Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information for:

Palladium-Catalyzed Dearomative Cyclocarbonylation of

Allyl Alcohol for the Synthesis of Quinolizinones

Pengcheng Xu,^{a,c} Bo Qian,^{*a} Zaojuan Qi,^a Bao Gao,^b Bin Hu,^{*a} and Hanmin Huang^{*a,b}

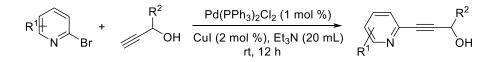
^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

^b Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China,

Chinese Academy of Sciences, Hefei 230026, P. R. China.

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Contents

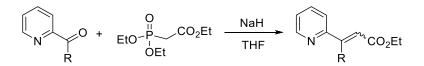

1	General experimental details and materials	S2
2	Preparation of starting materials	S3
3	Experimental characterization data for starting materials	S7
4	General procedure for the synthesis of product	S14
5	Optimization of the reaction conditions	S15
6	Experimental characterization data for products	S18
7	Copies of NMR of staring materials and products	S24

1. General experiment details and materials

All non-aqueous reactions and manipulations were used by standard Schlenk techniques. All solvents before used were dried by standard methods and stored under argon atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avance III (400 MHz) spectrometers. Chemical shifts were reported in parts per million (ppm) down field from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Coupling constants (J) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass instrument (ESI). GC-MS analysis were performed with Agilent 7890B/5975B GC-MS system. All chemicals were purchased from commercial sources.

2. Preparation of starting materials

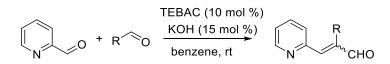
2.1. Method A:



2-Bromopyridine (10 mmol, 1 equiv), prop-2-yn-1-ol (12 mmol, 1.2 equiv), Pd(PPh)₂Cl₂ (0.1 mmol, 1 mol %), CuI (0.2 mmol, 2 mol %), and Et₃N (50 mmol) were added to a 100 mL Schlenk flask under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 12 hours and monitored by TLC. Then the reaction mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography employing mixtures of petroleum ether/ EtOAc as eluents.

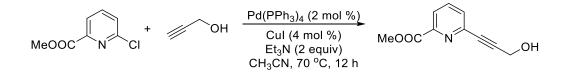
$$R^{2} \xrightarrow{\text{LiAlH}_{4} (1.5 \text{ equiv})}_{\text{OH}} R^{1} \xrightarrow{\text{R}^{2}}_{\text{OH}} OH$$

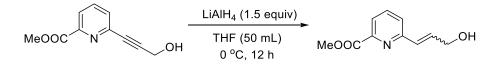
The above residue and anhydrous THF (50 mL) were added to 100 mL flask under nitrogen atmosphere. Then LiAlH4 was carefully added in a few portions at 0 °C. The reaction mixture was gradually warmed to room temperature and stirred overnight. The reaction mixture was then cooled to 0 °C and quenched with EtOAc, followed by water. The solid aluminum salts was filtered, then the organic layer was separated and the aqueous layer was extracted with EtOAc (20 mL×3). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel and eluted with EtOAc/petroleum ether ($1/3 \sim 1/1$) afford the corresponding allylic alcohols **1a** (0. 86 g, 67% yield).


2.2. Method B:

To a 100 mL round bottom flask containing NaH (20 mmol, 60% mineraldispersion) and anhydrous THF (40 mL) at 0 °C, triethyl phosphonoacetate (21.5 mmol) was dropwise added. The reaction mixture was naturally warmed to room temperature, followed by a dropwise addition of a 2-acetylpyridine solution (13 mmol, in 20 mL anhydrous THF). The reaction mixture was stirred for 12 hours, and then poured into aseparating funnel containing water. The organic layer was collected, and the aqueouslayer was extracted with diethyl ether (3×50 mL). The combined organic layer wasdried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was subjected to flash chromatography (EtOAc/petroleum ether = 1/80~1/20) to afford the corresponding α,β -unsaturated ester (1.74 g, 70% yield)

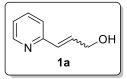
To a flame-dried 100 mL flask containing the unsaturated ester (20 mmol) obtained above and anhydrous toluene (30 mL), DIBAL-H (40 mmol) was carefully dropwise added at -78 °C. The reaction mixture was gradually warmed to room temperature and stirred overnight. The reaction mixture was then cooled to 0 °C and quenched with saturated aqueous NH₄Cl. The solid aluminum salts was filtered, then the organic layer was separated and the aqueous layer was extracted with EtOAc (50 mL×3). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was subjected to flash chromatography (EtOAc/petroleum ether = $1/3 \sim 1/1$) to afford the corresponding allylic alcohol (1.4 g, 47% yield).


2.3. Method C:

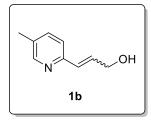

The solution of picolinaldehyde (18 mmol) in benzene (10 mL) and the solution of propionaldehyde (21.6 mmol) in benzene (10 mL) were added successively to vigorously stirred suspension of powdery KOH (2.7 mmol) and TEBAC (1.8 mmol) in benzene (10 mL) at room temperature. The reaction mixture was vigorously stirred at the same temperature until the condensation was finished (TLC monitoring). The organic solution was decanted from the wet TEBAC/KOH solid phase, and the residue was extracted with benzene (3×10 mL). The combined benzene extract was washed with water (2×10 mL) and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure, and the residue was used in the next step without further purification.

The residue of step **1** and CH₃OH (20 mL) were added to 100 mL flask. Then NaBH₄ was carefully added in a few portions at 0°C. The reaction mixture was stirred until the reaction was finished (TLC monitoring). The reaction mixture was quenched with NH₄Cl and concentrated under reduced pressure. After removing most of the solvent, the residue was extracted with EtOAc (20 mL×3). The EtOAc extractwas dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressureand the residue was purified by flash column chromatography on silica gel and eluted with EtOAc/petroleum ether (1/3~1/1) to afford 2-methyl-3-(pyridin-2-yl)prop-2-en-1-ol (21 g, 78% yield).

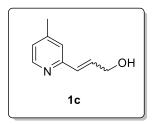
2.4. Method D:



Ethyl 2-chloronicotinate (3.42 g, 20 mmol), prop-2-yn-1-ol (26 mmol, 1.3 equiv), Pd(PPh₃)₄ (0.6 mmol, 2 mol %), CuI (2.7 mmol, 4 mol %), Et₃N (60 mmol) and CH₃CN (50 mL) were added to a 250 mL Schlenk flask under nitrogen atmosphere. The reaction mixture was stirred at 70 °C for 12 hours and monitored by TLC. Then the reaction mixture was concentrated under reduced pressure, The ethyl 2-(3-hydroxyprop-1-yn-1-yl)nicotinate, thus obtained, was used in the next step without further purification.

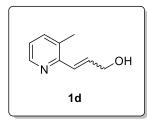

The above residue and anhydrous THF (50 mL) were added to 100 mL flask under nitrogen atmosphere. Then LiAlH4 was carefully added in a few portions at 0 °C. The reaction mixture was gradually warmed to room temperature and stirred overnight. The reaction mixture was then cooled to 0 °C and quenched with EtOAc, followed by water. The solid aluminum salts was filtered, then the organic layer was separated and the aqueous layer was extracted with EtOAc (20 mL×3). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel andeluted with EtOAc/petroleum ether (1/3~1/1) afford 3-(3-(hydroxymethyl)pyridin-2-yl)prop-2-en-1-ol (1. 97 g, 51% yield).

3. Experimental characterization data for starting materials

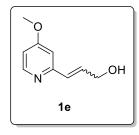

3-(Pyridin-2-yl)prop-2-en-1-ol (1a): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the

corresponding product as a yellow oil (56% yield, E/Z = 70:30). ¹H NMR (400 MHz, CDCl₃) δ 2.94 (br, 1H), 4.39 (dd, $J_1 = 1.6$ Hz, $J_2 = 4.8$ Hz, 2H), 6.73(t, J = 1.5 Hz, 0.3H), 6.77 (t, J = 1.5 Hz, 0.7H), 6.82 (t, J = 4.8 Hz, 0.7H), 6.86 (t, J = 4.8 Hz, 0.3H), 7.12-7.15 (m, 1H), 7.27-7.31 (m, 1H), 7.61-7.65 (m, 1H), 8.53-8.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 63.1, 121.7, 122.3, 129.7, 134.1, 136.8, 149.5, 155.4; HRMS (ESI) calcd. for C₈H₁₀NO [M+H]: 136.0757, found: 136.0766.

