856,1683,1645,1553,1447,1373,1291,1118,1020,732$; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 3.90-3.80 (1H, m, COCH $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{S}\right), 3.38-3.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.62-2.41\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{CON}\right.\right.$ and $\left.\mathrm{CH}_{2} \mathrm{COS}\right)$), 1.78-1.55 (3H, m, $\left.1.5 \times \mathrm{CH}_{2}\right), 1.54-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40-1.22$ $\left(13 \mathrm{H}, \mathrm{m}, 6.5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.5(\mathrm{COS}), 170.3(\mathrm{CON}), 43.9\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 39.4$ $\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $37.0\left(\mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{S}\right), 29.0\left(\mathrm{CH}_{2}\right)$, $27.6\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.99\left(\mathrm{CH}_{2}\right), 26.97\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right)$, $25.5\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$, $21.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}, 322.1811$. Found: [MNa] ${ }^{+}, 322.1812$ (-0.2 ppm error).

3-Phenyl-1-thia-5-azacycloheptadecane-4,17-dione (24i)

A mixture of laurolactam 21b ($99.3 \mathrm{mg}, 0.503 \mathrm{mmol}$), DMAP ($8.0 \mathrm{mg}, 0.066 \mathrm{mmol}$) and pyridine (0.24 $\mathrm{mL}, 3.00 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a
solution of 3-(((9H-fluoren-9-yl)methyl)thio)-2-phenylpropanoyl chloride (1.50 mmol , prepared from S4 using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with $10 \% \mathrm{aq} . \mathrm{HCl}$ $(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL , 5.00 mmol) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by repeated flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a yellow solid ($52.5 \mathrm{mg}, 29 \%$); m.p. $82-86^{\circ} \mathrm{C}$; R R 0.73 (ethyl acetate); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3301, 3063, 2927, 2856, 1682, 1647, 1548, 1495, 1450, 1393, 1353, 1243, 1187, 1030, 909, 760, 729, 697; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42-7.26$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $5.46(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}), 3.75\left(1 \mathrm{H}\right.$, dddd, $\left.J=13.3,8.3,8.3,3.4 \mathrm{~Hz}, \mathrm{CHH}^{\prime} \mathrm{NH}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J=9.2$, $\left.5.4 \mathrm{~Hz}, \mathrm{COCH}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~S}\right), 3.31-3.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SCO}\right), 2.84-2.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}^{\prime} \mathrm{NH}\right), 2.64(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ 14.2, 8.7, 5.4, CHH’COS), 2.50 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.2,7.2,5.4, \mathrm{CHH}^{\prime} \mathrm{COS}$), $1.84-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70-1.52$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.45-1.21\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.3(\mathrm{COS}), 171.5(\mathrm{CON}), 139.3$ (ArC), $129.0(2 \times \mathrm{ArCH}), 127.8(\mathrm{ArCH}), 127.7(2 \times \mathrm{ArCH}), 53.5\left(\mathrm{COCH}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~S}\right), 43.8\left(\mathrm{CH}_{2} \mathrm{COS}\right), 39.5\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $32.6\left(\mathrm{CH}_{2} \mathrm{SCO}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.51\left(\mathrm{CH}_{2}\right), 27.49\left(2 \times \mathrm{CH}_{2}\right), 27.46\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right)$, $25.1\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S}, 384.1968$. Found: [MNa] ${ }^{+}$, 384.1970 (-0.5 ppm error).

1-[(2E)-3-Phenylprop-2-enoyl]azacyclotridecan-2-one (S6)

A mixture of laurolactam 21b ($98.2 \mathrm{mg}, 0.498 \mathrm{mmol}$), DMAP ($6.1 \mathrm{mg}, 0.050 \mathrm{mmol}$) and pyridine (0.24 $\mathrm{mL}, 3.00 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9H-fluoren-9-yl)methyl)thio)-3-phenylpropanoyl chloride (1.51 mmol , prepared from S5 using the general procedure) in DCM (3 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with $10 \% \mathrm{aq} . \mathrm{HCl}$ $(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was complete at this stage. The crude material was then re-dissolved in DCM (10 mL) and DBU (0.75 mL ,
5.00 mmol) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by flash column chromatography (SiO_{2}, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane $\rightarrow 1: 4$ ethyl acetate: hexane) afforded the title compound $\mathbf{S 6}$ as a yellow crystalline solid ($115 \mathrm{mg}, 70 \%$); m.p. $45-51^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.40(1: 4$ ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2929, 2859, 1675, 1616, 1577, 1449, 1332, 1178, 1135, 1098, 1071, 1047, 910, 763, 729, 684, 563; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.5 \mathrm{~Hz}, \mathrm{ArCHCHCON})$, 7.57-7.52 (2H, m, ArH), 7.41-7.33 (3H, m, ArH), $7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.5 \mathrm{~Hz}, \operatorname{ArCHCHCON}), 3.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CON}\right), 1.84-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.71(2 \mathrm{H}$, apparent p, J=7.0 $\mathrm{Hz}, \mathrm{CH}_{2}$), 1.51-1.24 (14H, m, $7 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), 177.5 (CON), 169.5 (COCHCH), 144.1 (ArCHCHCON), 134.9 (ArC), 130.3 (ArCH), $128.9(2 \times \mathrm{ArCH}), 128.3(2 \times \mathrm{ArCH}), 121.3$ (ArCHCHCON), 43.7 $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 36.6\left(\mathrm{CH}_{2} \mathrm{CON}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.4\left(2 \times \mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 24.2$ $\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{2}$, 350.2090. Found: [MNa] ${ }^{+}$, 350.2091 (-0.1 ppm error).

2-Phenyl-1-thia-5-azacycloheptadecane-4,17-dione (24j)

A mixture of laurolactam 21b (156mg, 0.792 mmol$)$, DMAP ($10.5 \mathrm{mg}, 0.086 \mathrm{mmol}$) and pyridine (0.36 $\mathrm{mL}, 4.50 \mathrm{mmol}$) in DCM (10 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 3-(((9H-fluoren-9-yl)methyl)thio)-3-phenylpropanoyl chloride (2.25 mmol , prepared from S5 using the general procedure) in DCM (5 mL) was added and the resulting mixture was stirred at RT for 18 h . The solvent was concentrated in vacuo, loaded onto a short silica plug and eluted $\left(\mathrm{SiO}_{2}, 1: 9\right.$ ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) to remove the majority of excess carboxylic acid and pyridine residues, and concentrated in vacuo to afford the crude imide product 1-(3-()(9H-fluoren-9-yl)methyl)thio)3-phenylpropanoyl)azacyclotridecan-2-one as a yellow oil (273 mg). The crude material was then re-dissolved in DCM (10 mL) and DBU ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 9\right.$ ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded the title compound as an orange solid ($22.6 \mathrm{mg}, 8 \%$); m.p. $79-82^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.35$ (1:1 ethyl acetate: hexane); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) $3295,3078,2927,2856,1689$, $1645,1554,1494,1452,1361,766,733,698 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 5.86(1 \mathrm{H}$,
brt, J = 5.6 Hz, NH), $5.02\left(1 \mathrm{H}, \mathrm{dd}, J=9.7,5.1 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}(\mathrm{Ph}) \mathrm{S}\right), 3.53-3.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}^{\prime} \mathrm{NH}\right), 3.14(1 \mathrm{H}$, app dq, J = 13.2, 5.6 Hz, CHH'NH), 2.90-2.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}$), 2.62-2.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COS}$), 1.90-1.67 $\left(1 \mathrm{H}, \mathrm{m}, 0.5 \times \mathrm{CH}_{2}\right), 1.61-1.47\left(3 \mathrm{H}, \mathrm{m}, 1.5 \times \mathrm{CH}_{2}\right), 1.45-1.21\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.7$ (COS), $169.5(C O N), 142.0(\mathrm{ArC}), 128.8(2 \times \mathrm{ArCH}), 127.7(\mathrm{ArCH}), 127.5(2 \times \mathrm{ArCH}), 44.7$ $\left(\mathrm{COCH}_{2} \mathrm{CH}(\mathrm{Ph}) \mathrm{S}\right), 43.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 39.5\left(\mathrm{CH}_{2} \mathrm{NH}\right), 29.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 27.1(2$ $\left.\times \mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right) ; \mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S}, 384.1968$. Found: [MNa] ${ }^{+}$, 384.1966 (0.5 ppm error).

2-(((9H-Fluoren-9-yl)methyl)thio)acetic acid (S7)

To 9-fluorenemethanol ($9.80 \mathrm{~g}, 50 \mathrm{mmol}$) was added thionyl chloride (50 mL) and the solution was heated at reflux at $80^{\circ} \mathrm{C}$ for 2 h . Excess thionyl chloride was removed in vacuo and the residue was taken up in a pentane: $\operatorname{DCM}(60: 40)$ mixture. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 85: 15\right.$ pentane: DCM) afforded 9-fluorenylmethyl chloride as a pale yellow oil (1.88 g, 17\%) [Data for 9fluorenylmethyl chloride: $R_{f} 0.35$ (85:15 pentane: $D C M$); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3066, 2952, 1477, 1448, $1303,1263,1100,1031,936,814,763,736,706,638,621,579,530 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81-7.67$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.46-7.32(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 3.92\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.2(2 \times \mathrm{ArC}), 141.3(2 \times \mathrm{ArC}), 128.2(2 \times \mathrm{ArCH}), 127.3(2 \times \mathrm{ArCH}), 125.1(2 \times \mathrm{ArCH})$, $120.2(2 \times \mathrm{ArCH}), 49.5\left(\mathrm{CH}_{2} \mathrm{CH}\right), 47.1\left(\mathrm{CH}_{2} \mathrm{CH}\right)$; HRMS (APCI) : calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}, 215.062204$. Found: $[\mathrm{MH}]^{+}, 215.062158(-0.2 \mathrm{ppm}$ error $\left.)\right] .{ }^{12}$ To a solution of thioglycolic acid ($86 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) and 9fluorenylmethyl chloride ($245 \mathrm{mg}, 1.14 \mathrm{mmol}$) in THF (5 mL) was added ${ }^{1} \operatorname{Pr}_{2} \mathrm{NEt}(0.61 \mathrm{~mL}, 3.51 \mathrm{mmol})$. The reaction was stirred at room temperature for 17 h and THF was removed under reduced pressure. The residue was taken up in sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ bringing the pH to 8 . The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$, and the aqueous layer acidified with aq. $\mathrm{HCl}(10 \%)$ to pH 1 and extracted with ethyl acetate $\left(5 \times 30 \mathrm{~mL}\right.$). The combined ethyl acetate extracts were dried over MgSO_{4} and concentrated in vacuo to afford the title compound as an orange-yellow solid paste ($310 \mathrm{mg}, 100 \%$); $\mathrm{R}_{\mathrm{f}} 0.20$ (ethyl acetate); m.p. $94-101^{\circ} \mathrm{C} ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 2919, $1703,1477,1448,1295,1129,1155$, 1031, 765, 736, 621; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.24$ (1H, br s, COOH), $7.80-7.64$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.44-7.29$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.17\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.25\left(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{COOH}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.2(\mathrm{COOH}), 145.7(2 \times \mathrm{ArC}), 141.2(2 \times \mathrm{ArC}), 127.8(2 \times \mathrm{ArCH}), 127.2(2 \times \mathrm{ArCH})$,
$124.9(2 \times \mathrm{ArCH}), 120.1(2 \times \mathrm{ArCH}), 46.6\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 36.8\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 34.2\left(\mathrm{SCH}_{2} \mathrm{COOH}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}_{2} \mathrm{~S}, 293.0607$. Found: [MNa$]^{+}, 293.0604$ (0.9 ppm error). ${ }^{13}$

1-(2-(((9H-Fluoren-9-yl)methyl)thio)acetyl)azacyclotridecan-2-one (S8)

