Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Palladium mediated one-pot synthesis of 3-aryl-cyclohexenones and 1,5diketones from allyl alcohols and aryl ketones

Shaikh Samser, Priyabrata Biswal, Sushanta Kumar Meher and Krishnan Venkatasubbaiah* School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar752050, Odisha (India).Fax: (+) 091-674-2494165, E-mail: krishv@niser.ac.in

Table of Contents

Reaction set up for hydrogen evolution	S2				
Structure refinement data and structure of compound 22	S 3				
NMR spectra of all new compounds	S4-S20				
Stacked ¹ H NMR spectrum of (a) diketone-33 (b) compound 3 and (c) crude reaction mixture					
of diketone after stirring with NaOH for 12 h (controlexperiment)	S21				
GC and GC-MS traces of compound 2 and 17	S22-S27				
Stacking of crude ¹³ C NMR of control experiment (Scheme 1a). ¹³ C NMR spectrum of (a)					
pure 1-penten-3-ol. (b) Reaction mixture of Scheme 1a. (c)Pure 1-penten-3-	3- one and (d) pure				
3-pentanone.	S28				
¹ H NMR stacking of (a) styrene (b) ethyl benzene and (c) crude reaction mixture of reduction					
of phenylacetylene by palladium charcoal	S29				
Attempt for annulation with 1-hexen-3-ol	S30				
Attempt for one pot-sequential synthesis of phenol	S31				

Reaction set up for hydrogen evolution

In one of the two-neck RB (**RB 1**), $Pd(OAc)_2$ (0.3 mmol), and BINOL phosphoric acid (0.3 mmol) were taken. In the other RB (**RB 2**) Palladium on charcoal (0.1 mmol) was taken. The whole system was subjected to vacuum and then nitrogen was purged into it (repeated 3 times). Then 1-penten-3-ol (3 mmol) and DCE (2 mL) were added to the **RB 1** and phenylacetylene (1 mmol) and methanol (1 mL) were added to the **RB 2**. The system was closed and both the RBs were allowed to stir at room temperature. After 48 h, the reaction mixture from **RB 2** was filtered through celite and crude proton NMR was recorded. It was found that the phenylacetylene in the presence of hydrogen gas (evolved from **RB 1**) was reduced to styrene and ethyl benzene.

Empirical formula	C ₁₅ H ₁₆ O
Formula weight	212.28
Temperature/K	114.5(1)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8.9714(15)
b/Å	6.6608(7)
c/Å	19.405(3)
α/°	90
β/°	98.551(15)
$\gamma/^{\circ}$	90
Volume/Å ³	1146.7(3)
Ζ	4
pcalcg/cm ³	1.230
μ/mm^{-1}	0.580
F(000)	456.0
Radiation	$CuK\alpha (\lambda = 1.54184)$
2 θ range for data collection/°	9.218 to 133.184
Index ranges	$-10 \le h \le 10, -7 \le k \le 6, -23 \le l \le 23$
Reflections collected	13865
Independent reflections	1899 [$R_{int} = 0.1362$, $R_{sigma} = 0.0616$]
Data/restraints/parameters	1899/0/146
Goodness-of-fit on F ²	1.280
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1022, \text{ wR}_2 = 0.2919$
Final R indexes [all data]	$R_1 = 0.12\overline{01}, \mathrm{wR}_2 = 0.3190$
Largest diff. peak/hole / e Å ⁻³	0.44 and -0.34

Table S1: Crystal data and structure refinement parameters for compound 22.

Figure S1: Molecular structure of compound 22(thermal ellipsoids at the 30 % probability).

NMR spectra of all new compounds:

Figure S3: ¹³C NMR spectrum of compound **2** (**# belong to second isomer**)

Figure S5: 13 C NMR spectrum of compound **3**

Figure S7:¹³C NMR spectrum of compound **12**

Figure S9: ¹H NMR spectrum of compound **17**(**# belongs to second isomer**)

Figure S13: ¹H NMR spectrum of compound **22** (* solvent residues)

S10

Figure S17:¹H NMR spectrum of compound 24

8.0 4.5 4.0 ppm 9.0 8.5 7.0 6.5 6.0 3.5 5.5 5.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Figure S19: ¹H NMR spectrum of compound 25

Figure S21:¹H NMR spectrum of compound **26** (* solvent residue)

Figure S23: ¹H NMR spectrum of compound **27**

Figure S25: ¹H NMR spectrum of compound **28**

Figure S29: ¹H NMR spectrum of compound **30** (* solvent residues)

Figure S31: ¹⁹F NMR spectrum of compound **30**

Figure S35: ¹³C NMR of compound **36**

Figure S36: Stacked ¹H NMR spectrum of (a) diketone-**33** (b) compound **3** and (c) crude reaction mixture of diketone after stirring with NaOH for 12 h (control experiment).