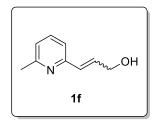
3-(5-Methylpyridin-2-yl)prop-2-en-1-ol (1b): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (66% yield, E/Z = 76:24). ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H),


2.34 (br, 1H), 4.38 (d, J = 4.2 Hz, 2H), 6.68 (t, J = 1.2 Hz, 0.2H), 6.72 (t, J = 1.2 Hz, 0.8H), 6.76 (t, J = 4.8 Hz, 0.7H), 6.80 (t, J = 4.8 Hz, 0.3H), 7.21(d, J = 8.0 Hz, 1H), 7.43 (dd, $J_1 = 1.6$ Hz, $J_2 = 8.0$ Hz, 1H), 8.37 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 63.3, 121.2, 130.0, 131.9, 132.7, 137.2, 150.0, 152.7; HRMS (ESI) calcd. for C9H12NO [M+H]: 150.0913, found: 150.0917.

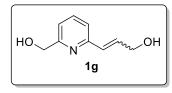
3-(4-Methylpyridin-2-yl)prop-2-en-1-ol (1c): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (65% yield, E/Z = 69:31). ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H),


2.96 (br, 1H), 4.36(dd, $J_1 = 1.6$ Hz, $J_2 = 4.8$ Hz, 2H), 6.68 (t, J = 1.5 Hz, 0.3H), 6.72 (t, J = 1.2 Hz, 0.7H), 6.78 (t, J = 4.8 Hz, 0.7H), 6.82 (t, J = 4.8 Hz, 0.3H), 6.94-9.96 (m, 1H), 7.11 (t, J = 1.0 Hz, 1H), 8.36 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 62.9, 122.6, 123.3, 129.6, 134.1, 147.9, 149.1, 155.2; HRMS (ESI) calcd. for

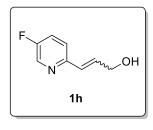
C9H12NO [M+H]: 150.0913, found: 150.0968.


3-(3-Methylpyridin-2-yl)prop-2-en-1-ol (1d): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (57% yield, E/Z = 94:6). ¹H NMR (400 MHz, CDCl₃) δ 2.28 (s, 3H),

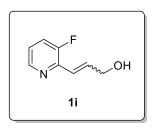
4.35 (d, J = 3.1 Hz, 3H), 6.69 (s, 0.1H), 6.73 (s, 0.9H), 6.73 (d, J = 3.6 Hz, 0.9H), 6.77 (d, J = 3.6 Hz, 0.1H), 7.19 (d, J = 8.0 Hz,1H), 7.40-7.43 (m, 1H), 8.32 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.2, 62.7, 121.0, 129.3, 131.7, 133.5, 137.3, 149.6, 152.9; **HRMS (ESI)** calcd. for C₉H₁₂NO [M+H]: 150.0913, found: 150.0915.


3-(4-Methoxypyridin-2-yl)prop-2-en-1-ol (1e): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (70% yield, E/Z = 85:15). ¹H NMR (400 MHz, CDCl₃) δ 3.12 (br, 1H), 3.77 (s,

3H), 4.27 (d, J = 3.9 Hz, 2H), 6.55 (t, J = 3.7 Hz, 0.1H), 6.59 (t, J = 3.7 Hz, 0.9H), 6.61 (s, 0.9H), 6.65 (s, 0.1H), 7.06 (dd, $J_1 = 2.9$ Hz, $J_2 = 8.6$ Hz, 1H), 7.17 (d, J = 8.6 Hz, 1H), 8.15 (d, J = 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 63.0, 121.1, 121.8, 129.3, 131.6, 136.8, 148.1, 154.7; HRMS (ESI) calcd. for C₉H₁₂NO₂ [M+H]: 166.0863, found: 166.0859.

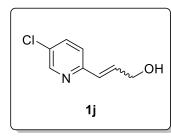

3-(6-Methylpyridin-2-yl)prop-2-en-1-ol (1f): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (43% yield, E/Z = 90:10). ¹H NMR (400 MHz, CDCl₃) δ 2.53 (s, 3H),

3.17 (br, 1H), 4.36 (d, J = 3.2Hz, 2H), 6.70 (s, 0.1H), 6.74 (s, 0.9H), 6.75 (d, J = 3.6 Hz, 0.9H), 6.79 (d, J = 3.6 Hz, 0.1H), 6.98 (d, J = 8.0 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 62.8, 118.5, 121.9, 129.8, 134.0, 137.0, 155.0, 158.1; HRMS (ESI) calcd. for C₉H₁₂NO [M+H]: 150.0913, found: 150.0918.

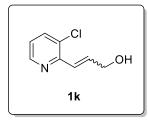

3-(3-(Hydroxymethyl)pyridin-2-yl)prop-2-en-1-ol (1g): The title compound was prepared according to the general procedure (method **D**) and purified by flash column chromatography to give the corresponding product as a

yellow oil (39% yield, E/Z = 63:37). ¹**H NMR** (400 MHz, CDCl₃) δ 3.45 (br, 2H), 4.34 (dd, $J_1 = 1.6$ Hz, $J_2 = 4.8$ Hz, 2H), 4.71 (s, 2H), 6.66 (t, J = 1.7 Hz, 0.4H), 6.70 (t, J = 1.7 Hz, 0.6H), 6.80 (t, J = 0.9 Hz, 0.6H), 6.84 (t, J = 0.9 Hz, 0.4H), 7.09 (d, J =7.6 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 63.0, 64.0, 119.1, 120.4, 129.2, 134.1, 137.4, 154.0, 158.6; **HRMS (ESI**) calcd. for C₉H₁₂NO₂ [M+H]: 166.0868, found: 166.0935.

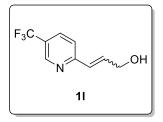
3-(5-Fluoropyridin-2-yl)prop-2-en-1-ol (**1h**): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (85% yield, E/Z = 91:9). ¹**H NMR** (400 MHz, CDCl₃) δ 3.03 (br, 1H),


4.38 (d, J = 4.0 Hz, 2H), 6.69 (s, 0.1H), 6.73 (s, 0.9H), 6.75 (d, J = 10.8 Hz, 0.9H), 6.78 (d, J = 10.8 Hz, 0.1H), 7.27-7.38 (m, 2H), 8.38 (d, J = 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 62.7, 122.3 (d, J = 4.0 Hz), 123.5 (d, J = 19.0 Hz), 128.3, 134.1 (d, J = 3.0 Hz), 137.5 (d, J = 2.4 Hz), 151.8 (d, J = 4.0 Hz), 159.5 (d, J = 254 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -128.8; HRMS (ESI) calcd. for C₈H₉FNO [M+H]: 154.0663, found: 150.0664.

3-(3-Fluoropyridin-2-yl)prop-2-en-1-ol(1i): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (54% yield, E/Z = 67:33). ¹**H NMR** (400 MHz, CDCl₃) δ 4.41 (d, J = 2.1

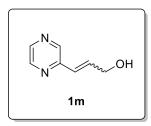

Hz, 3H), 6.90 (d, J = 1.4 Hz, 0.3H), 6.94 (d, J = 1.4 Hz, 0.7H), 7.01 (t, J = 3.5 Hz, 0.7H), 7.01 (t, J = 3.5 Hz, 0.3H), 7.12-7.16 (m, 1H), 7.31-7.36 (m, 1H), 8.31 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 62.7, 121.3, 123.1 (d, J = 4.0 Hz), 123.4 (d, J = 19.0 Hz), 136.8 (d, J = 5.0 Hz), 143.8 (d, J = 12.0 Hz), 144.8 (d, J = 6.0 Hz),

156.8 (d, J = 259.0 Hz); ¹⁹**F** NMR δ -126.07 (376 MHz CDCl₃); **HRMS (ESI)** calcd. for C₈H₉FNO [M+H]: 154.0663, found: 150.0668.