A mixture of laurolactam 21b (198 mg, 1.00 mmol$)$, DMAP ($13.6 \mathrm{mg}, 0.111 \mathrm{mmol}$) and pyridine (0.480 $\mathrm{mL}, 6.00 \mathrm{mmol}$) in DCM (20 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of 2-(((9H-fluoren-9-yl)methyl)thio)acetyl chloride (3.14 mmol , prepared from $\mathbf{S 7}$ using the general procedure) in DCM (20 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane $\rightarrow 3: 1$ ethyl acetate: hexane) afforded the title compound as an orange solid ($299 \mathrm{mg}, 66 \%$); $\mathrm{R}_{\mathrm{f}} 0.31$ (1:3 ethyl acetate: hexane); m.p. $65-71^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2929, 2860, 1682, 1447, 1360, 1276, 1177, 1120, 1047, 909, $764,736,621 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=16.3,7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.42-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.13$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2} \mathrm{CON}\right), 3.71-3.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.12(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, SCH $\mathrm{S}_{2} \mathrm{CH}$), 2.59-2.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CON}$), 1.83-1.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.71-1.58(2H, m, CH2), 1.52-1.41(4H, $\mathrm{m}, 2 \times \mathrm{CH}_{2}$), 1.40-1.21 (10H, m, $5 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.8(\mathrm{CON}), 172.6$ (CON), $146.1(2 \times$ $\operatorname{ArC}), 141.1(2 \times \mathrm{ArC}), 127.7(2 \times \mathrm{ArCH}), 127.1(2 \times \mathrm{ArCH}), 125.1(2 \times \mathrm{ArCH}), 120.0(2 \times \mathrm{ArCH}), 46.7$ $\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 43.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.1\left(\mathrm{SCH}_{2} \mathrm{CON}\right), 36.3\left(\mathrm{SCH}_{2} \mathrm{CH}\right), 35.7\left(\mathrm{CH}_{2} \mathrm{CON}\right), 25.92\left(\mathrm{CH}_{2}\right), 25.87\left(\mathrm{CH}_{2}\right), 25.4$ $\left(\mathbf{C H}_{2}\right)$, $24.9\left(\mathbf{C H}_{2}\right)$, $24.6\left(\mathbf{C H}_{2}\right)$, $24.4\left(\mathrm{CH}_{2}\right)$, $24.1\left(\mathbf{C H}_{2}\right)$, $23.9\left(\mathbf{C H}_{2}\right)$, $23.7\left(\mathbf{C H}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{~S}, 450.2461$. Found: $[\mathrm{MH}]^{+}, 450.2462$ (-0.2 ppm error).

(9H-Fluoren-9-yl)methyl benzyl(2-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-2-

 oxoethyl)carbamate (S9)

A mixture of 1-thia-5-azacycloheptadecane-4,17-dione 24b (150 mg, 0.526 mmol), DMAP (6.1 mg , $0.050 \mathrm{mmol})$ and pyridine $(0.240 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in DCM (2.5 mL) under an argon atmosphere was stirred for 5 mins. Next, a solution of (9H-fluoren-9-yl)methyl benzyl(2-chloro-2-oxoethyl)carbamate (0.754 mmol, prepared from N-(((9H-fluoren-9-yl)methoxy)carbonyl)- N-benzylglycine ${ }^{10}$ using the general procedure) in DCM (5 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The crude mixture was concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound $\mathbf{S 9}$ as a 1:1 mixture of rotamers as a fluffy white solid; m.p. $44-59{ }^{\circ} \mathrm{C}(261 \mathrm{mg}, 76 \%)$; $\mathrm{R}_{\mathrm{f}} 0.56$ (1:1 ethyl acetate: hexane); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) $2927,2856,1694,1451,1424,1389,1220,1112,1004,953,892,759,740,699,621,598,534 ;$ $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR signals are for both rotamers unless stated $7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{ArH})$, $7.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.53(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.47(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.42-7.12(18 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 4.58-4.54\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}\right), 4.49-4.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CNO}\right.$, [overlapping]), 4.48-4.45 (2H, m, COCH2CH, [overlapping]), 4.26 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CNO}$), 4.26-4.19 (2H, m, $\left.2 \times \mathrm{COCH}_{2} \mathrm{CH}\right), 3.62-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right.$, rotamer A), 3.51-3.44(2H, m, CH2CH2NCO, rotamer B), $3.11\left(4 \mathrm{H}\right.$, apparent $\left.q, J=6.4 \mathrm{~Hz}, 2 \times \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 2.83(4 \mathrm{H}$, apparent $\mathrm{dt}, \mathrm{J}=13.8,6.6 \mathrm{~Hz}, 2 \times$ $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CON}$), $2.60-2.52\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 1.73-1.62\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.56-1.47(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.45 - $1.14\left(30 \mathrm{H}, \mathrm{m}, 15 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 200.02(\mathrm{SCO}), 199.99$ (SCO), 173.9 (CO), $173.8(\mathrm{CO}), 172.4(\mathrm{CO}), 172.2(\mathrm{CO}), 156.72\left(\mathrm{NCO}_{2}\right), 156.70\left(\mathrm{NCO}_{2}\right), 144.01(2 \times \mathrm{ArC}), 143.95(2 \times \mathrm{ArC})$, $141.35(2 \times \mathrm{ArC}), 141.33(2 \times \mathrm{ArC}), 137.3(\mathrm{ArC}), 137.1(\mathrm{ArC}), 128.8(2 \times \mathrm{ArCH}), 128.6(2 \times \mathrm{ArCH}), 128.0$ $(2 \times \mathrm{ArCH}), 127.7(4 \times \mathrm{ArCH}), 127.53(\mathrm{ArCH}), 127.51(\mathrm{ArCH}), 127.4(2 \times \mathrm{ArCH}), 127.1(4 \times \mathrm{ArCH}), 125.1$ $(2 \times \mathrm{ArCH}), 124.9(2 \times \mathrm{ArCH}), 119.98(2 \times \mathrm{ArCH}), 119.95(2 \times \mathrm{ArCH}), 67.9\left(\mathrm{CH}_{2} \mathrm{CH}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{CH}\right), 54.2$ $\left(\mathrm{NCH}_{2} \mathrm{CNO}\right)$, $53.3\left(\mathrm{NCH}_{2} \mathrm{CNO}\right), 51.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 51.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 47.4(\mathrm{CH}), 47.2(\mathrm{CH}), 44.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 44.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 43.7\left(2 \times \mathrm{CH}_{2} \mathrm{COS}\right), 37.4\left(2 \times \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 27.80\left(2 \times \mathrm{CH}_{2}\right), 27.75\left(\mathrm{CH}_{2}\right), 27.71\left(2 \times \mathrm{CH}_{2}\right), 27.64$ $\left(\mathrm{CH}_{2}\right), 27.3\left(2 \times \mathrm{CH}_{2}\right), 27.2\left(2 \times \mathrm{CH}_{2}\right), 26.70\left(\mathrm{CH}_{2}\right), 26.66\left(2 \times \mathrm{CH}_{2}\right), 26.60\left(\mathrm{CH}_{2}\right), 25.10\left(\mathrm{CH}_{2}\right), 25.07\left(\mathrm{CH}_{2}\right)$, $25.01\left(\mathrm{CH}_{2}\right), 24.97\left(\mathrm{CH}_{2}\right), 23.59\left(2 \times \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}, 677.3020$. Found: [MNa] ${ }^{+}$, 677.3012 (1.1 ppm error)

5-Benzyl-5,8-diaza-1-thiacycloicosane-4,7,20-trione (24I)

To a solution of (9H-fluoren-9-yl)methyl benzyl(2-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-2oxoethyl)carbamate $\mathbf{S 9}$ ($261 \mathrm{mg}, 0.398 \mathrm{mmol}$) in DCM (10 mL) under an argon atmosphere DBU (0.75 $\mathrm{mL}, 0.50 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:2 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a white crystalline solid ($106 \mathrm{mg}, 62 \%$; 47% over 2 steps from 24b) as a $5: 4$ (A:B) mixture of rotamers; m.p. $84-98^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.67$ ($9: 1$ ethyl acetate: methanol); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3318 , $2927,2856,1655,1543,1496,1443,1358,1265,1236,1198,1081,1021,910,730,699 ; \delta_{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.34-7.17(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.13-7.07(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}$, rotamer A$), 6.09(1 \mathrm{H}$, $t, J=5.8 \mathrm{~Hz}, \mathrm{NH}$, rotamer B$), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right.$, rotamer B$), 4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right.$, rotamer A$), 3.96(2 \mathrm{H}$, s, $\mathrm{NCH}_{2} \mathrm{CO}$, rotamer A), $3.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CO}\right.$, rotamer B$), 3.20-3.09\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 2.71(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.61-2.43\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.71-1.56\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.50-1.12\left(32 \mathrm{H}, \mathrm{m}, 16 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.2$ (SCO), 200.1 (SCO), 172.7 (CO), 171.8 (CO), 168.9 (CO), 167.7 (CO), 136.7 (ArC), $135.5(\mathrm{ArC}), 129.2(2 \times \mathrm{ArCH}), 128.9(2 \times \mathrm{ArCH}), 128.6(2 \times \mathrm{ArCH}), 128.1(\mathrm{ArCH}), 128.0(\mathrm{ArCH}), 126.6(2$ $\times \mathrm{ArCH}), 52.7\left(\mathrm{PhCH}_{2}\right.$, rotamer A$), 51.5\left(\mathrm{NCH}_{2} \mathrm{CO}\right.$, rotamer A$), 50.7\left(\mathrm{NCH}_{2} \mathrm{CO}\right.$, rotamer B$), 50.3\left(\mathrm{PhCH}_{2}\right.$, rotamer B), $43.4\left(\mathrm{CH}_{2}\right), 43.3\left(\mathrm{CH}_{2}\right)$, $39.5\left(2 \times \mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{2}\right)$, $27.9\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.18\left(\mathrm{CH}_{2}\right), 27.15\left(\mathrm{CH}_{2}\right), 26.99\left(2 \times \mathrm{CH}_{2}\right)$, $26.95\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right) ;$ HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}$, 455.2339. Found: [MNa] ${ }^{+}$, 455.2332 (1.5 ppm error). For X-ray crystallographic data, see CCDC 2040346.

5-Benzyl-1-thia-5,9-diazacyclohenicosane-4,8,21-trione (24m)