Figure S37: GC-MS of compound 2 at RT 12.26

Figure S38: GC-MS of compound 2 at RT 11.87

Figure S39: GC trace of compound 2

Figure S40: GC-MS of compound 17 at RT 13.14

Figure S41: GC-MS of compound 17 at RT 12.63

mV

Peak Table

FID1			real	a laole	
Peak#	Ret. Time	Area	Area%	Height	Name
1	15.675	619394	20.293	301607	
2	16.136	2429079	79.584	907586	
3	16.216	3731	0.122	2010	
Total		3052204	100.000	1211203	

Figure S42: GC trace of compound 17

Figure S43: Stacking of crude ¹³C NMR of control experiment (Scheme 1a). ¹³C NMR spectrum of (a) pure 1-penten-3-ol. (b) Reaction mixture of Scheme 1a(without base). (c)Pure 1-penten-3-one and (d) pure 3-pentanone.

Figure S43: Stacking of crude ¹³C NMR of control experiment (Scheme 1a). ¹³C NMR spectrum of (a) pure 1-penten-3-ol. (b) Reaction mixture of Scheme 1a(with base). (c)Pure 1-penten-3-one and (d) pure 3-pentanone.

Figure S44: ¹H NMR stacking of (a) styrene (b) ethyl benzene and (c) crude reaction mixture of reduction of phenylacetylene by palladium charcoal

Procedure for Attempted annulation with 1-hexen-3-ol

In a Schlenk tube, Pd(OAc)₂, base and ligand were added followed by 1-hexen-3-ol. Ketone, 4Å molecular sieves and solvent were added to it. The reaction was sealed and heated. After 24h, the reaction mixture was evaporated under vacuum and was purified by column chromatography.

Table S2: Attempt for annulation with 1-hexen-3-ol#

$\begin{array}{c c} O \\ O \\ O \\ O \\ O \\ O \\ \end{array}$						
S No.	Catalyst (mol%)	Base(equiv)	Ligand(mol%)	Solvent	Т	yield
					(° C)	
1 ^a	$Pd(OAc)_2(10)$	NaOH(1)	BPA (10)	DCE	RT	N.D ^c
2	$Pd(OAc)_2(10)$	NaOH(1)	BPA (10)	DCE	80	N.D ^c
3 ^a	$Pd(OAc)_2(10)$	$Cs_2CO_3(1)$	BPA (10)	DCE	80	N.D ^c
4 ^a	$Pd(OAc)_2(10)$	$Cs_2CO_3(1)$	BPA (10)	DCE	100	N.D ^c
5 ^b	$Pd(OAc)_2(10)$	NaOAc(1)		Toluene	80	N.D ^d
6 ^b	Pd(TFA) ₂ (10)	NaOAc(1)		Toluene	80	N.D ^d

[#]Reaction conditions: 1 mmol ketone, 6 mmol allyl alcohol, 1 mL solvent, molecular sieves 4 Å, ^a3 mL DCE used, ^b2 equivalent acetic acid, O_2 balloon, ^c1,5-diketone product observed, ^dtrace amount of 1,5-diketone observed, N.D = annulated product not detected

Procedure for attempted aromatization of cyclohexanone product

Palladium acetate (0.022 g, 0.10 mmol), BINOL phosphoric acid (0.035 g, 0.10 mmol) and sodium hydroxide (0.039 g, 1.00 mmol) were taken in a Schlenk tube. Aryl ketone (1.00 mmol), allyl alcohol (2.00 mmol) and 0.8 mL of dichloroethane (DCE) were added to it. Finally, 4Å molecular sieves was added to the reaction mixture and stirred at room temperature for 24 hours. Then, the reaction was evaporated under vacuum, additional catalyst, additive and base were added to it (Table S3, entries 1-4). Solvent was added to it and the reaction mixture for further 24h, the reaction mixture was evaporated under vacuum and the reaction mixture was purified by column chromatography. For entry 5, we used Pd/C as the catalyst for both steps.

o C	+ + OH	$\frac{1. \operatorname{Pd}(\operatorname{OAc})_2, \operatorname{E}}{\operatorname{NaOH}, \operatorname{DCH}}{24 \operatorname{h}}$	BPA,	O 2. Cat,* Base,	Additive,# Solvent	OH
S No	Catalyst*	Additive#	Base	Solvent	Т	Yield
	(mol%)	(mol%)			(° C)	
1	Pd/C (5)	-	K ₂ CO ₃ (20)	DMA	100	ND^d
2 ^a	Pd/C (5)	-	K ₂ CO ₃ (20)	DMA	100	ND^d
3	I ₂ (20)	DMSO		CH ₃ NO ₂	100	ND ^d
		(100)				
4 ^b	CuBr ₂ (5)	48% HBr		Dioxane	RT	ND ^d
5 ^c	Pd/C (5)		K ₂ CO ₃ (100)	DMA	100	No
						Conversion

Table S3: Attempt for one pot-sequential synthesis of phenol

Reaction was carried out in one pot sequential method starting from propiophenone and 3buten-2-ol. ${}^{a}Cs_{2}CO_{3}$ was used instead of NaOH for annulation in the first step, ${}^{b}O_{2}$ Balloon used for aromatisation, ^creaction was carried out in one pot starting from propiophenone, Pd/C used instead of Pd(OAc)₂ for the annulation reaction. ^dannulated product recovered, ND=phenol formation not detected.