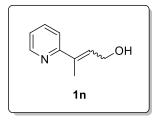

3-(5-Chloropyridin-2-yl)prop-2-en-1-ol (1j): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (58% yield, E/Z = 67:33). ¹H NMR (400 MHz,

CDCl₃) δ 3.10 (t, J = 5.4 Hz, 1H), 4.38 (t, J = 4.3 Hz, 2H), 6.68 (t, J = 1.7 Hz, 0.3H), 6.72 (t, J = 1.7 Hz, 0.7H), 6.79 (t, J = 4.8 Hz, 0.7H), 6.83 (t, J = 4.8 Hz, 0.3H), 7.21 (d, J = 8.4 Hz, 1H), 7.58 (dd, $J_1 = 2.8$ Hz, $J_2 = 8.4$ Hz, 1H), 8.46 (d, J = 2.4 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 62.8, 122.3, 128.4, 130.3, 134.9, 136.4, 148.3, 153.6; **HRMS (ESI)** calcd. for C8H9CINO [M+H]: 170.0367, found: 170.0360.

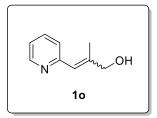
3-(3-Chloropyridin-2-yl)prop-2-en-1-ol (1k): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (59% yield, E/Z = 77:23). ¹H NMR (400 MHz, CDCl₃) δ 2.35 (br, 1H),


4.44 (dd, $J_I = 1.6$ Hz, $J_2 = 4.4$ Hz, 2H), 7.06-7.14 (m, 2H), 7.14 (t, J = 1.5 Hz, 0.8H), 7.18 (t, J = 1.5 Hz, 0.2H), 7.64 (dd, $J_I = 1.2$ Hz, $J_2 = 8.0$ Hz, 1H), 8.44 (dd, $J_I = 1.6$ Hz, $J_2 = 4.8$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 63.2, 123.1, 124.4, 130.3, 137.0, 137.6, 147.5, 151.9; **HRMS (ESI)** calcd. for C8H9ClNO [M+H]: 170.0373, found: 170.0449.

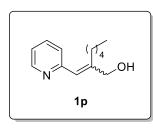
3-(5-(Trifluoromethyl)pyridin-2-yl)prop-2-en-1-ol (11): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (58% yield, E/Z = 58:42). ¹**H NMR** (400 MHz,


CDCl₃) δ 2.85 (br, 1H), 4.43 (dd, J_1 = 2.0 Hz, J_2 = 4.8 Hz, 2H), 6.79 (t, J = 1.9 Hz, 0.4H), 6.83 (t, J = 1.9 Hz, 0.6H), 6.97(t, J = 4.6 Hz, 0.6H), 7.01 (t, J = 4.6 Hz, 0.4H), 7.38 (d, J = 8.0 Hz, 1H), 7.84 (dd, J_1 = 2.4 Hz, J_2 = 8.4 Hz, 1H), 8.78-8.79 (m, 1H);

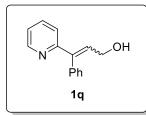
¹³**C NMR** (100 MHz, CDCl₃) δ 62.7, 121.3, 122.3, 124.8 (dd, $J_I = 66.0$ Hz, $J_2 = 30.0$ Hz), 128.1, 133.9 (dd, $J_I = 7.0$ Hz, $J_2 = 3.0$ Hz), 137.3, 146.4 (dd, $J_I = 9.0$ Hz, $J_2 = 4.0$ Hz), 158.6 (d, J = 2.0 Hz); ¹⁹**F NMR** (376 MHz CDCl₃) δ -62.3; **HRMS (ESI)** calcd. for C₉H₉F₃NO [M+H]: 204.0626, found: 204.0770.


3-(Pyrimidin-4-yl)prop-2-en-1-ol (1m): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (42% yield, E/Z = 56:44). ¹**H NMR** (400 MHz, CDCl₃) δ 2.83 (br, 1H), 4.42 (dd,

 $J_I = 2.0$ Hz, $J_2 = 4.4$ Hz, 2H), 6.83 (t, J = 2.0 Hz,0.4H), 6.87 (t, J = 2.0 Hz, 0.6H), 7.11 (t, J = 4.9 Hz, 1H), 7.24 (t, J = 4.5 Hz, 0.6H), 7.29 (t, J = 4.5 Hz, 0.4H), 8.66 (d, J = -4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 62.4, 118.9, 128.3, 140.8, 157.1, 164.3; **HRMS (ESI)** calcd. for C7H9N₂O [M+H]: 137.0715, found: 137.0775.


3-(Pyridin-2-yl)but-2-en-1-ol (1n): The title compound was prepared according to the general procedure (method **B**) and purified by flash column chromatography to give the corresponding product as ayellow oil (59% yield, E/Z = 56:44). ¹**H NMR** (400 MHz, CDCl₃) δ 2.09 (br, 1H), 2.13 (d,

J = 1.2 Hz, 3H), 4.43 (dd, $J_1 = 1.2$ Hz, $J_2 = 6.4$ Hz, 2H), 6.48-6.52 (m, 1H), 7.14-7.18 (m, 1H), 7.43 (t, J = 1.0 Hz, 0.4H), 7.45 (t, J = 1.0 Hz, 0.6H), 7.63-7.67 (m, 1H), 8.56-8.58(m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.7, 60.1, 120.1, 122.1, 130.0, 136.6, 136.9, 149.0, 159.3; **HRMS (ESI)** calcd. for C₉H₁₂NO [M+H]: 150.0913, found: 150.0968.


2-Methyl-3-(pyridin-2-yl)prop-2-en-1-ol (10): The title compound was prepared according to the general procedure (method C) and purified by flash column chromatography to give the corresponding product as a yellow oil (58% yield, E/Z > 99:1). ¹H NMR (400 MHz, CDCl₃) δ 2.01 (s, 3H),

2.95 (br, 1H), 4.20 (d, J = 1.6 Hz, 2H), 6.65 (d, J = 1.6 Hz, 1H), 7.09-7.13 (m, 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.64 (m, 1H), 8.56-8.58 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.5, 68.1, 121.2, 123.3, 124.2, 136.3, 143.1, 149.0, 156.9; **HRMS (ESI)** calcd. for C₉H₁₂NO [M+H]: 150.0913, found: 150.0993.

2-(Pyridin-2-ylmethylene)heptan-1-ol (1p): The title compound was prepared according to the general procedure (method C) and purified by flash column chromatography to give the corresponding product as a yellow oil (61% yield, E/Z > 99:1). ¹H NMR (400 MHz, CDCl₃) δ 0.82-0.85 (m,

3H), 1.25-1.26 (m, 4H), 1.42-1.49 (m, 2H), 2.41-2.45 (m, 2H), 4.23 (s, 2H), 4.93 (br, 1H), 6.65 (s, 1H), 7.06-7.10 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.59-7.63 (m, 1H), 8.52-8.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.4, 28.0, 28.9, 32.0, 65.8, 121.0, 122.9, 123.8, 136.2, 147.9, 148.8, 157.0; HRMS (ESI) calcd. for C₁₃H₂₀NO [M+H]: 206.1539, found: 206.1545.

3-Phenyl-3-(pyridin-2-yl)prop-2-en-1-ol (**1q**): The title compound was prepared according to the general procedure (method **B**) and purified by flash column chromatography to give the corresponding product as a yellow oil (64% yield,

E/Z = 72:28). ¹**H NMR** (400 MHz, CDCl₃) δ 3.08 (br, 1H), 4.47 (dd, $J_I = 1.6$ Hz, $J_2 = 4.4$ Hz, 2H), 6.91 (t, J = 4.4 Hz, 0.3H), 6.95 (t, J = 4.4 Hz, 0.7H), 6.99 (t, J = 1.6 Hz, 0.7H), 7.03 (t, J = 1.6 Hz, 0.7H), 7.44-7.55 (m, 4H), 7.64-7.72 (m, 2H), 7.77 (dd, $J_I = 1.6$ Hz, $J_2 = 8.4$ Hz, 1H), 8.05-8.10 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 67.0, 121.3, 123.9, 125.2, 127.7, 128.4, 128.7, 135.7, 138.3, 147.2, 148.7, 156.1; **HRMS** (**ESI**) calcd. for C14H14NO [M+H]: 212.1070, found: 212.1072.

4-(Pyridin-2-yl)but-3-en-2-ol (1r): The title compound was prepared according to the general procedure (method **A**) and purified by flash column chromatography to give the corresponding product as a yellow oil (57% yield, E/Z = 69:31). ¹**H NMR** (400 MHz, CDCl₃) δ 1.40 (d, J = 6.8 Hz,

3H), 2.28 (br, 1H), 4.53-4.59 (m, 1H), 6.66 (s, 0.3H), 6.70 (s, 0.7H), 6.76 (d, J = 8.0 Hz, 0.7H), 6.80 (d, J = 8.0 Hz, 0.3H), 7.12-7.15 (m, 1H), 7.27-7.30 (m, 1H), 7.61-7.65 (m, 1H), 8.54-8.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.4, 68.4,

121.9, 122.3, 128.8, 136.7, 138.5, 149.6, 155.4; **HRMS (ESI)** calcd. for C₉H₁₂NO [M+H]: 150.0913, found: 150.0968.