A mixture of 1-thia-5-azacycloheptadecane-4,17-dione 24b ($143 \mathrm{mg}, 0.502 \mathrm{mmol}$), DMAP (8.6 mg , $0.070 \mathrm{mmol})$ and pyridine $(0.24 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in DCM $(5 \mathrm{~mL})$ under an argon atmosphere was stirred for 5 mins. Next, a solution of 3-((((9H-fluoren-9-yl)methoxy)carbonyl)(benzyl)amino)propanoyl chloride $\quad 0.755 \mathrm{mmol}$, prepared from 3-(()(9H-fluoren-9yl)methoxy)carbonyl)(benzyl)amino)propanoic acid using the general procedure) in DCM (5 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . TLC analysis indicated that the acylation was incomplete, and so another solution of 3-(()(9H-fluoren-9yl)methoxy)carbonyl)(benzyl)amino)propanoyl chloride (0.748 mmol) in DCM (10 mL) was prepared and added to the reaction mixture, with heating at reflux for an additional 18 h at $50^{\circ} \mathrm{C}$. The crude mixture was then concentrated in vacuo. Rough purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:5 ethyl acetate: hexane $\rightarrow 1: 2$ ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded a crude product consisting of predominantly (9H-fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3oxopropyl)carbamate, as a roughly 1:1 mixture of rotamers, as a light yellow paste (283 mg of material isolated, used directly in the next step). [Selected data for the intermediate (9 H -fluoren- $9-\mathrm{yl}$)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3-oxopropyl)carbamate: $\quad R_{f} 0.71$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2927, 2856, 1688, 1451, 1420, 1369, 1210, 1112, 1031, 910, 759, 729, 700, 621; Diagnostic ${ }^{1} \mathrm{H}$ NMR resonances: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.56\left(2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}\right), 4.50$ $-4.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, [overlapping]), $4.50-4.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}\right.$, [overlapping]), $4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.27\left(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}\right), 4.20\left(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}\right)$; Diagnostic ${ }^{13} \mathrm{C}$ NMR resonances: δ_{C} (100 MHz, CDCl ${ }_{3}$), $200.2(2 \times \mathrm{SCO}), 174.3$ (CO), $174.0(\mathrm{CO}), 173.9(\mathrm{CO}), 173.7(\mathrm{CO}), 156.6\left(\mathrm{NCO}_{2}\right), 156.2$ $\left(\mathrm{NCO}_{2}\right), 67.5\left(\mathrm{CH}_{2} \mathrm{CH}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{CH}\right), 51.1\left(\mathrm{PhCH}_{2}\right), 50.9\left(\mathrm{PhCH}_{2}\right), 47.5(\mathrm{CH}), 47.4(\mathrm{CH})$; HRMS (ESI): calcd. for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{~S}, 691.3176$ Found: [MNa$]^{+}, 691.3176$ (0.0 ppm error)]. To a solution of this sample of (9H-fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3oxopropyl)carbamate in DCM (8.2 mL) under an argon atmosphere, DBU ($0.610 \mathrm{~mL}, 4.04 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. Purification by
flash column chromatography (SiO_{2}, hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane $\rightarrow 1: 2$ ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane $\rightarrow 2: 1$ ethyl acetate: hexane $\rightarrow 4: 1$ ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a $2: 1$ mixture of rotamers as a white pasty solid ($31.6 \mathrm{mg}, 14 \%$ from 24b); m.p. $62-75^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.34$ (ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3311 , 2925, 2854, 1638, 1549, 1439, 1365, 1197, 1026, 727, 698; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 7.37-7.22(8 \mathrm{H}, \mathrm{m}$, ArCH, both rotamers), $7.15-7.08(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}$, both rotamers $), 6.46(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{NH}$, major rotamer), $5.77\left(1 \mathrm{H}, \mathrm{br} t, J=5.7 \mathrm{~Hz}, \mathrm{NH}\right.$, minor rotamer), $4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, minor rotamer), $4.57(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$, major rotamer), 3.70-3.64(2H,m,CON(CH2Ph)CH2, major rotamer), 3.60-3.54(2H,m, $\mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{CH}_{2}$, minor rotamer), $3.30-3.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.14\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.75-2.69$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, minor rotamer), $2.63\left(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, major rotamer), $2.58\left(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, minor rotamer), 2.55-2.47 (4H, m, $2 \times \mathrm{CH}_{2}$), $2.39-2.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$, minor rotamer), 1.74-1.61 (4H, $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.59-1.43\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.38-1.21\left(30 \mathrm{H}, \mathrm{m}, 15 \times \mathrm{CH}_{2}\right.$, both rotamers); $\delta_{\mathrm{c}}(100 \mathrm{MHz}$, CDCl_{3}) data for major rotamer A, 200.1 (COS), 172.4 (CON), 171.0 (CON), 136.4 (ArC), 129.1 ($2 \times \mathrm{ArCH}$), $127.8(\mathrm{ArCH}), 126.3(2 \times \mathrm{ArCH}), 52.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 43.5\left(\mathrm{CH}_{2}\right), 43.2\left(\mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right)$, $33.9\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.52\left(\mathrm{CH}_{2}\right), 27.49\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{2}\right)$, $24.6\left(\mathrm{CH}_{2}\right)$; Diagnostic ${ }^{13} \mathrm{C}$ NMR resonances for the minor rotamer: $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, 201.1 (COS), 171.2 (CON), 169.7 (CON), 49.2 ($\mathrm{CH}_{2} \mathrm{Ph}$); HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}, 469.2495$ Found: [MNa] ${ }^{+}, 469.2500$ (-0.9 ppm error).

5-(3-Mercaptopropanoyl)-1-thia-5-azacycloheptadecane-4,17-dione (39)

Oxalyl chloride ($0.19 \mathrm{~mL}, 2.25 \mathrm{mmol}$) was added to a suspension of 3-(tritylthio)propanoic acid (525 $\mathrm{mg}, 1.51 \mathrm{mmol}$) in DCM (7.5 mL), followed by a catalytic amount of DMF (1 drop). The resulting mixture was stirred at RT for 30 min and concentrated in vacuo to remove all solvent and excess oxalyl chloride. The resulting 3-(tritylthio)propanoyl chloride $\mathbf{3 0}$ was dissolved in DCM (3 mL) and added to a prestirred mixture of 1-thia-5-azacycloheptadecane-4,17-dione 24b (149 mg, 0.521 mmol), DMAP (7.0 $\mathrm{mg}, 0.057 \mathrm{mmol}$) and pyridine ($0.240 \mathrm{~mL}, 3.00 \mathrm{mmol}$) in DCM (7 mL) under an argon atmosphere. The reaction mixture was then heated to $50^{\circ} \mathrm{C}$ and stirred for 18 h . The solvent was removed in vacuo, and the product mixture was loaded onto a short silica plug and eluted ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) to remove the majority of the excess carboxylic acid and pyridine
residues, and concentrated in vacuo to afford a sample of crude 5-(3-(tritylthio)propanoyl)-1-thia-5-azacycloheptadecane-4,17-dione (38) as a white solid, which was used without further purification, 274 mg of this crude material was obtained. [Data for crude 38: m.p. 31-45 ${ }^{\circ} \mathrm{C} ; \mathrm{Rf}_{\mathrm{f}} 0.79$ (ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3058, 2928, 2856, 1819, 1690, 1595, 1489, 1444, 1370, 1132, 1106, 1034, 908, $730,698,676,619,506 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 7.49-7.41$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.33-7.18$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 3.59 - $3.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 3.15\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{CON}$), $2.76\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SC}(\mathrm{Ph})_{3}\right), 2.62-2.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 2.54(2 \mathrm{H}, \mathrm{t}$, $\left.J=7.0 \mathrm{~Hz}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SC}(\mathrm{Ph})_{3}\right), 1.76-1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53-1.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.41-1.18(14 \mathrm{H}, \mathrm{m}, 7 \times$ $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 200.1(\mathrm{COS}), 174.5(\mathrm{CO}), 173.7(\mathrm{CO}), 144.8(3 \times \mathrm{ArC}), 129.7(6 \times \mathrm{ArCH}), 127.9$ $(6 \times \mathrm{ArCH}), 126.7(3 \times \mathrm{ArCH}), 66.9\left(\mathrm{CPh}_{3}\right), 44.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 43.7\left(\mathrm{CH}_{2} \mathrm{COS}\right), 38.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SC}(\mathrm{Ph})_{3}\right)$, $37.9\left(\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.84\left(\mathrm{CH}_{2}\right), 27.77\left(\mathrm{CH}_{2}\right), 27.2\left(2 \times \mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.8\left(\mathbf{C H}_{2}\right), 26.6$ $\left(\mathrm{CH}_{2}\right), 25.14\left(\mathrm{CH}_{2}\right), 25.05\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{COSCH}_{2}\right)$; $\mathrm{HRMS}(E S I)$: calcd. for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{NNaO}_{3} \mathrm{~S}_{2}, 638.2733$. Found: [MNa$]^{+}, 638.2738$ (-0.7 ppm error)]. This mixture was then dissolved in DCM (4.4 mL) under an argon atmosphere, before TFA ($0.44 \mathrm{~mL}, 5.7 \mathrm{mmol}$) was added and the solution stirred for 3 min . Next, triisopropylsilane ($0.11 \mathrm{~mL}, 0.53 \mathrm{mmol}$) was added and the solution stirred for a further 30 min . The mixture was then diluted with DCM (1.5 mL) and washed with water (5 mL). The aqueous layer was then extracted with $\operatorname{DCM}(3 \times 1.5 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography (SiO_{2}, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane) afforded the title compound as a colorless oil ($52.6 \mathrm{mg}, 27 \%$ from 24b); $\mathrm{R}_{\mathrm{f}} 0.27$ ($4: 1$ hexane: ethyl acetate); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2926, 2855, 1687, 1460, 1371, 1206, 1132, 1105, 1016, 948, 732, 698, 600; $\delta_{H}(400 \mathrm{MHz}$, CDCl_{3}), 3.63-3.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}$), 3.18-3.11 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$ and COSCH_{2}), $2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, \mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{CON}$), $2.78\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.4,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 2.59-2.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.72-$ $1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ [overlapping]), $1.64\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right.$ [overlapping]), $1.55-1.45(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.38-1.15 ($14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), 200.2 (COS), 174.3 (CO), 173.9 (CO), 44.3 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 43.8\left(\mathrm{CH}_{2} \mathrm{COS}\right), 43.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 37.9\left(\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 27.94\left(\mathrm{CH}_{2}\right), 27.85\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathbf{C H}_{2}\right), 27.3\left(\mathbf{C H}_{2}\right), 27.2\left(\mathbf{C H}_{2}\right), 26.8\left(\mathbf{C H}_{2}\right), 26.7\left(\mathbf{C H}_{2}\right), 25.2\left(\mathbf{C H}_{2}\right), 25.1\left(\mathbf{C H}_{2}\right), 23.9\left(\mathrm{COSCH}_{2}\right), 19.9$ ($\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$); HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}_{2}, 374.1818$. Found: [MH] ${ }^{+}, 374.1819$ (-0.1 ppm error).

1,5-Dithia-9-azacyclohenicosane-4,8,21-trione (40)

5-(3-Mercaptopropanoyl)-1-thia-5-azacycloheptadecane-4,17-dione (39) ($45 \mathrm{mg}, 0.120 \mathrm{mmol}$) was dissolved in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$ and transferred to an NMR tube. To it was added triethylamine ($33 \mu \mathrm{~L}$, $0.240 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.2 \mathrm{~mL})$, and then the reaction mixture was heated to $55^{\circ} \mathrm{C}$ in an oil bath for 8 h (doing the reaction in an NMR tube enabled us to monitor progress of the rearrangement using ${ }^{1} \mathrm{H}$ $\mathrm{NMR})$. The mixture was then concentrated and purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane $\rightarrow 1: 1$ ethyl acetate: hexane $\rightarrow 2: 1$ ethyl acetate: hexane) afforded some recovered starting material 39 ($6.6 \mathrm{mg}, 15 \%$) and the title compound 40 a pasty white solid ($13.9 \mathrm{mg}, 31 \%$). Data for 40: m.p. 87-89 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.12$ (1:1 ethyl acetate: hexane); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3300, $2925,2854,1687$, $1645,1549,1409,1262,1161,1052,958,731,698,601 ; \delta_{H}\left(400 \mathrm{MHz}, C D C l_{3}\right), 5.79(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$, $N H), 3.28\left(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHCO}\right), 3.22-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 3.14(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}$, $\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{COS}$), $2.83\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right.$), $2.58-2.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 2.50-2.44$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 1.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.55-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38-1.18(14 \mathrm{H}, \mathrm{m}, 7 \times$ CH_{2}); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), $199.6(\mathrm{COS}), 197.8$ (COS), 170.9 (CON), $44.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 43.8$ $\left(\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 39.7\left(\mathrm{CH}_{2} \mathrm{NHCO}\right), 36.6\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right)$, $28.2\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 25.3\left(\mathrm{CH}_{2}\right), 24.3$ $\left(\mathrm{COSCH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right)$; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}_{2}$, 374.1818. Found: [MH] ${ }^{+}$, 374.1812 (1.5 ppm error).