4. General procedure for the synthesis of product

A mixture of catalyst, ligand, and allylic alcohols were added into a glass tube which was placed in an autoclave. Then the autoclave was purged and charged with CO at the designed pressure. The reaction mixture was stirred at the designed temperature for 12 hours. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. The yield was determined by GC analysis relative to the **1** with *n*-hexadecane as internal standard. Then the corresponding reactionmixture was purified by flash column chromatography on a silica gel column EtOAc/petroleum ether ($1/50 \sim 1/10$) to give the desired product.

5. Optimization of the reaction conditions

1a	[∽] [∽] [∼] OH + CO [Pd] , Xantphos toluene	
Entry	[Pd]	Yield $(\%)^{b}$
1	PdI ₂	20
2	PdBr ₂	70
3	PdCl ₂	88
4	$Pd(TFA)_2$	51
5	[Pd(allyl)Cl] ₂	75
6	$Pd(OAc)_2$	54
7	$Pd_2(dba)_3$	ND
8	Pd(CH ₃ CN) ₂ Cl ₂	79

Table S1. Screening of the [Pd] catalysts.^a

^a Reaction conditions: **1a** (0.5 mmol), [Pd] (0.025 mmol, 5 mol %), Xantphos (0.03 mmol, 6 mol %), toluene (2 mL), CO (20 atm), 120 $^{\circ}$ C, 12 h. ^b Yields were determined by GC analysis using *n*-hexadecane as an internal standard.

Table S2. Screening of the ligands.^a

N	^{w^w OH} + CO <u>PdCl₂</u> , Ligand toluene	
1a Entry	Ligand	2a Yield (%) ^b
1	XantPhos	88
2	DPPM	34
3	DPPE	33
4	DPPB	16
5	DPPF	20
6	PPh ₃	25^c
7	P(o-Tolyl) ₃	Trace ^c
8	$P(m-Tolyl)_3$	Trace ^c
9	PCy ₃	16^c
10	$P(C_6F_5)_3$	23^c
11	DPEPhos	41

^a Reaction conditions: **1a** (0.5 mmol), $PdCl_2$ (0.025 mmol, 5 mol%), ligands (0.03 mmol, 6 mol%), toluene (2 mL), CO (20 atm), 120 °C, 12 h. Yields were determined by GC analysis using *n*-hexadecane as an internal standard. ^b Yields were determined by GC analysis using n-hexadecane as an internal standard. ^c Ligand (12 mol%).

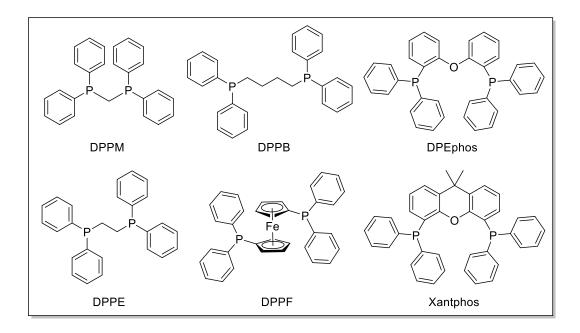


Table S3. Screening of the solvents.^a

N	···OH + CO PdCl ₂ , Xantphos solvent	
1a		2a
Entry	Solvent	Yield (%) ^b
1	toluene	88
2	<i>i</i> -PrOH	58
3	THF	62
4	CH ₃ CN	55
5	NMP	67
6	DMF	trace
7	anisole	48
8	xylene	85
9	mesitylene	81
10	PhCF ₃	70

^a Reaction conditions: **1a** (0.5 mmol), PdCl₂ (0.025 mmol, 5 mol %), XantPhos (0.03 mmol, 6 mol %), solvent (2 mL), CO (20 atm), 120 °C, 12 h. ^b Yields were determined by GC analysis using n-hexadecane as an internal standard.

Table S4. Screening of temperature.^a

N Ia	^{,,,,,,,,,,,,,,,,,,,,,,} ,,,,,,,,,,,,,,	- $N2a$
Entry	temperature (°C)	Yield (%) ^b
1	120	88
2	100	87
3	80	86
4	60	62

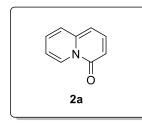
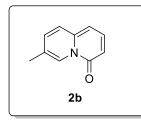
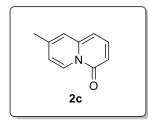

^a Reaction conditions: **1a** (0.5 mmol), $PdCl_2$ (0.025 mmol, 5 mol %), XantPhos (0.03 mmol, 6 mol %), toluene (2 mL), CO (20 atm), 12 h. ^b Yields were determined by GC analysis using *n*-hexadecane as an internal standard.

Table S5. Screening of pressure of CO.^a

	<pre></pre>	
Entry	pressure of CO (atm)	Yield (%) ^b
1	30	88
2	20	88
3	10	85
4	1	85(86) ^c

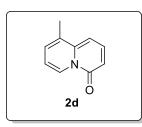

^a Reaction conditions: **1a** (0.5 mmol), $PdCl_2$ (0.025 mmol, 5 mol %), XantPhos(0.03 mmol, 6 mol %), toluene (2 mL), CO, 80 °C,12 h. ^b Yields were determined by GC analysis using *n*-hexadecane as an internal standard. ^c Isolated yield.

6. Experimental characterization data for products

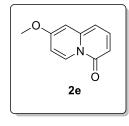

4*H***-quinolizin-4-one (2a):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 62 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.61-6.66 (m, 2H), 6.98-7.02 (m, 1H), 7.31-7.35

(m, 1H), 7.45-7.48 (m, 1H), 7.64-7.68 (m, 1H), 9.12 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.6$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 103.3, 109.2, 115.0, 125.5, 127.4, 129.4, 138.2, 142.8, 158.8; **HRMS (ESI)** calcd. for C₉H₈NO [M+H]: 146.0600, found: 146.0605.

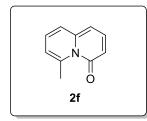
7-Methyl-4*H***-quinolizin-4-one (2b):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 64 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.38 (d, J = 1.2 Hz, 3H), 6.63 (dd, $J_1 = 7.6$


Hz, $J_2 = 12.4$ Hz, 2H), 7.19 (dd, $J_1 = 1.6$ Hz, $J_2 = 8.8$ Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.59 (dd, $J_1 = 8.0$ Hz, $J_2 = 8.8$ Hz, 1H), 8.95 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 103.2, 108.8, 124.6, 125.0, 125.2, 132.5, 137.4, 141.5, 158.5; HRMS (ESI) calcd. for C10H10NO [M+H]: 160.0757, found: 160.0755.

8-Methyl-4*H*-quinolizin-4-one (2c): The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 72 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.4 (d, J = 1.2 Hz, 3H), 6.50-6.54 (m, 2H),

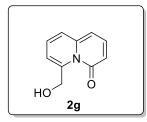

6.82 (dd, $J_1 = 2.0$ Hz, $J_2 = 7.6$ Hz, 1H), 7.22-7.23 (m, 1H), 7.58 (dd, $J_1 = 7.6$ Hz, $J_2 = 8.4$ Hz, 1H), 9.03 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 102.2, 107.6, 117.9, 123.4, 126.9, 138.3, 140.8, 143.0, 158.7; HRMS (ESI) calcd. for C₁₀H₁₀NO [M+H]: 160.0757, found: 160.0754.

9-Methyl-4H-quinolizin-4-one (2d): The title compound was prepared according to the general procedure and purified by flash column chromatography to give the

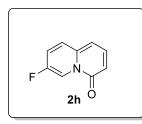

corresponding product as a yellow solid, 52 mg, 65% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 2.48 (s, 3H), 6.62 (dd, J_1 = 1.2 Hz, J_2 = 8.8 Hz, 1H), 6.67-6.69 (m, 1H), 6.93 (t, J = 7.2 Hz, 1H), 7.19-7.21 (m, 1H),7.66 (dd, J_1 = 8.0 Hz, J_2 = 8.8 Hz, 1H), 9.08 (dd, J_1 = 1.2 Hz, J_2 = 7.6 Hz, 1H); ¹³**C NMR**

(100 MHz, CDCl₃) δ 19.3, 100.0, 109.1, 114.5, 126.0, 129.3, 132.2, 137.8, 143.0,
159.3; HRMS (ESI) calcd. for C10H10NO [M+H]: 160.0757, found: 160.0862.