5-(3-Mercaptopropanoyl)-1-oxa-5-azacycloheptadecane-4,17-dione (43)

Oxalyl chloride ($0.340 \mathrm{~mL}, 4.00 \mathrm{mmol}$) was added to a suspension of 3-(tritylthio)propanoic acid (467 $\mathrm{mg}, 1.34 \mathrm{mmol})$ in DCM (13.5 mL), followed by a catalytic amount of DMF (1 drop). The resulting mixture was stirred at RT for 30 min and concentrated in vacuo to remove all solvent and excess oxalyl chloride. The resulting 3-(tritylthio) propanoyl chloride was added to a pre-stirred mixture of 1-oxa-5-azacycloheptadecane-4,17-dione 41^{14} ($120 \mathrm{mg}, 0.445 \mathrm{mmol}$), DMAP ($6.7 \mathrm{mg}, 0.055 \mathrm{mmol}$) and pyridine ($0.220 \mathrm{~mL}, 2.67 \mathrm{mmol}$) in DCM (9.0 mL) under an argon atmosphere. The reaction mixture was then heated at reflux at $50^{\circ} \mathrm{C}$ and stirred for 18 h . The solvent was removed in vacuo, and the reaction mixture loaded onto a short silica plug and eluted ($\mathrm{SiO}_{2}, 1: 9$ ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) to remove the majority of the excess carboxylic acid and pyridine residues, and then concentrated in vacuo to afford crude 5-(3-(tritylthio)propanoyl)-1-thia-5-azacycloheptadecane-4,17dione (42) as a colorless oil which was used without further purification, with 220 mg of this crude material obtained. [Data for crude 42: $\mathrm{R}_{\mathrm{f}} 0.67$ (1:1 hexane: ethyl acetate); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (thin film) 3057, 2929, 2857, 1733, 1696, 1642, 1489, 1445, 1368, 1104, 1034, 910, 742, 699, 676, 620; $\delta_{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), 7.51-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35-7.17(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 3.53$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}$), $3.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right)$, $2.59\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$, $2.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.70-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53-1.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.42-1.24\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right)$; Diagnostic ${ }^{13} \mathrm{C}$ NMR resonances: $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 174.4$ (CO), 173.8 (CO), 172.7 (CO), 59.6 $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right)$, $43.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right)$, $37.6\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right)$, $34.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{NNaO}_{4} \mathrm{~S}, 622.2962$. Found: [MNa$]^{+}, 622.2973$ (-1.2 ppm error)]. This mixture was then dissolved in DCM (4.3 mL) under an argon atmosphere, before TFA ($0.420 \mathrm{~mL}, 5.6 \mathrm{mmol}$) was added and the solution stirred for 3 min . Next, triisopropylsilane ($0.100 \mathrm{~mL}, 0.47 \mathrm{mmol}$) was added and the solution stirred for a further 30 min . The mixture was then diluted with DCM (1.5 mL) and washed with water (5 mL). The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 1.5 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography (SiO_{2}, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane) afforded the title compound as a colorless oil (47.3 mg , 30% from 41); $R_{f} 0.14$ (4:1 hexane: ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2927, 2856, 1732, 1693, 1460, $1367,1208,1131,1102,732 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 3.66-3.60$
($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}$), $3.09\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 3.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right.$), $2.80\left(2 \mathrm{H}, \mathrm{dt}, J=8.5,6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 2.35-2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.67\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right.$ [overlapping]), 1.68-1.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ [overlapping]), 1.59-1.50 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.41-1.21(14 \mathrm{H}, \mathrm{m}, 7 \times$ $\left.\mathrm{CH}_{2}\right) ; \delta_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 174.2(\mathrm{CO}), 174.0(\mathrm{CO}), 172.9(\mathrm{CO}), 59.6\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 44.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 42.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 36.9\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right)$, $34.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 27.92\left(\mathrm{CH}_{2}\right), 27.85\left(\mathrm{CH}_{2}\right)$, $27.6\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}, 358.2047$. Found: [MH] ${ }^{+}, 358.2029$ (5.0 ppm error).

1-Oxa-5-thia-9-azacyclohenicosane-4,8,21-trione (44)

5-(3-Mercaptopropanoyl)-1-oxa-5-azacycloheptadecane-4,17-dione (43) ($47.3 \mathrm{mg}, 0.132 \mathrm{mmol}$) was dissolved in $\mathrm{CDCl}_{3}(1.5 \mathrm{~mL})$ and transferred to a round bottomed flask under argon. To it was added triethylamine ($37 \mu \mathrm{~L}, 0.265 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. The reaction mixture was heated to $55^{\circ} \mathrm{C}$ in an oil bath for 12 h. Purification by flash column chromatography (SiO_{2}, hexane \rightarrow 3:97 ethyl acetate: hexane \rightarrow 1:19 ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane) afforded the title compound $44(8.0 \mathrm{mg}, 17 \%)$ as an off white solid, along with disulfide 45 ($7.3 \mathrm{mg}, 16 \%$; see next page for data for 45). Data for 44 : m.p. $78-80^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.14$ (1:1 ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3301, 2926, 2855, 1737, 1690, 1647, 1551, 1459, 1256, 1167, $1097,1020,715 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 5.80(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 4.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 3.30$ $\left(2 \mathrm{H}, \mathrm{q}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHCO}\right), 3.18\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 2.85\left(2 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right)$, $2.47\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 2.34-2.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.67-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.55-1.46$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.39-1.21\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 197.0(\mathrm{COS}), 173.8\left(\mathrm{CO}_{2}\right), 170.9(\mathrm{CON})$, $59.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 43.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COS}\right), 39.6\left(\mathrm{CH}_{2} \mathrm{NHCO}\right), 36.8\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.32\left(2 \times \mathrm{CH}_{2}\right), 28.28\left(2 \times \mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NNaO}_{4} \mathrm{~S}, 380.1866$. Found: [MNa] ${ }^{+}, 380.1866$ (0.1 ppm error).

5,5'-(3,3'-Disulfanediylbis(propanoyl))bis(1-oxa-5-azacycloheptadecane-4,17-dione) (45)

Data for 45 (for synthetic procedure, see above): $R_{f} 0.58$ (1:1 ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) $2926,2855,1733,1695,1459,1366,1260,1131,1100,1020,913,802,732,470 ; \delta_{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), 4.43\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 3.68-3.56\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 3.18(4 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.01\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 2.96(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.34-2.28\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.70-1.60\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.59-1.50\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 1.39-1.18 ($28 \mathrm{H}, \mathrm{m}, 14 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 174.4(2 \times \mathrm{CO}), 174.0(2 \times \mathrm{CO}), 173.0(2 \times \mathrm{CO}), 59.7$ $\left(2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 44.2\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 38.4\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 37.0\left(2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CON}\right), 34.2(2$ $\left.\times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 33.3\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 28.0\left(2 \times \mathrm{CH}_{2}\right), 27.9\left(2 \times \mathrm{CH}_{2}\right), 27.7\left(2 \times \mathrm{CH}_{2}\right), 27.23\left(2 \times \mathrm{CH}_{2}\right), 27.19$ $\left(2 \times \mathrm{CH}_{2}\right), 27.0\left(2 \times \mathrm{CH}_{2}\right), 26.7\left(2 \times \mathrm{CH}_{2}\right), 25.2\left(2 \times \mathrm{CH}_{2}\right), 24.8\left(2 \times \mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2}, 735.3683$. Found: [MNa] ${ }^{+}, 735.3709$ (-3.5 ppm error).

5-Benzyl-1-(3-(tritylthio)propanoyl)-1,5-diazacycloheptadecane-2,6-dione (47)

A mixture of 5-benzyl-1,5-diazacycloheptadecane-2,6-dione ${ }^{10}$ ($327.0 \mathrm{mg}, 0.912 \mathrm{mmol}$), DMAP (11.2 $\mathrm{mg}, 0.092 \mathrm{mmol}$) and pyridine ($0.44 \mathrm{~mL}, 5.47 \mathrm{mmol}$) in DCM (10 mL) under an argon atmosphere was stirred at RT for 30 mins. Next, a solution of acid chloride 30 (1.37 mmol , prepared from 3(tritylthio)propanoic acid using the general procedure) in DCM (13 mL) was added and the resulting mixture was heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM (5 mL) and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. TLC analysis indicated that acylation was incomplete at this stage, so an additional acylation sequence was performed. Thus, the crude reaction mixture was dissolved in DCM (10 mL) and to it was added DMAP (11.2 mg, 0.092 $\mathrm{mmol})$ and pyridine ($0.44 \mathrm{~mL}, 5.47 \mathrm{mmol})$. Then, another solution of acid chloride $\mathbf{3 0}$ ($1.36 \mathrm{mmol}, 1.5$ eqv. prepared using the general procedure) in $\operatorname{DCM}(13 \mathrm{~mL})$ was added and the resulting mixture was
heated at reflux at $50^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with DCM (5 mL) and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 19$ ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate \rightarrow 1:19 methanol: ethyl acetate) afforded the title compound as a $2: 1$ mixture of rotamers as a fluffy white solid ($343 \mathrm{mg}, 55 \%$) ${ }^{*}$; m.p. $38-48{ }^{\circ} \mathrm{C}$; R_{f} 0.45 (1:1 ethyl acetate: hexane); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 2929, 1694, 1637, 1445, 1371, 1131, 1105, 1034, $907,726,698,647,619,506 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.15$ (40H, m, ArH, both rotamers), 4.65 (2 H , $\mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}$, major), $4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right.$, minor), 3.66-3.60(4H, m, CH2, both), 3.54-3.47(2H, m, CH2, major), 3.37-3.30 (2H, m, CH2, minor), $2.87\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, major), $2.83\left(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, minor), $2.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, major), $2.54\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, minor), 2.51-2.39 (6H, m, CH2, both), 2.38-2.33 (2H, m, CH2, major), 1.81-1.62 (4H, m CH2, both), 1.53-1.18 (32H, m, CH2, both); δ_{c} (100 MHz, CDCl_{3}), 174.4 (CO), 174.2 (CO), 174.1 (CO), 174.0 (CO), 173.6 (CO), 173.4 (CO), 144.8 (ArC), 144.7 (ArC), 138.2 (ArC), 137.1 (ArC), 129.7 (ArCH), 129.6 (ArCH), $129.0(\mathrm{ArCH}), 128.6$ (ArCH), 128.0 (ArCH), 127.9 (ArCH), 127.7 (ArCH), 127.2 (ArCH), 126.8 (ArCH), 126.6 (ArCH), 126.5 (ArCH), 67.0 $\left(\mathrm{CPh}_{3}\right), 66.8\left(\mathrm{CPh}_{3}\right), 52.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right.$, major), $48.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right.$, minor), $44.3\left(\mathrm{CH}_{2}\right), 43.8\left(\mathrm{CH}_{2}\right), 43.2\left(\mathrm{CH}_{2}\right), 43.1$ $\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.5$ $\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$, $24.8\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd. for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}, 711.3591$. Found: [MNa] ${ }^{+}, 711.3614$ (-3.2 ppm error).
*Trace trityl impurities were visible in the NMR spectra of this product, but its purity was judged to be sufficient to proceed with the ring expansion sequence.

5-Benzyl-1-thia-5,18-diazacyclohenicosane-2,6,19-trione (49)