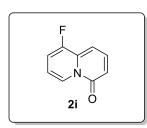
8-Methoxy-4*H*-quinolizin-4-one (2e): The title compound was prepared according to the general procedure and purified by flash column chromatography to give the the corresponding product as a yellow solid, 56 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 3 H), 6.65 (dd, $J_1 = 7.6$ Hz, $J_2 = 14.2$


Hz, 2H), 7.15 (dd, $J_1 = 2.5$ Hz, $J_2 = 9.5$ Hz, 1H), 7.42 (d, J = 9.5 Hz, 1H), 7.58 (dd, $J_1 = 7.6$ Hz, $J_2 = 8.8$ Hz, 1H), 8.67 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.1, 103.8, 106.8, 108.7, 125.4, 126.1, 136.1, 139.5, 150.9, 158.2; HRMS (ESI) calcd. for C₁₀H₁₀NO₂ [M+H]: 176.0706, found: 176.0710.

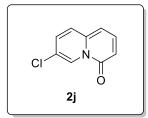
6-Methyl-4*H***-quinolizin-4-one (2f):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 29 mg, 36% yield.


¹**H NMR** (400 MHz, CDCl₃) δ 3.02 (s, 3 H), 6.42 (s, 1H),

6.44 (s, 1H),6.45-6.47(m, 1H), 6.95-6.99 (m, 1H), 7.13 (dd, $J_I = 1.2$ Hz, $J_2 = 8.8$ Hz, 1H), 7.45 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 103,8, 112.4, 118.0, 124.6, 128.3, 137.3, 142.9, 145.1, 163.2; HRMS (ESI) calcd. for C10H10NO [M+H]: 160.0757, found: 160.0754.

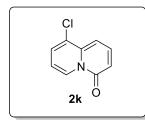

6-(Hydroxymethyl)-4*H***-quinolizin-4-one (2g):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 52 mg, 24% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 4.94-5.01 (m, 3H), 6.62-6.67 (m, 2H), 6.78 (dd, $J_1 = 1.6$ Hz, $J_2 = 6.8$ Hz, 1H), 7.11 (dd, $J_1 = 6.7$ Hz, $J_2 = 8.9$ Hz, 1H), 7.35 (dd, $J_1 = 1.6$ Hz, $J_2 = 8.9$ Hz, 1 H), 7.59 (dd, $J_1 = 7.4$ Hz, $J_2 = 8.7$ Hz, 1 H), ¹³**C NMR** (100 MHz, CDCl₃) δ 65.3, 106.1, 113.2, 119.6, 127.2, 128.2, 137.8, 143.5, 144.5, 162.5; HRMS (ESI) calcd. for C₁₀H₉NNaO₂ [M+Na]: 198.0525, found: 198.0526.

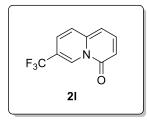

7-Fluoro-4*H***-quinolizin-4-one (2h):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 69 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.64 (dd, $J_1 = 1.2$ Hz, $J_2 = 8.8$ Hz, 1H), 6.72

(d, J = 7.6 Hz, 1H), 7.25-7.30 (m, 1H), 7.49 (dd, $J_1 = 5.6$ Hz, $J_2 = 9.6$ Hz, 1H), 7.64 (dd, $J_1 = 7.6$ Hz, $J_2 = 8.8$ Hz, 1H), 9.03 (dd, $J_1 = 2.4$ Hz, $J_2 = 6.0$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 104.1, 109.6, 113.0, 113.4, 122.3, 122.6, 127.4, 127.4, 137.5, 140.5, 153.3, 155.7, 158.2, 158.2; ¹⁹F NMR (376 MHz CDCl₃) δ -133.7; HRMS (ESI) calcd. for C₉H₇FNO [M+H]: 164.0506, found: 164.0502.

9-Fluoro-4*H***-quinolizin-4-one (2i):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 51 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.67 (dd, $J_1 = 1.2$ Hz, $J_2 = 8.8$ Hz, 1H), 6.90

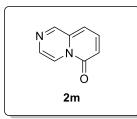

(t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.43 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.72 (dd, $J_1 = 8.0$ Hz, $J_2 = 9.2$ Hz, 1H), 9.06 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 101.0, 110.8, 113.3, 126.6, 128.9, 129.5, 138.6, 140.3, 158.8; ¹⁹F NMR (376 MHz CDCl₃) δ -122.7; HRMS (ESI) calcd. for C₉H₇FNO [M+H]: 164.0506, found: 164.0501.

7-Chloro-4*H***-quinolizin-4-one (2j):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 63 mg, 70% yield. ¹H NMR (400


MHz, CDCl₃) δ 6.67 (dd, J₁ = 1.2 Hz, J₂ = 9.2 Hz, 1H), 6.90 (t, J = 7.2 Hz, 1H), 7.06

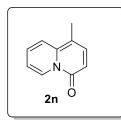
(d, J = 8.0 Hz, 1H), 7.43 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.71 (dd, $J_1 = 8.0$ Hz, $J_2 = 9.2$ Hz, 1H), 9.04 (d, J = 7.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 100.9, 110.8, 113.3, 126.5, 128.7, 129.5, 138.6, 140.2, 158.7; HRMS (ESI) calcd. for C₉H₇ClNO [M+H]: 180.0211, found: 180.0209.

9-Chloro-4*H***-quinolizin-4-one (2k):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 56 mg, 63% yield. ¹**H** NMR (400 MHz, CDCl₃) δ 6.67 (dd, $J_1 = 1.2$ Hz, $J_2 =$

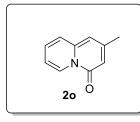

9.2 Hz, 1H), 6.89 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.42 (dd, $J_1 = 1.2$ Hz, $J_2 = 7.2$ Hz, 1H), 7.71 (dd, $J_1 = 8.0$ Hz, $J_2 = 8.8$ Hz, 1H), 9.04-9.07 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 100.9, 110.7, 113.3, 126.5, 128.9, 129.4, 138.5, 140.2, 158.7; **HRMS (ESI)** calcd. for C₉H₇CINO [M+H]: 180.0211, found: 180.0206.

7-(Trifluoromethyl)-4H-quinolizin-4-one (2l): The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 76 mg, 71% yield.

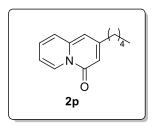
¹**H NMR** (400 MHz, CDCl₃) δ 6.63-6.67 (m, 2H), 7.27 (dd,


 $J_{1} = 1.2$ Hz, $J_{2} = 7.2$ Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.66 (dd, $J_{1} = 6.0$ Hz, $J_{2} = 7.2$ Hz, 1H), 9.35 (t, J = 1.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 103.9, 111.7, 118.7 (d, J = 28.0 Hz), 124.1 (q, J = 2.0 Hz), 124.2, 126.7 (d, J = 5.0 Hz), 126.8, 139.7, 142.1, 158.7; ¹⁹F NMR (376 MHz CDCl₃) δ -63.7; HRMS (ESI) calcd. for C₁₀H₇F₃NO [M+H]: 214.0474, found: 214.0843.

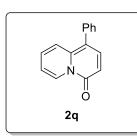
6*H*-pyrido[1,2-a]pyrazin-6-one (2m): The title compound was prepared according to the general procedure and purified by flash columnchromatography to give the corresponding product as a yellow solid, 40 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 1H), 6.89-6.90 (m, 1H), 7.78 (dd, *J*₁


= 7.6 Hz, J_2 = 9.2 Hz, 1H), 7.89 (d, J = 5.2 Hz, 1H), 8.67-8.69 (m, 1H), 8.88 (d, J = 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 105.0, 116.0, 117.2, 130.9, 135.6, 138.8,

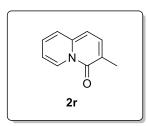
152.5, 157.4; HRMS (ESI) calcd. for C₈H₇N₂O [M+H]: 147.0553, found: 147.0775.


Methyl-4*H*-quinolizin-4-one (2n): The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 68 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 6.57 (d, J = 8.8 Hz, 1H), 7.00-7.04 (m,

1H), 7.36-7.40 (m, 1H), 7.54 (d, J = 8.9 Hz, 1H), 7.58-7.61 (m, 1H), 9.20 (d, J = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.1, 108.5, 109.4, 114.7, 122.3, 128.0, 129.0, 140.1, 140.5, 158.2; HRMS (ESI) calcd. for C10H10NO [M+H]: 160.0757, found: 160.0888.

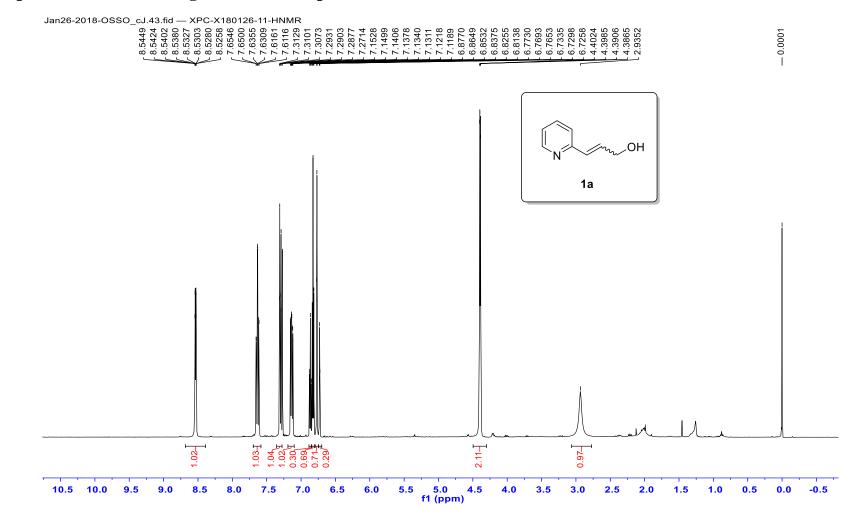

2-Methyl-4*H***-quinolizin-4-one (20):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 72 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3 H), 6.44 (dd, *J*₁ = 1.6 Hz, *J*₂ = 10.4

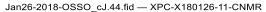
Hz, 2H), 6.87-6.91 (m, 1H), 7.24-7.28 (m, 1H), 7.33-7.36 (m, 1H), 9.00-9.03 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 104.7, 109.3, 114.2, 124.8, 127.0, 129.3, 141.7, 149.9, 158.4; HRMS (ESI) calcd. for C10H10NO [M+H]: 160.0757, found: 160.0801.


Pentyl-4*H***-quinolizin-4-one (2p):** The title compound was prepared according to the general procedure and purified by flash column chromatographyto give the corresponding product as a yellow solid, 71 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 0.88-0.91 (m, 3H), 1.32-1.36 (m, 4H),

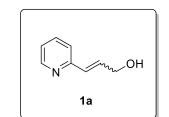
1.63-1.71 (m, 2H), 2.61 (t, J = 7.6 Hz, 2H), 6.48 (dd, $J_2 = 1.4$ Hz, $J_2 = 6.4$ Hz, 2H), 6.89-6.92 (m, 1H), 7.24-7.28 (m, 1H), 7.36-7.39 (m, 1H), 9.02 (dd, $J_1 = 0.8$ Hz, $J_2 = 7.6$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 29.8, 31.5, 36.0, 104.2, 108.8, 114.3, 125.1, 127.2, 129.2, 141.9, 154.6, 158.7; **HRMS (ESI)** calcd. for C14H18NO [M+H]: 216.1383, found: 216.1386.

1-Phenyl-4*H*-quinolizin-4-one (2q): The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 85 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.87-6.89 (m, 2H), 6.97-7.00 (m, 1H),

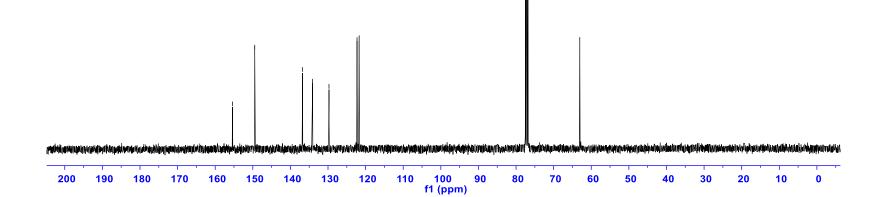

7.32-7.36 (m, 1H), 7.43-7.53 (m, 4H), 7.68-7.71 (m, 2H), 9.11 (d, J = 7.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 102.1, 106.6, 114.8, 125.6, 127.2, 127.2, 129.0, 129.2, 129.6, 138.4, 142.3, 150.4, 158.74; **HRMS (ESI)** calcd. for C₁₅H₁₂NO [M+H]: 222.0913, found: 222.0913.

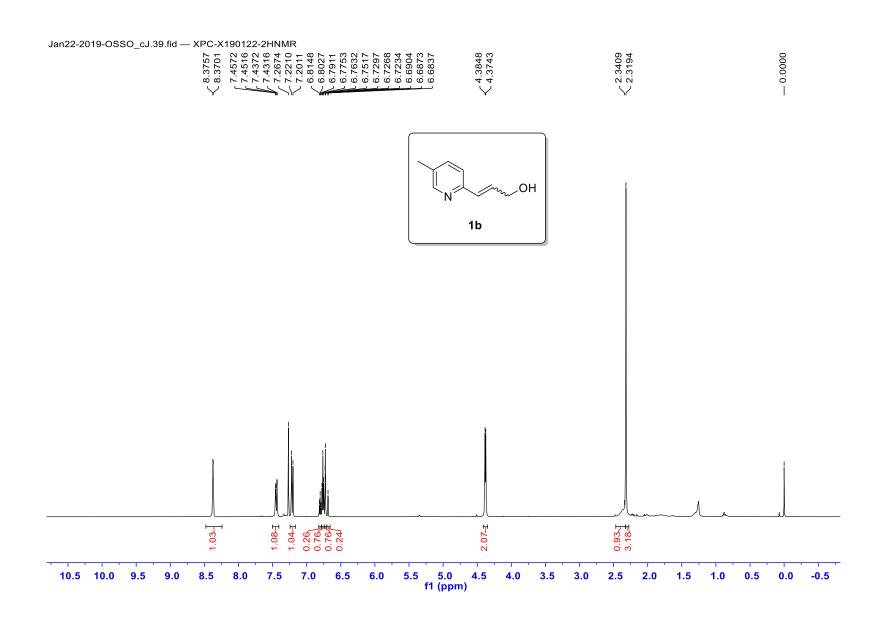


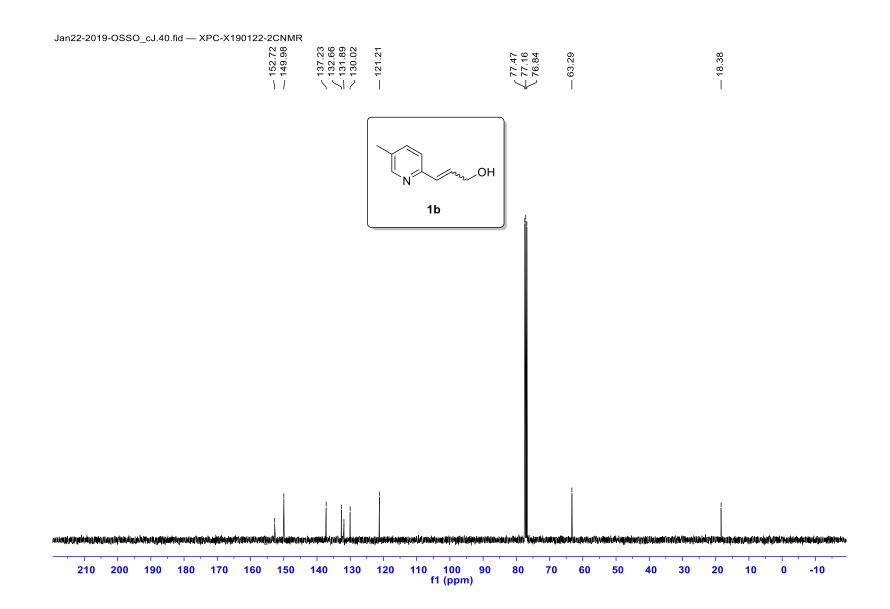
7-Methyl-4*H***-quinolizin-4-one (2r):** The title compound was prepared according to the general procedure and purified by flash column chromatography to give the corresponding product as a yellow solid, 8 mg, 10% yield. ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3 H), 6.53 (d, *J* = 7.6 Hz, 1H),