A mixture of 5-benzyl-1-(3-(tritylthio)propanoyl)-1,5-diazacycloheptadecane-2,6-dione (307 mg, 0.445 mmol) in DCM (5 mL) under an argon atmosphere was added TFA ($0.46 \mathrm{~mL}, 6.01 \mathrm{mmol}$) and the solution stirred for 3 min . Next, triisopropylsilane ($0.10 \mathrm{~mL}, 0.495 \mathrm{mmol}$) was added and the solution stirred for a further 30 min . The solvent and TFA were removed in vacuo. The crude material (containing thiol 48) was then re-dissolved in DCM (5 mL) and DBU ($0.67 \mathrm{~mL}, 4.50 \mathrm{mmol}$) was added, followed by stirring at RT for 18 h , before the solvent was removed in vacuo. The reaction mixture was then diluted with DCM (10 mL) and washed with 10% aq. $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography ($\mathrm{SiO}_{2}, 1: 19$ ethyl acetate: hexane \rightarrow 1:9 ethyl acetate: hexane \rightarrow 1:4 ethyl acetate: hexane \rightarrow 1:1 ethyl acetate: hexane \rightarrow ethyl acetate) afforded the title compound as a 5:3:1 (A:B:C) mixture of rotamers as a colorless oil ($33.5 \mathrm{mg}, 17 \%$); R_{f} 0.34 (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ (thin film) 3308, 2925, 2854, 1635, 1551, 1495, 1432, 1363, 1260, 1201, 1163, 1059, 1030, 978, 915, 803, 728, 698, 645, 613; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 7.39-7.09(15 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}$, all rotamers), $7.03(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NH}$, rotamer C$), 6.79(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.9 \mathrm{~Hz}, \mathrm{NH}$, rotamer A$), 5.76$ (1 H, br m, NH, rotamer B), $4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, rotamer C), $4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right.$, rotamer B$), 4.57(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{Ph}$, rotamer A), $3.72-3.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{CH}_{2}\right.$, rotamer A$), 3.66-3.61(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{CH}_{2}$, rotamer C$), 3.59-3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{CH}_{2}\right.$, rotamer B$), 3.33-3.24(6 \mathrm{H}, \mathrm{m}, 3 \times$ CH_{2}, all rotamers), $3.19-3.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.76-2.66\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.57-2.47(4 \mathrm{H}, \mathrm{m}, 2 \times$ CH_{2}, rotamer C), $2.45-2.28\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 1.78-1.57\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 1.55-1.43(6 \mathrm{H}, \mathrm{m}, 3 \times$ $\left.\mathrm{CH}_{2}\right), 1.41-1.19\left(42 \mathrm{H}, \mathrm{m}, 21 \times \mathrm{CH}_{2}\right.$, all rotamers); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ data for major rotamer $\mathrm{A}, 197.5$ (COS), 174.2 (CON), 171.4 (CON), 136.6 (ArC), 129.1 ($2 \times \mathrm{ArCH}$), $127.8(\mathrm{ArCH}), 126.5(2 \times \mathrm{ArCH}), 51.2$ $\left(\mathbf{C H}_{2} \mathrm{Ph}\right), 42.7\left(\mathbf{C H}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 28.9\left(\mathbf{C H}_{2}\right), 28.0\left(\mathbf{C H}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathbf{C H}_{2}\right)$, $27.6\left(\mathbf{C H}_{2}\right)$, $27.4\left(\mathrm{CH}_{2}\right)$, $27.0\left(\mathbf{C H}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$; Diagnostic ${ }^{13} \mathrm{C}$ NMR resonances of rotamer $\mathrm{B}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 197.0(\mathrm{COS}), 173.4(\mathrm{CON}), 170.4(\mathrm{CON}), 48.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$; Diagnostic ${ }^{13} \mathrm{C}$ NMR resonances of rotamer $\mathrm{C}: \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 175.1$ (CON), 171.2 (CON), 52.1 ($\mathrm{CH}_{2} \mathrm{Ph}$); HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}, 469.2495$ Found: [MNa] ${ }^{+}, 469.2495$ (0.0 ppm error).

Table S1. Optimisation experiments for the S-Ac strategy

All reactions were performed at RT. ${ }^{\text {a }}$ Isolated following column chromatography. ${ }^{\text {b }}$ Yield (in parentheses) is only reported for side products when the product was isolated without impurities; see ESI spectroscopic characterisation data relating to the side products 25, 26 and 28.

Table S2: Optimisation experiments for the S-Trt strategy ${ }^{\text {a }}$

		Acid	24b		21b
Entry	Step ii performed		Scavenger reagent	$\text { Yield }{ }^{b}$ 24b/\%	Side products ${ }^{\text {b }}$
1	No	TFA (8 equiv.)	$\begin{gathered} i-\mathrm{Pr}_{3} \mathrm{SiH} \\ \text { (1.4 equiv.) } \end{gathered}$	12	32 (48\%), 33 (7\%)
2	Yes	TFA (13 equiv.)	$i-\mathrm{Pr}_{3} \mathrm{SiH}$ (1.2 equiv.)	56	21b (4\%), 33 ${ }^{\text {c }}$
3	Yes	AcOH	$i-\mathrm{Pr}_{3} \mathrm{SiH}$ (1.2 equiv.)	0	No reaction
4	Yes	$\mathrm{HCl}^{\text {d }}$	$i-\mathrm{Pr}_{3} \mathrm{SiH}$ (1.2 equiv.)	0	No reaction
5	Yes	TFA ${ }^{e}$ (1.1 equiv.)	$\begin{gathered} i-\mathrm{Pr}_{3} \mathrm{SiH} \\ \text { (1.2 equiv.) } \end{gathered}$	trace	21b (3\%), 31b (80\%)
6	Yes	TFA (13 equiv.)	$\mathrm{Et}_{3} \mathrm{SiH}$ (1.3 equiv.)	36	21b (4\%), 33 (7\%)

${ }^{\text {a }}$ Unless stated, the following protocol was used for step i) - the stated acid was added to 31b in DCM at RT and stirred for 3 min , before adding the scavenger reagent and stirring at RT for a further 30 min (for full synthetic procedures, see ESI). ${ }^{\text {b }}$ Yields refer to material isolated cleanly following column chromatography. ${ }^{c} 33$ observed by TLC but not isolated. ${ }^{d} 4 \mathrm{M}$ in 1,4dioxane. ${ }^{e}$ at $0^{\circ} \mathrm{C}$

23a

20 RE

Fluorenylmethyl p-toluenesulfonate

9-Fluorenylmethyl chloride

9H-Fluoren-9-yl)methyl benzyl(3-(4,17-dioxo-1-thia-5-azacycloheptadecan-5-yl)-3oxopropyl)carbamate

24m

38 (crude)

42 (crude)

47 (contains trace impurities- used in this form towards the synthesis of 49)

Computational Studies

The structures were drawn in PCModel, ${ }^{15}$ and a conformational analysis was performed using the Molecular Mechanics Force Field (MMFF) level of theory. ${ }^{16}$ The structures within $3.5 \mathrm{kcal} / \mathrm{mol}$ of the lowest energy conformation were kept and the geometry of each optimised in Gaussian 09, Revision D.01, ${ }^{17}$ at the B3LYP/6-31G* level of theory. ${ }^{18,19}$ The structure with the lowest calculated electronic energy was then resubmitted for a frequency calculation, which confirmed that the structures were minima due to the absence of imaginary frequencies. The SCF energies were corrected for their zeropoint energies, thermal energies and entropies at 298 K (obtained from the frequency calculations). For compound $\mathbf{2 0}_{\text {RE }}$, where x-ray crystallography data was available, ${ }^{20}$ the crystal structure geometry was optimised at the B3LYP/6-31G* level of theory with subsequent frequency calculation, with no initial conformational search performed. No symmetry constraints were applied. Energies in Hartrees and xyz coordinates are provided.

Energies and xyz Coordinates

15 ${ }_{\text {Ro }}$			
SCF Done: $E($ RB3LYP $)=-955.407990925$			
Zero-point correction=		0.236721	
Thermal correction to Gibbs Free Energy=			$y=0.195657$
H	-3.25898800	1.05310000	-0.81456900
C	-2.69732800	1.23711200	0.11129300
H	-2.95655200	2.24358900	0.44748600
C	-3.09798800	0.19821300	1.18358100
H	-2.36922400	0.22505400	2.00501800
H	-4.05416200	0.51779200	1.61516300
C	-1.98851800	-1.83544400	0.03505600
H	-2.22790800	-2.83106800	-0.36027100
H	-1.21373100	-1.98398200	0.79836200
C	-1.39140500	-1.00477200	-1.10959700
H	-0.71427500	-1.61897100	-1.69964100
H	-2.17668600	-0.63931400	-1.77937600
N	-0.57832300	0.14774700	-0.65664600
C	-1.20165800	1.31444500	-0.17733700
0	-0.58895400	2.34842300	0.03095600
C	0.82940600	-0.02009700	-0.74698000
0	1.27571600	-1.04896300	-1.23335100
C	1.76165700	1.05987100	-0.22125900
H	1.45223100	1.37143500	0.77963200
H	1.63994500	1.95307100	-0.84566800
C	3.22418900	0.61306500	-0.22902200
H	3.85656000	1.47023500	0.01939600
H	3.52106700	0.25009500	-1.21492900
H	3.01977200	-1.68260800	0.42238300
C	-3.25431100	-1.23402300	0.65740300
H	-4.05584200	-1.24258400	-0.09646700
H	-3.59744800	-1.88111500	1.47461900
S	3.66157100	-0.66280400	1.02785800

15_{RC}

SCF Done: $E($ RB3LYP $)=-955.387781518$

Zero-point correction $=$	0.240416
Thermal correction to Gibbs Free Energy $=$	0.202686

H	3.00970800	2.18935200	-0.35144900

$\begin{array}{lllll}C & 2.40073800 & 1.34679900 & 0.00219200\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.15251500 & 1.55779400 & 1.04996100\end{array}$
C $\quad 2.51302500-1.20567700 \quad 0.36483700$
C $\quad 1.18762500-1.51554200-0.35585500$
$\begin{array}{lllll}\mathrm{H} & 0.94856900 & -2.57487300 & -0.19646100\end{array}$
H $\quad 1.28345700-1.38923400-1.43962400$
C $\quad-0.04178500-0.73513300 \quad 0.15416300$
C $\quad 1.10356000 \quad 1.33158100 \quad-0.82054000$
$0 \quad-0.12018900-0.82129300 \quad 1.57545400$
$\begin{array}{llll}\mathrm{H} & -0.40415800 & -1.72638200 & 1.78799800\end{array}$
$\begin{array}{lllll}\mathrm{N} & -0.04238600 & 0.67311100 & -0.17380500\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.18300500 & -2.06201500 & 0.21559100\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.31693000 & -1.14451800 & 1.44131500\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.76476800 & 2.35259700 & -0.99297600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.27933700 & 0.86990700 & -1.80104000\end{array}$
$\begin{array}{lllll}\text { C } & -1.12624100 & 1.47501700 & 0.17184700\end{array}$
$\begin{array}{lllll}0 & -1.10027200 & 2.69297600 & 0.05462800\end{array}$
$\begin{array}{lllll}\text { C } & -2.38655300 & 0.75114500 & 0.62459300\end{array}$
$\begin{array}{lllll}\mathrm{H} & -3.16548700 & 1.51480300 & 0.69705300\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.23183600 & 0.31119700 & 1.61298200\end{array}$
C $\quad-2.81118300-0.32805600-0.37949000$
H $\quad-3.72166700-0.82915800-0.03932100$
H $\quad-3.01698300 \quad 0.12352400-1.35473500$
$\begin{array}{lllll}C & 3.22896600 & 0.06269700 & -0.11354300\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.16171400 & 0.17863200 & 0.45366800\end{array}$
H $\quad 3.52528700-0.06953700-1.16519400$
S $\quad-1.52710500-1.63027000-0.60193800$
$15_{\text {RE }}$

Zero-point correction=		0.239231	
Thermal correction to Gibbs Free Energy=			
H	3.00970800	2.18935200	-0.35144900
C	2.40073800	1.34679900	0.00219200
H	2.15251500	1.55779400	1.04996100
C	2.51302500	-1.20567700	0.36483700
C	1.18762500	-1.51554200	-0.35585500
H	0.94856900	-2.57487300	-0.19646100
H	1.28345700	-1.38923400	-1.43962400
C	-0.04178500	-0.73513300	0.15416300
C	1.10356000	1.33158100	-0.82054000
0	-0.12018900	-0.82129300	1.57545400
H	-0.40415800	-1.72638200	1.78799800
N	-0.04238600	0.67311100	-0.17380500
H	3.18300500	-2.06201500	0.21559100
H	2.31693000	-1.14451800	1.44131500
H	0.76476800	2.35259700	-0.99297600
H	1.27933700	0.86990700	-1.80104000
C	-1.12624100	1.47501700	0.17184700
0	-1.10027200	2.69297600	0.05462800
C	-2.38655300	0.75114500	0.62459300
H	-3.16548700	1.51480300	0.69705300
H	-2.23183600	0.31119700	1.61298200
C	-2.81118300	-0.32805600	-0.37949000
H	-3.72166700	-0.82915800	-0.03932100
H	-3.01698300	0.12352400	-1.35473500
C	3.22896600	0.06269700	-0.11354300
H	4.16171400	0.17863200	0.45366800
H	3.52528700	-0.06953700	-1.16519400
S	-1.52710500	-1.63027000	-0.60193800