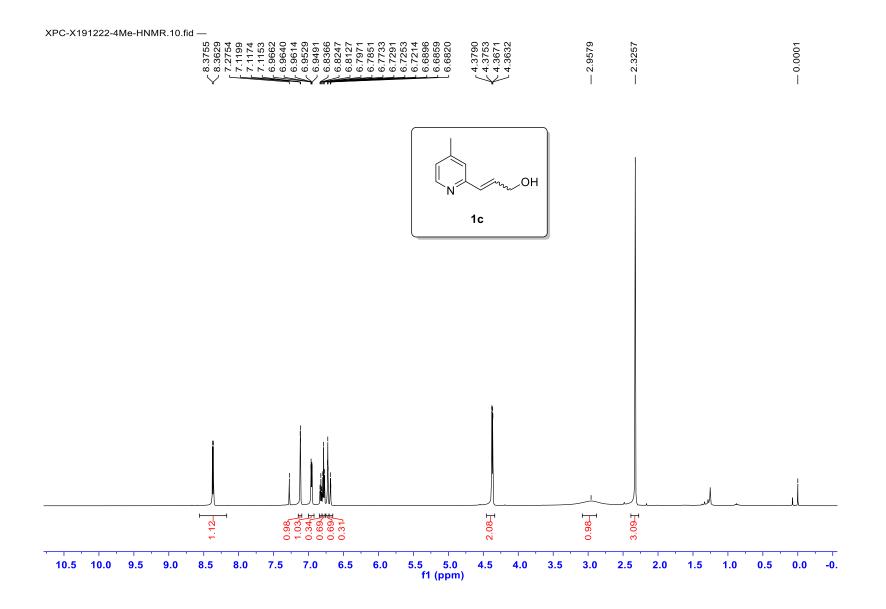

6.84-6.88 (m, 1H), 7.10-7.15 (m, 1H), 7.33 (d, J = 8.8 Hz, 1H), 7.51 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.7$ Hz, 1H), 9.00 (d, J = 7.6 Hz, 1H); ¹³**C** NMR (100 MHz, CDCl₃) δ 17.6, 102.7, 114.6, 119.0, 125.3, 126.6, 127.3, 137.0, 140.5, 158.5; HRMS (ESI) calcd. forC10H10NO [M+H]: 160.0757, found: 160.0985.