$16_{\text {Ro }}$

SCF Done: $\mathrm{E}(\mathrm{RB} 3 \mathrm{LYP})=-612.565466747$			
Zero-point correction=		0.254925	
Thermal correction to Gibbs Free Energy=			
H	2.53071200	0.90028700	-1.53807500
C	2.26923900	1.30122200	-0.55004500
H	2.46632400	2.37529200	-0.57329300
C	3.13936200	0.63018200	0.53761100
H	2.71595400	0.85410900	1.52620500
H	4.12802800	1.10442700	0.51571400
C	2.01427300	-1.69051000	0.35671600
H	1.52205100	-1.64497400	1.33690000
H	2.25628300	-2.74680700	0.18198100
C	1.00593800	-1.25431600	-0.71661700
H	1.51236100	-1.04393500	-1.66458100
H	0.29040900	-2.05401400	-0.89421300
N	0.18881100	-0.07725600	-0.34223000
C	0.76671500	1.20411600	-0.29998900
0	0.12821700	2.21140300	-0.04363300
C	-1.16526300	-0.35568200	0.00275300
0	-1.54087500	-1.52019200	0.00726200
C	-2.11733900	0.77361200	0.35437400
H	-1.70227500	1.34658900	1.18971800
H	-2.16516600	1.47670400	-0.48258800
C	-3.51936100	0.25794300	0.68879600
H	-4.10998700	1.11786500	1.02653400
H	-3.45377600	-0.44305500	1.53816900
H	-3.72942800	-1.19145500	-0.71079800
C	3.31800700	-0.88296600	0.36444300
H	3.97385600	-1.26086500	1.15920400
H	3.84858200	-1.06526500	-0.58216200
N	-4.17522400	-0.30048900	-0.49883700
H	-5.14718600	-0.51198300	-0.27853400

$16_{\text {RC }}$

Zero-point correction=		0.256472	
Thermal correction to Gibbs Free Energy=			
H	2.50206700	2.29384900	0.81753400
C	2.02107100	1.32423700	0.63313900
H	1.81141900	0.88311400	1.61298500
C	2.57227000	-1.01134600	-0.31210000
C	1.17105300	-1.21992600	-0.90078400
H	1.04470600	-2.28808700	-1.11517800
H	1.07012600	-0.68948200	-1.85713500
C	-0.02402100	-0.83055200	0.01340600
C	0.70912900	1.64252600	-0.09406200
0	0.26310300	-1.06881400	1.39327400
H	0.31145100	-2.03651700	1.48371600
N	-0.34665400	0.60524500	-0.08687900
H	3.29102400	-1.53096100	-0.95903900
H	2.61767000	-1.50696500	0.66465400
H	0.24656400	2.52157800	0.35553400
H	0.92994600	1.91785200	-1.13660500
C	-1.63940100	1.09403300	-0.12946700
0	-1.87547100	2.29578700	-0.20373900
C	-2.79512100	0.09929400	-0.14813800
H	-3.18169900	0.09166400	-1.17744100
H	-3.58941900	0.52376700	0.47420600
C	-2.39785900	-1.30721600	0.28216200
H	-2.25489000	-1.35174600	1.36574100
H	-3.16344600	-2.04510600	0.02001100
C	3.00219600	0.45018000	-0.15895200
H	3.98605500	0.47761700	0.32761000
H	3.14165700	0.89510300	-1.15588900
N	-1.13171300	-1.70314300	-0.34072500
H	-1.23162500	-1.73355700	-1.35497600

$16_{\text {RE }}$

Zero-point correction=		0.256312	
	rrection to Gib	bbs Free Energ	$y=0.218084$
H	-3.29285300	-0.09347100	-1.35202900
C	-2.81897800	0.02468800	-0.36731800
H	-3.63639100	0.24043400	0.33438400
C	-1.10993400	1.56648500	0.85891000
C	0.21735000	2.32921300	0.61749700
H	0.63714200	2.64817100	1.57996000
H	0.04257600	3.22312500	0.01156600
C	-2.18830500	-1.32144700	0.05419200
N	-0.90740300	-1.57268800	-0.59799400
H	-1.75926800	2.17782200	1.49858500
H	-0.89129100	0.65701400	1.43153600
H	-1.98123200	-1.35364200	1.12586200
H	-2.89156700	-2.13645800	-0.16084400
C	0.25515600	-1.72818100	0.10226400
0	0.28354600	-1.90184100	1.32017300
C	1.53810600	-1.58603500	-0.71359700
H	2.00880800	-2.56987500	-0.83037600
H	1.32958500	-1.19093500	-1.71216900
C	2.51525800	-0.63903500	0.02424700
H	-0.83337800	-1.36719100	-1.58498800
C	1.22475400	1.46038500	-0.13590700
0	1.41972400	1.56053500	-1.34466700
H	3.01571600	-1.17729800	0.83159300
H	3.27327400	-0.28255100	-0.67716800
C	-1.84409500	1.21309000	-0.44906200
H	-2.39856000	2.09373600	-0.79888800
H	-1.10201200	1.00949000	-1.22886500
N	1.85655000	0.51500300	0.63074100
H	1.47339200	0.34088500	1.55122300

17 ${ }_{\text {Ro }}$			
SCF Done: $\mathrm{E}(\mathrm{RB3LYP})=-651.874769263$			
Zero-point correction=		0.283135	
Thermal correction to Gibbs Free Energy=			
C	-1.31942600	1.27356800	-0.19985400
O	-0.72044600	2.31252300	0.02209800
N	-0.67198400	0.08930600	-0.59722500
C	0.74075700	-0.08394100	-0.60981700
C	-1.46330700	-1.09395400	-1.00658500
H	-0.75950700	-1.74632800	-1.51889600
C	-2.11570000	-1.84773300	0.16143500
H	-2.21566500	-0.77787100	-1.73663200
H	-1.38281500	-1.93169200	0.97432400
H	-2.32484400	-2.87216400	-0.17282200
C	-3.41926600	-1.21898600	0.66804200
H	-4.17535400	-1.28752500	-0.12853200
C	-3.30296800	0.24736400	1.10198800
H	-3.80532500	-1.81231300	1.50674100
H	-2.63063900	0.33730800	1.96599700
H	-4.28679000	0.58918700	1.44561600
C	-2.83266200	1.21130300	-0.01136900
H	-3.33303600	0.96234100	-0.95669300
H	-3.11179100	2.23705700	0.23967400
0	1.19609100	-1.16503000	-0.95850500
C	1.65663700	1.04868600	-0.17985000
H	1.38840800	1.36518200	0.83319400
C	3.13463800	0.65474600	-0.23430600
H	1.46468200	1.92052900	-0.81220900
H	3.40357300	0.36059900	-1.26593300
H	3.72174800	1.55211100	0.00089100
N	3.46682700	-0.36706900	0.75442700
C	4.89617500	-0.65000200	0.80990700
H	2.97221200	-1.21552100	0.48621300
H	5.07885300	-1.46889200	1.51405200
H	5.34656700	-0.92689600	-0.16261700
H	5.43139400	0.23297600	1.18092800

17 ${ }_{\text {RC }}$			
SCF Done: $\mathrm{E}(\mathrm{RB3}$ LYP $)=-651.855610717$			
Zero-point correction=		0.284632	
Thermal correction to Gibbs Free Energy= 0.24558			
H	2.71414500	-0.27705500	1.31622800
C	2.64574200	0.49507600	0.54370900
H	3.48983800	1.17791400	0.70905200
C	1.99889900	-1.48158600	-0.93819800
C	0.47000900	-1.35410500	-0.92524800
H	0.05167600	-2.36527700	-0.98154900
H	0.14354500	-0.82348400	-1.82742000
C	-0.18547600	-0.63540100	0.27913600
C	1.38742100	1.34655900	0.74824900
O	0.36838000	-1.18268200	1.45508600
H	-0.16668000	-0.82040700	2.18425500
N	0.09475000	0.82394100	0.24380100
H	2.27288100	-1.99307700	-1.87076500
H	2.30865300	-2.14382500	-0.12016400
H	1.28286800	1.57742900	1.81744700
H	1.50892900	2.30483500	0.24222900
C	-0.81725700	1.79503200	-0.11913300
0	-0.54485400	2.99171100	-0.09368600
C	-2.21831200	1.35873000	-0.51389400
H	-2.49365100	1.91876800	-1.41311600
H	-2.87496400	1.71139600	0.29063000
C	-2.38548000	-0.14019300	-0.70033000
H	-3.44099600	-0.41718000	-0.60480300
H	-2.07290900	-0.45388200	-1.71272600
C	2.78366000	-0.16844900	-0.83295300
H	3.84355600	-0.38870600	-1.01438100
H	2.47345200	0.52812700	-1.62545900
N	-1.64344200	-0.83620000	0.34781200
C	-2.05566500	-2.23575700	0.46608800
H	-2.04330700	-2.78558500	-0.49058800
H	-1.40511700	-2.75437400	1.17171300
H	-3.08053400	-2.26146600	0.85237500

17 ${ }_{\text {RE }}$			
SCF Done: $\mathrm{E}(\mathrm{RB3LYP})=-651.885859098$			
Zero-point correction=		0.283816	
Thermal correction to Gibbs Free Energy=			
C	-1.19404700	1.26559800	0.14484900
0	-1.38142700	2.25012600	-0.56646400
N	-1.98028100	0.13577000	0.01929700
C	-3.06550800	0.15194600	-0.95690500
C	-1.83998600	-1.09629700	0.79094700
H	-2.96372100	-0.67202300	-1.67494800
H	-4.03620800	0.04894600	-0.45442400
H	-3.03122400	1.10110500	-1.48907900
H	-2.84969900	-1.47648000	0.98680500
C	-1.02747700	-2.19928400	0.07048400
H	-1.39108700	-0.89077300	1.76436400
H	-1.40251100	-2.32553700	-0.95244800
H	-1.17393300	-3.14436100	0.60201900
C	0.47166700	-1.91270600	0.09564200
0	1.16834500	-2.23963400	1.05348100
N	0.96957000	-1.23434200	-0.97711200
C	2.36275600	-0.78975400	-1.03494000
H	2.57056200	-0.52383600	-2.07716200
H	2.99414700	-1.64557000	-0.77559200
C	2.68899800	0.38679400	-0.10052000
H	3.76661400	0.57717300	-0.18673700
H	2.52668400	0.04558200	0.92745000
C	1.89285700	1.68644000	-0.38149400
H	2.58530400	2.48044700	-0.68658700
H	1.21523000	1.54703300	-1.23381600
C	1.06680800	2.20488900	0.80940200
C	-0.09831200	1.28792100	1.21519900
H	1.72433000	2.33383000	1.67942000
H	0.65811400	3.18857400	0.55997300
H	0.27397000	0.29132000	1.46013300
H	-0.56216700	1.67639000	2.13374000
H	0.32867900	-0.91903500	-1.69053400

$18_{\text {Ro }}$

Zero-point correction=		0.242378	
Thermal correction to Gibbs Free Energy=			y $=0.20255$
C	-0.77979900	1.22843500	-0.35576700
0	-0.12380300	2.24561800	-0.21233700
C	-2.30041700	1.30297300	-0.44985200
H	-2.51655800	2.37327400	-0.42076900
C	-3.05537900	0.57784500	0.68786100
H	-2.64621900	0.93119600	-1.42368600
H	-4.04451600	1.04238800	0.77948700
C	-3.24166200	-0.92898700	0.47111000
H	-2.54199600	0.76555700	1.64075300
H	-3.83309300	-1.34045000	1.29889900
H	-3.84320800	-1.07829200	-0.43802300
C	-1.94000700	-1.72787400	0.33434200
C	-1.00976000	-1.23260800	-0.78206900
H	-1.38171500	-1.72662300	1.27953400
H	-2.18928000	-2.77603500	0.12481700
N	-0.19423400	-0.05243000	-0.41007300
H	-1.57720000	-0.99442000	-1.68753600
H	-0.29208100	-2.00932000	-1.03703500
C	1.16833200	-0.31203100	-0.11907200
0	1.57979300	-1.46506300	-0.20824800
C	2.09991500	0.80612600	0.31248600
H	2.23596900	1.49435800	-0.52863000
H	1.63134300	1.40477600	1.09974900
C	3.45523700	0.25644700	0.77609800
H	3.30934700	-0.39132900	1.65527000
0	4.16596300	-0.41359100	-0.24787300
H	4.08052300	1.09879700	1.08970400
H	3.61395100	-1.18453000	-0.46518500

18 RC

SCF Done: $E($ RB3LYP $)=-632.422019516$

Zero-point correction $=$	0.243615
Thermal correction to Gibbs Free Energy $=$	0.206324

H	2.50586700	2.28772500	0.83064700

| C | 2.02174800 | 1.32090500 | 0.64061000 |
| :--- | :--- | :--- | :--- | :--- |

H	1.85974900	0.85196100	1.61678400

C $\quad 1.14400300-1.22472200-0.90038300$
H $\quad 1.00299000-2.29528600-1.08958100$
$\begin{array}{lllll}\mathrm{H} & 1.00154600 & -0.72106900 & -1.86377600\end{array}$
$\begin{array}{lllll}\text { C } & -0.02286100 & -0.81812600 & 0.02881700\end{array}$
C $\quad 0.67842900 \quad 1.65967300 \quad-0.01405400$
$0 \quad 0.26170100-1.083974001 .39903200$
H $\quad 0.49044200$-2.02788400 1.45637000
$\begin{array}{lllll}\mathrm{N} & -0.35971800 & 0.60535800 & -0.04118700\end{array}$
H $\quad 3.26334400-1.49923700-1.03712900$
H $\quad 2.65955000-1.49200200 \quad 0.61122700$
$\begin{array}{llll}\mathrm{H} & 0.22039700 & 2.49937800 & 0.51066600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.85290900 & 2.00758100 & -1.04291700\end{array}$
C $\quad-1.65670600 \quad 1.07233300-0.14278500$
$0 \quad-1.90603800 \quad 2.26943700-0.22649300$
$\begin{array}{lllll}\text { C } & -2.78127600 & 0.04727600 & -0.19296800\end{array}$
H $\quad-3.12987200 \quad 0.00805500$-1.23259800
$\begin{array}{llll}\mathrm{H} & -3.60685400 & 0.43831300 & 0.40964900\end{array}$
C $\quad-2.33096600-1.32749600 \quad 0.26144900$
H $\quad-2.19221300-1.36846700 \quad 1.34800500$
H $\quad-3.02654900-2.11644600-0.03561400$
$\begin{array}{lllll}C & 2.97085100 & 0.47422800 & -0.21844700\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.97988200 & 0.51548900 & 0.21211300\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.04496200 & 0.93108000 & -1.21671300\end{array}$
$0 \quad-1.09474800-1.62498300-0.39655200$

$18_{\text {RE }}$

Zero-point correction=		0.243274	
Thermal correction to Gibbs Free Energy= 0.20459			
H	-0.36715300	3.46379100	-0.31930700
C	-0.16403600	2.38563400	-0.36474600
H	-0.49548500	2.06494000	-1.36299200
C	-2.35379900	1.14526800	0.31062300
C	-2.33484100	-0.03375700	-0.69321700
H	-1.89450100	0.26102400	-1.64977800
H	-3.36353100	-0.36141000	-0.87782200
C	1.35742900	2.16337400	-0.27653300
N	1.73594600	0.81093500	-0.67600600
H	-2.89610800	0.81254500	1.20303400
H	-2.93894100	1.96304100	-0.13056700
H	1.88231300	2.88074100	-0.91924500
H	1.71999700	2.29965700	0.74542900
C	1.99615800	-0.18912000	0.22175900
0	2.18140600	0.00090600	1.41804300
C	1.97375500	-1.59889800	-0.37486500
H	2.73513800	-2.19801800	0.13348900
H	2.20061000	-1.59139700	-1.44756800
C	0.60298700	-2.23649800	-0.13334500
H	1.43299600	0.51774500	-1.59550600
C	-1.56437000	-1.20322500	-0.11250600
0	-1.91535100	-1.85879200	0.84232300
H	0.53836800	-3.23225100	-0.58374300
H	0.38188700	-2.31469400	0.93291700
C	-0.96418300	1.65283700	0.73546200
H	-0.37921700	0.81126800	1.12271800
H	-1.08874400	2.32966200	1.58992100
0	-0.38028700	-1.37922300	-0.75845700

$19_{\text {RO }}$

SCF Done: $E($ RB3LYP $)=-916.097724890$

Zero-point correction $=$	0.207419
Thermal correction to Gibbs Free Energy= $=$	0.167679

$\begin{array}{llll}C & 1.45217600 & 1.08389100 & 0.02399900\end{array}$
$\begin{array}{lllll}C & 3.67064800 & -0.25756800 & 0.15131200\end{array}$
C $\quad 1.50907100-1.42124800-0.33863200$
C $\quad 2.79494000-1.46452400 \quad 0.47691700$
$\begin{array}{lllll}\mathrm{N} & 0.78158300 & -0.12852300 & -0.21695600\end{array}$
$\begin{array}{lllll}\text { C } & 2.89974100 & 1.01453100 & 0.50466900\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.61733900 & -0.28784200 & 0.70232400\end{array}$
H $\quad 1.72587900-1.59701400-1.40023300$
$\begin{array}{lllll}\mathrm{H} & 3.30894600 & -2.40605700 & 0.25144000\end{array}$
H $\quad 3.92433100-0.26271100-0.91749700$
$\begin{array}{lllll}\mathrm{H} & 0.81647500 & -2.20398900 & -0.02962000\end{array}$
H $\quad 2.55835300-1.47627500 \quad 1.54952800$
$\begin{array}{lllll}0 & 0.90735600 & 2.16915400 & -0.08885900\end{array}$
C $\quad-0.59461800-0.20941800-0.55323000$
O $\quad-1.02888000-1.27481500-0.96534800$
C $\quad-1.50604500 \quad 0.99141200-0.36020000$
H $\quad-1.23460900 \quad 1.75025700$-1.10387200
$\begin{array}{llll}\mathrm{H} & -1.31295300 & 1.46091400 & 0.60778600\end{array}$
$\begin{array}{lllll}\text { C } & -2.98257800 & 0.62189800 & -0.51017200\end{array}$
H $\quad-3.16760900 \quad 0.11657700$-1.46004500
$\begin{array}{lllll}\mathrm{H} & -3.58003900 & 1.53785500 & -0.49320100\end{array}$
$\begin{array}{lllll}H & -3.03603600 & -1.54515700 & 0.50890800\end{array}$
$\begin{array}{lllll}\text { S } & -3.67575700 & -0.40861200 & 0.85241700\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.84809700 & 1.12151200 & 1.59823700\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.38504700 & 1.92081500 & 0.13194300\end{array}$
19_{RC}

Zero-point correction=		0.211240	
Thermal correction to Gibbs Free Energy= 0.17478			
C	0.22593700	-0.73371100	0.17802100
C	2.76523000	-0.66801200	-0.10134800
C	1.43398700	1.43169500	0.26839500
C	2.65011000	0.82327900	-0.42482300
N	0.18314700	0.70489700	-0.06237300
C	1.46232800	-1.37016100	-0.49228500
H	2.94970900	-0.80245500	0.97192100
H	1.57311100	1.41813500	1.35757900
H	2.56076600	0.96228300	-1.51071900
H	3.60562200	-1.12672300	-0.63545600
H	1.27433700	2.46500600	-0.03395500
H	3.54697700	1.36571500	-0.10186300
O	0.26785800	-0.88521500	1.59514700
H	0.29115500	-1.83848300	1.78401800
C	-2.49855800	-0.58489000	0.25964500
H	-3.47612800	-1.00040900	-0.00037200
C	-0.96845400	1.48566200	-0.08530000
O	-0.90380100	2.70763500	-0.04011700
H	-2.37683600	-0.63654300	1.34548100
C	-2.34099600	0.83723300	-0.25900200
H	-2.56871000	0.86394600	-1.33235700
H	-3.04506400	1.51594600	0.23337200
S	-1.23249400	-1.64216000	-0.52139100
H	1.48845400	-2.43283200	-0.22019700
H	1.32451900	-1.31924600	-1.57863900

$19_{\text {RE }}$

SCF Done: $E($ RB3LYP $)=-916.091242468$

Zero-point correction $=$	0.210632
Thermal correction to Gibbs Free Energy $=$	0.173111

C $\quad 0.50587400-1.56157100 \quad 0.29550300$
C $\quad 2.14133900-0.08259800-0.91455700$
$\begin{array}{lllll}C & 2.36459500 & 0.87720500 & 0.28250200\end{array}$
C $\quad 1.77015600-1.54408400-0.53151600$
$\begin{array}{lllll}\mathrm{H} & 3.05719800 & -0.14472100 & -1.51332400\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.36519800 & 0.31677600 & -1.57709500\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.30772900 & 1.42039900 & 0.14230900\end{array}$
$0 \quad 0.50372600-1.44818600 \quad 1.50584300$
$\begin{array}{llll}\mathrm{H} & 2.48401000 & 0.30093300 & 1.20868000\end{array}$
$\begin{array}{lllll}\text { C } & 1.26916100 & 1.94276600 & 0.48315600\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.56257100 & 2.60481900 & 1.30859100\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.16131700 & 2.55984700 & -0.41196900\end{array}$
$\begin{array}{lllll}\mathrm{N} & -0.05518500 & 1.39351800 & 0.75111900\end{array}$
$\begin{array}{lllll}\text { C } & -2.15188100 & -0.79213900 & 0.50113300\end{array}$
H $\quad-3.10718500-1.32070700 \quad 0.45314300$
H $\quad-1.72067900-0.97675400 \quad 1.48905500$
$\begin{array}{lllll}\text { C } & -2.35846100 & 0.70551900 & 0.20219100\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.86499200 & 1.16071600 & 1.06561700\end{array}$
$\begin{array}{lllll}\mathrm{H} & -3.01374300 & 0.83299600 & -0.66228900\end{array}$
$\begin{array}{lllll}\text { C } & -1.09593000 & 1.51538500 & -0.12974500\end{array}$
$0 \quad-1.05020300 \quad 2.23109800-1.12304600$
H $\quad-0.13241900 \quad 0.72549400 \quad 1.50638200$
H $\quad 2.56952200-1.99109100 \quad 0.06924500$
H $\quad 1.64177700-2.13485900-1.44559500$
S $\quad-1.01383300-1.60841600-0.69281000$

20 Ro			
SCF Done: $\mathrm{E}(\mathrm{RB3} 3 \mathrm{YP})=-994.716587754$			
Zero-point correction=		0.265962	
Thermal correction to Gibbs Free Energy=			$y=0.22399$
H	-3.36645000	1.89758900	1.54608000
C	-2.81548500	1.18433200	0.92090400
H	-2.29814700	0.51957400	1.62640200
C	-1.78497600	1.99184600	0.11440500
H	-1.09361200	2.49018800	0.80297300
H	-2.30263100	2.78692500	-0.44086100
C	-0.96476500	1.19610500	-0.90789500
H	-1.60056700	0.83489100	-1.71564300
H	-0.20753000	1.84391400	-1.34931800
N	-0.25224800	0.03960300	-0.32349600
C	-0.89413600	-1.20322400	-0.16881200
C	-3.82164400	0.36126300	0.08405900
H	-4.79959500	0.38901900	0.58071100
H	-3.97553300	0.84092300	-0.89399200
C	-3.47055800	-1.12408800	-0.11358500
C	-2.19703700	-1.45785300	-0.92494300
H	-3.38106900	-1.60813700	0.86796200
H	-4.31148000	-1.61351400	-0.62093100
H	-2.22589100	-0.97083500	-1.90422400
H	-2.18650200	-2.53748900	-1.09986900
O	-0.44600500	-2.07980100	0.55348800
c	1.03425600	0.32973700	0.19674300
0	1.42050600	1.48979800	0.19204500
C	1.92731300	-0.79314500	0.69988100
H	1.50689000	-1.16686500	1.64110500
H	1.89103300	-1.64349200	0.01392500
C	3.36631500	-0.32609600	0.92346600
H	3.39922700	0.54635200	1.57884000
H	3.92942000	-1.13108500	1.40424800
S	4.31601200	0.05120100	-0.61105000
H	3.66027900	1.19236100	-0.90575000

20			
RC			
SCF Done:	E(RB3LYP) $=$	-994.691211656	
Zero-point correction $=$	0.269473		
Thermal correction to Gibbs Free Energy $=$	0.23052		
H	4.10530800	1.05401500	0.14038200
C	3.18093200	0.56839400	-0.19777900
H	3.43645200	0.08260800	-1.15214900
C	2.15215000	1.68200000	-0.44379900
H	2.59978000	2.41809100	-1.12643700
H	1.94837300	2.21673000	0.49198200
C	0.80738800	1.27966700	-1.06187700
H	0.31249200	2.18857000	-1.40683500
H	0.95539900	0.64024900	-1.93679900
N	-0.16523000	0.63821900	-0.15368400
C	-0.28093900	-0.79439700	0.03009300
C	2.77249600	-0.49588300	0.84062300
H	2.10579000	-0.04764800	1.58601100
H	3.66692900	-0.81901800	1.38909800
C	2.12216200	-1.77035900	0.27949000
C	0.85685200	-1.62997200	-0.59081200
H	2.86107400	-2.31171200	-0.32786800
H	1.88576000	-2.42535000	1.12598000
H	0.45946500	-2.64086400	-0.74862900
H	1.09542600	-1.25816500	-1.58945700
O	-0.33281400	-1.01607400	1.43661500
C	-3.02426700	-0.09209000	-0.24023100
H	-3.26857900	0.49413200	-1.13126800
C	-1.14750100	1.48107600	0.36392500
O	-1.02237000	2.69807100	0.33492700
H	-3.94508200	-0.55946400	0.11926500
C	-2.43278000	0.82312400	0.84520400
H	-3.13081000	1.63838600	1.05395100
H	-2.25899800	0.26309300	1.76591100
S	-1.88459000	-1.45416800	-0.74143900
H	-0.71623400	-1.89983000	1.56431500

$20_{\text {RE }}$			
SCF Done: E(RB3LYP) = -994.720705873			
Zero-point correction=		0.268135	
Thermal correction to Gibbs Free Energy=			
C	0.27138700	2.82804000	0.48045500
C	1.33785200	1.72199100	0.58558900
C	-0.99384300	2.46297100	-0.33262000
C	1.86731100	1.20945100	-0.76190500
C	2.97257300	0.14454200	-0.65547100
C	2.60838900	-1.12546600	0.13555900
C	-2.14070100	-1.57794000	-0.10372100
C	-0.94688800	-2.54201100	-0.18320800
H	0.70558100	3.72893400	0.02658100
H	-0.04484100	3.10189100	1.49293900
H	0.92488400	0.88928500	1.16672700
H	2.17635400	2.11807200	1.17642000
H	-0.76966600	2.37380400	-1.40014600
H	-1.73401100	3.26536200	-0.21792000
H	2.26187100	2.05381000	-1.34567600
H	1.03846100	0.79337200	-1.34685400
H	3.86460700	0.57516700	-0.17891000
H	3.28319100	-0.14078100	-1.67130000
H	2.44292800	-0.90208100	1.19118300
H	3.44559500	-1.83444500	0.07951100
H	-3.05707400	-2.06090800	-0.45164400
H	-2.28536100	-1.22688700	0.92246100
H	-0.75708400	-2.83737800	-1.22199300
H	-1.20334900	-3.45062000	0.37626700
C	-1.63071300	1.18001700	0.17884200
0	-1.93125800	0.99532800	1.33335800
S	-1.86657400	-0.07447000	-1.12416100
C	0.29209300	-1.93868900	0.48160500
0	0.27431000	-1.61779000	1.66535500
N	1.38639000	-1.77832400	-0.32132100
H	1.29918800	-2.00455600	-1.30227600

21 ${ }_{\text {RO }}$			
SCF Done: $\mathrm{E}(\mathrm{RB} 3 \mathrm{LYP})=-1034.02371841$			
Zero-point correction=		0.294897	
Thermal correction to Gibbs Free Energy=			$\mathrm{gy}=\quad 0.25169$
C	3.77956600	-0.89927500	0.50808700
C	3.86365600	0.19153000	-0.57674500
C	2.39664500	-1.36636200	0.99407400
C	3.17676900	1.54271400	-0.27302700
C	1.46982400	-2.01456500	-0.04920800
C	1.73718000	1.74832300	-0.81202800
C	0.74164200	-1.05194800	-1.00409100
H	4.33357800	-1.77595400	0.14285400
H	4.33402000	-0.54106900	1.38712000
H	3.50789600	-0.19532100	-1.54098100
H	4.93220700	0.39022200	-0.73138000
H	2.57164800	-2.10708800	1.78524900
H	1.87296500	-0.54050600	1.49320500
H	3.78070200	2.33614500	-0.72847900
H	3.18201200	1.74550100	0.80580500
H	0.70167000	-2.59618800	0.47098200
H	2.03822700	-2.72798200	-0.66308900
H	1.54590700	2.82605600	-0.82672800
H	1.66562900	1.39623000	-1.84590600
H	1.43779800	-0.56630900	-1.68471400
H	0.02358600	-1.61249900	-1.60415000
C	0.60477600	1.21656400	0.06337000
0	0.23233500	1.87301400	1.02245800
N	-0.01337200	-0.00097200	-0.28960000
C	-1.29081200	-0.38530100	0.17611200
0	-1.66842800	-1.53304500	-0.01415800
C	-2.19617100	0.64051000	0.84210400
H	-2.12975100	1.60297400	0.32784000
H	-1.81201100	0.82336600	1.85266500
C	-3.64582900	0.15997700	0.91921700
H	-3.71013900	-0.81401700	1.40781500
H	-4.22670600	0.87394400	1.50997100
H	-3.86679100	-1.01548500	-1.15592500
S	-4.52647400	0.06825100	-0.69803400

21			
RC			
SCF Done:	E(RB3LYP) $=$	-1034.00234866	
Zero-point correction $=$	0.298354		
Thermal correction to Gibbs Free Energy $=$			
		0.258250	
C	3.09515400	-0.40813900	-0.98357100
C	1.76135600	-1.04888200	-1.39900300
C	3.14766300	0.41302600	0.31773000
C	1.17823000	-2.11420400	-0.45301200
C	2.16374200	1.59752100	0.43453300
C	0.50423100	-1.64519700	0.85288100
C	0.81850600	1.35029400	1.14074700
H	3.85843800	-1.19768500	-0.91742900
H	3.41477300	0.24745500	-1.80633700
H	1.01428900	-0.27170000	-1.58574600
H	1.93024400	-1.53846100	-2.36779000
H	3.04274200	-0.24398900	1.19183200
H	4.16744200	0.81446000	0.38925800
H	0.45134600	-2.70847500	-1.01899800
H	1.97529200	-2.81549000	-0.16646500
H	2.65373000	2.38283700	1.02602500
H	1.97084300	2.04491300	-0.54669800
H	0.09749400	-2.53531800	1.35235800
H	1.23790700	-1.23034100	1.54704900
H	0.95810400	0.76190300	2.04941300
H	0.41876700	2.31949500	1.44558300
C	-0.66745500	-0.63819800	0.76050100
N	-0.25052900	0.69957100	0.33674300
C	-1.00052500	1.59491900	-0.41620000
O	-0.60553900	2.74415100	-0.57914200
C	-2.30561400	1.17227100	-1.08536900
H	-2.07287600	0.91992600	-2.12765700
H	-2.91972800	2.07888900	-1.10684600
C	-3.04672300	0.01634900	-0.43201000
H	-3.92337300	-0.28258500	-1.01341400
H	-3.36877100	0.25998200	0.58476100
S	-1.92347300	-1.41765700	-0.36814500
O	-1.23797900	-0.44890600	2.05454600
H	-1.52064300	-1.32082500	2.37761500

21 ${ }_{\text {RE }}$			
SCF Done: $\mathrm{E}(\mathrm{RB3LYP})=-1034.03746475$			
Zero-point correction=		0.296886	
Thermal correction to Gibbs Free Energy=			$y=0.25409$
C	-3.21826300	0.01674000	0.23721600
C	-2.57563000	-1.38015300	0.10586900
C	-2.87634100	0.99903800	-0.89805400
C	-1.41887100	1.48509500	-0.98833900
C	-0.97432400	2.40629100	0.15899300
C	1.56507000	-2.25842100	0.29064000
C	0.49303100	2.88284500	0.03824200
C	2.60776300	-1.32999200	-0.34255300
C	1.50002000	2.13367900	0.92610800
H	-2.94909200	0.43296300	1.21418700
H	-4.30597700	-0.12476600	0.25083200
H	-3.53154100	1.87576900	-0.79428300
H	-3.15246300	0.53041200	-1.85364200
H	-0.73426800	0.63201000	-1.06858700
H	-1.30459200	2.03598300	-1.93231600
H	-1.11764700	1.90302000	1.12490500
H	-1.64255800	3.27831500	0.17360500
H	1.34401100	-2.00644700	1.33204400
H	1.93979400	-3.28576700	0.27586600
H	0.56231300	3.94360300	0.31415300
H	0.82998800	2.81415800	-1.00332000
H	2.72293700	-1.55444000	-1.40737900
H	3.57906000	-1.56470200	0.11570100
H	2.49620700	2.55946700	0.77781600
H	1.22871400	2.26247000	1.98105700
C	2.47104300	0.19729100	-0.24167000
O	3.19349600	0.90693400	-0.93571000
N	1.60616100	0.69846600	0.68092300
H	0.96563200	0.08665200	1.17282500
S	-0.05241900	-2.32214600	-0.58700400
C	-1.12094600	-1.42413700	0.54131200
O	-0.72724500	-0.91601900	1.57669000
H	-2.68150700	-1.76923500	-0.91343900
H	-3.09874400	-2.08136400	0.77114500

References

CrysAlisPro, Oxford Diffraction Ltd. Version 1.171.40.84a
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysAlisPro software, Oxford Diffraction Ltd. Version 1.171.34.40 "Olex2" crystallography software, J. Appl. Cryst., 2009, 42, 339.
SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, L. Palatinus \& G. J. Chapuis, J. Appl. Cryst. 2007, 40, 786.
SHELXT - Integrated space-group and crystal-structure determination G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8
"Crystal structure refinement with SHELXL" G.M. Sheldrick, Acta Cryst. 2015, C71, 3-8. T.-C Zheng, M. Burkart and D. E. Richardson Tetrahedron Lett. 1999, 40, 603.
F. Albericio, E. Nicolás, J. Rizo, M. Ruiz-Gayo, E. Pedroso and E. Giralt Synthesis 1990, 119.
I. R. Vlahov, H. K. R. Santhapuram, Y. Wang, P. J. Kleindl, F. You, S. J. Howard, E. Westrick, J. A. Reddy and C. P. Leamon J. Org. Chem. 2007, 72, 5968.

10 T. C. Stephens, M. Lodi, A. Steer, Y. Lin, M. Gill and W. P. Unsworth, Chem. Eur. J. 2017, 23, 13314.
(a) Papanna (Beijing) Technology Co., Ltd.; H. Wei, L. Binlong; X. Ge, C. Bin and Z. Xianjun CN106749168, 2017, A; (b) Miyata, Hideo; Ikeda, Haruhiko; Murofushi, Katsumi; Hattori, Yotaro; Urakawa, Katsuro US2010/29876, 2010, A1.
H. F. Koch, W. C. Pomerantz, E. L. Ruggles, M. van Laren and A.-M. van Roon Collect. Czech. Chem. Commun. 2002, 67, 1505.
L. Y. Foong, S. You, D. C. J. Jaikaran, Z. Zhang, V. Zunic and G. A. Woolley Biochemistry 1997, 36, 1343.
T. C. Stephens, A. Lawer, T. French and W. P. Unsworth, Chem. Eur. J. 2018, 24, 13947

Pcmodel, Version 10, Kevin E. Gilbert, Serena Software, Bloomington, IN, 2013.
T. A. Halgren, J. Comput. Chem. 1996, 17, 490.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
(a) A. D. Becke, J. Chem. Phys. 1992, 97, 9173; (b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648;
(c) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B. 1988, 37, 785.
(a) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213; (b) M. M. Franci, W. J. Pietro, W. J. Hehre, J. S. Blinkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654.
CCDC $1921223\left(\mathbf{2 0}_{\text {RE }}\right)$ contains the crystallographic data for this macrocyclic thiolactone, see: www.ccdc.cam.ac.uk/data request/cif