7. Copies of NMR of staring materials and products

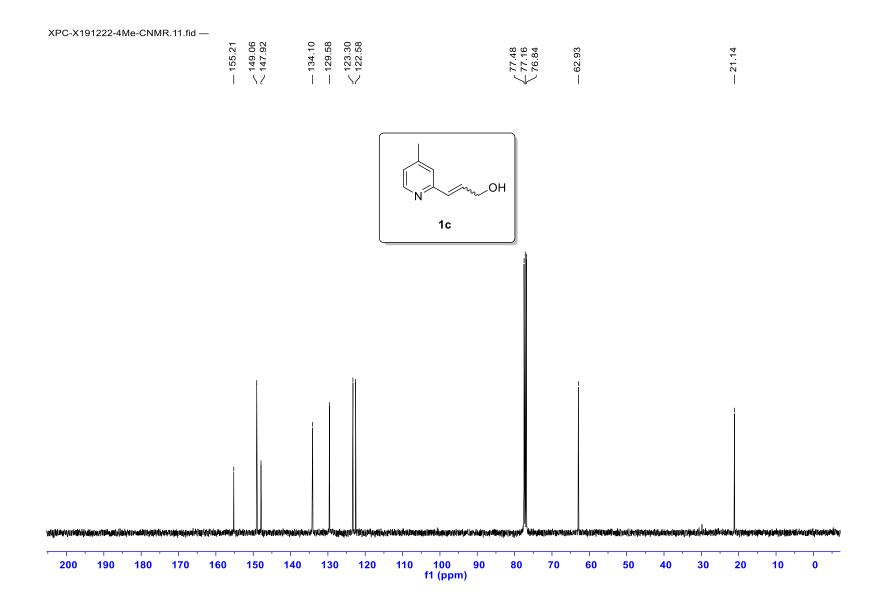


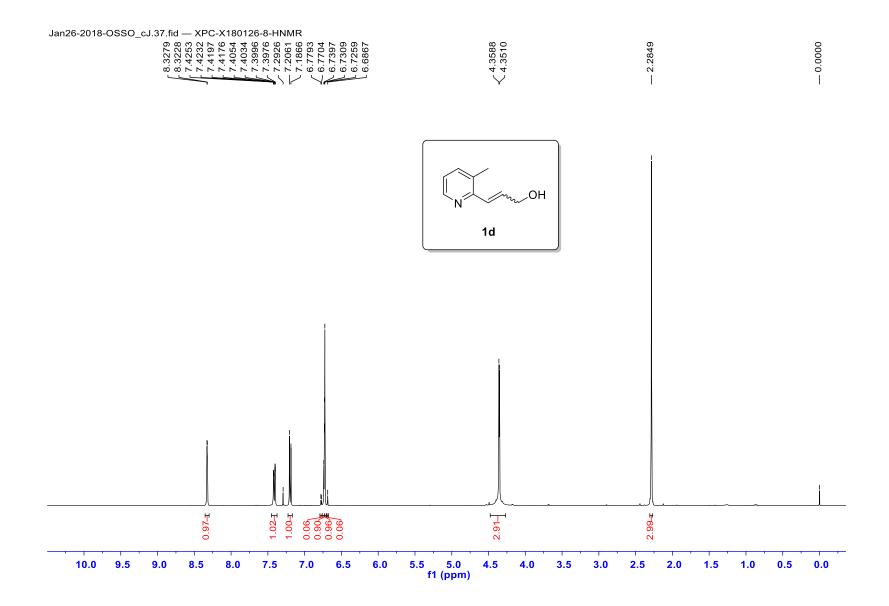

41	48	76 74 72 72
155.	149.	136. 134. 129. 121.
1	Ì	171 52

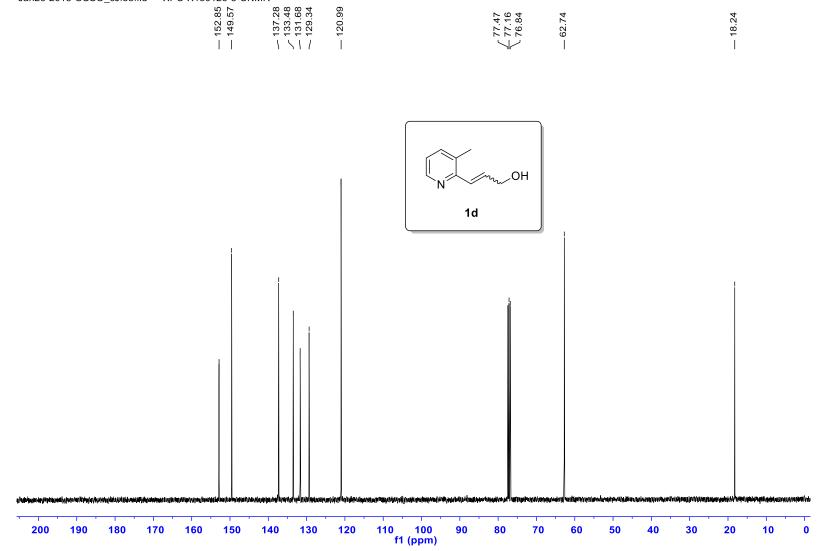



77.48
 77.16
 77.16
 76.84

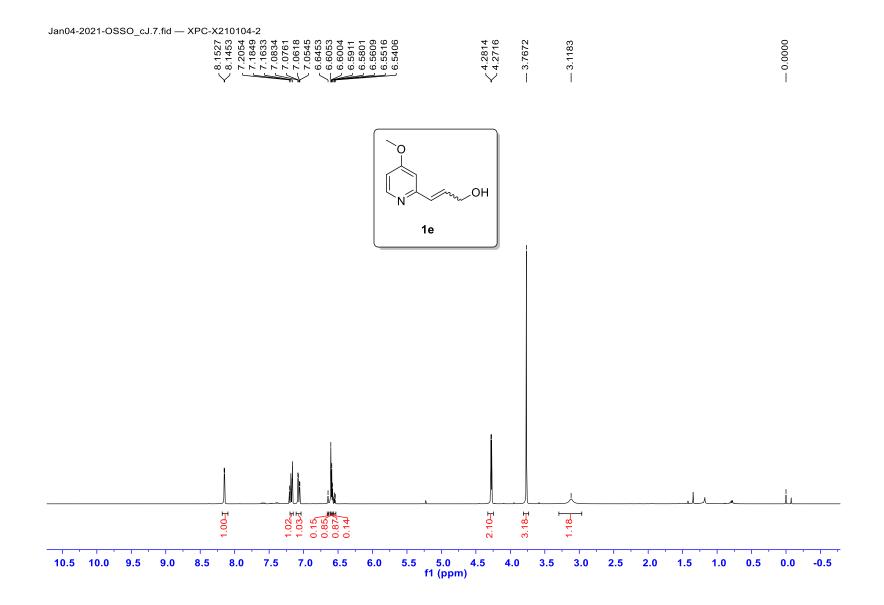
--- 63.05



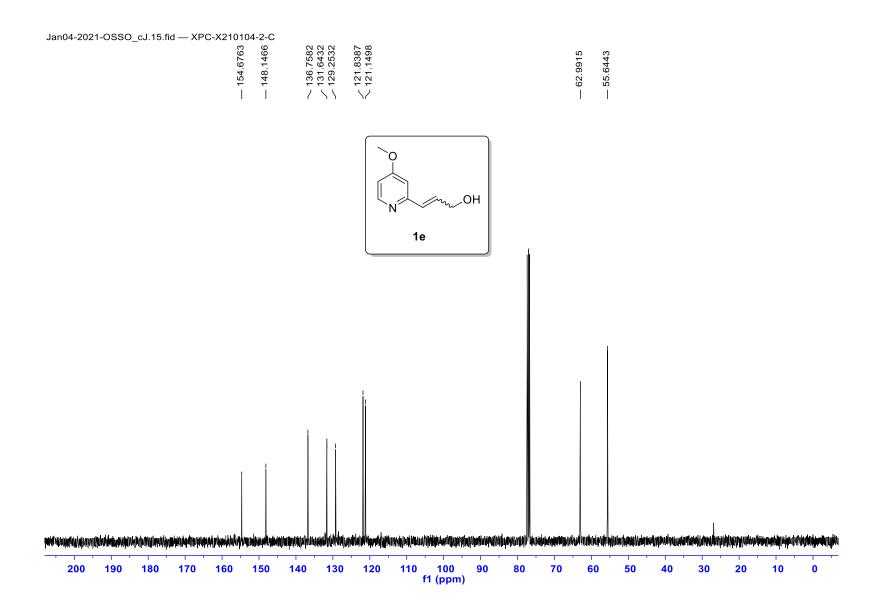


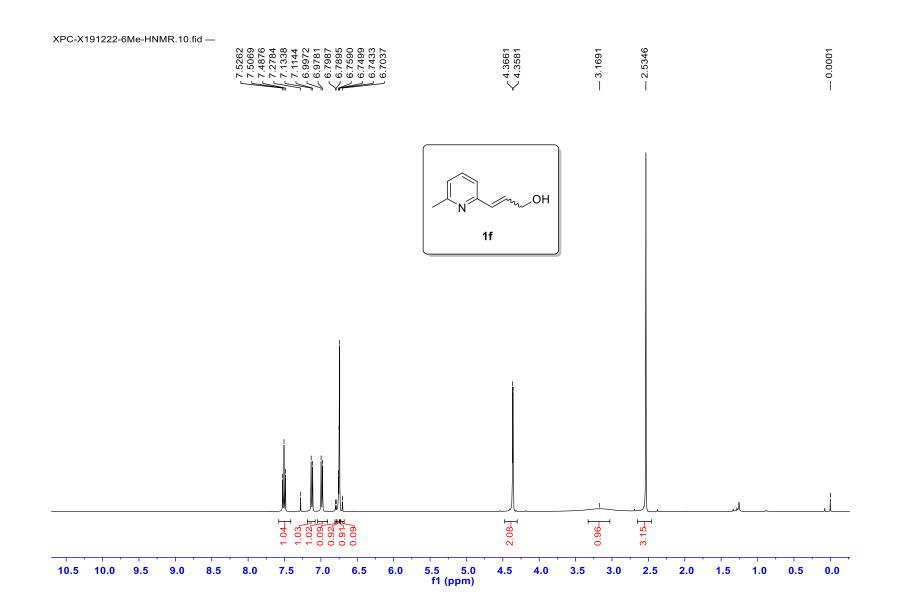


S28

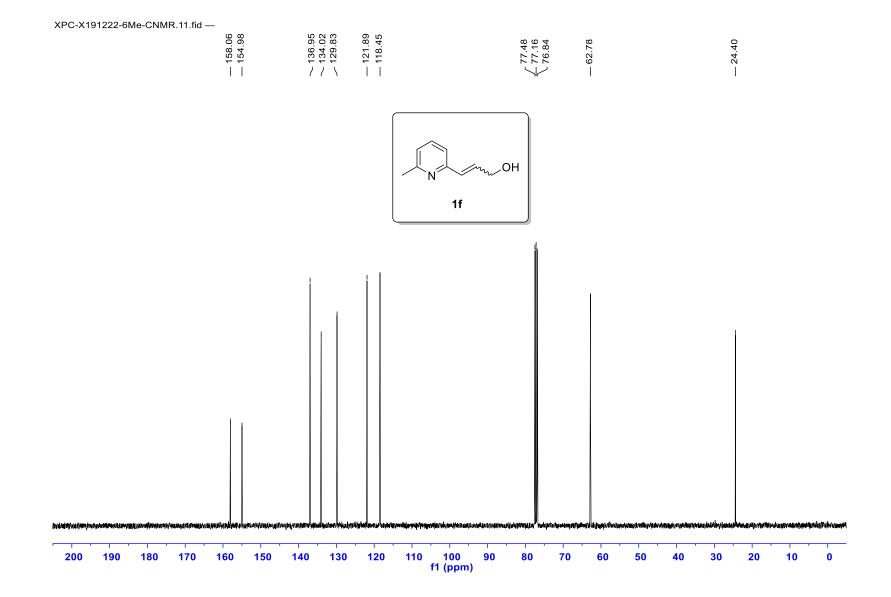


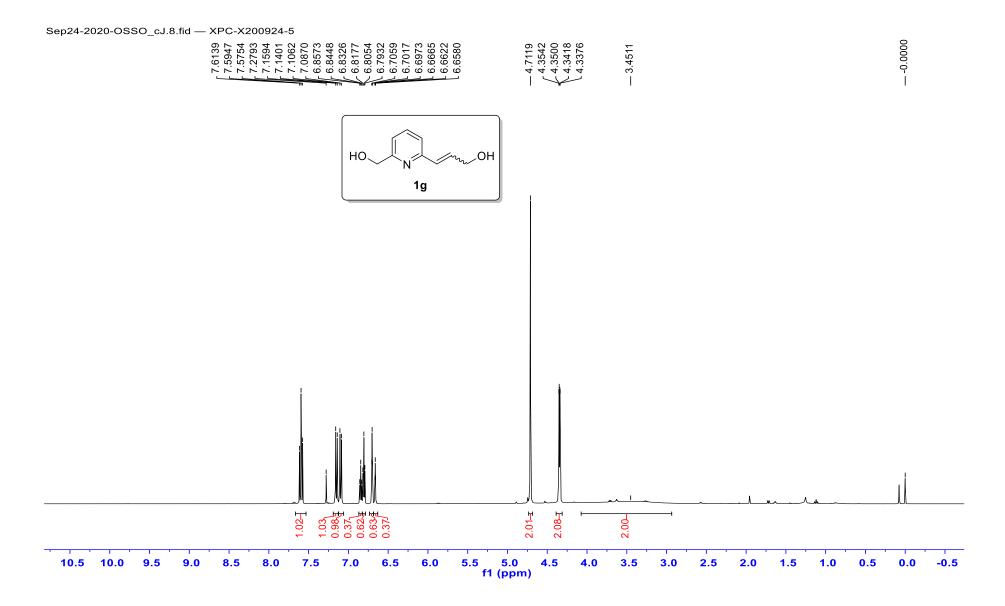
S30

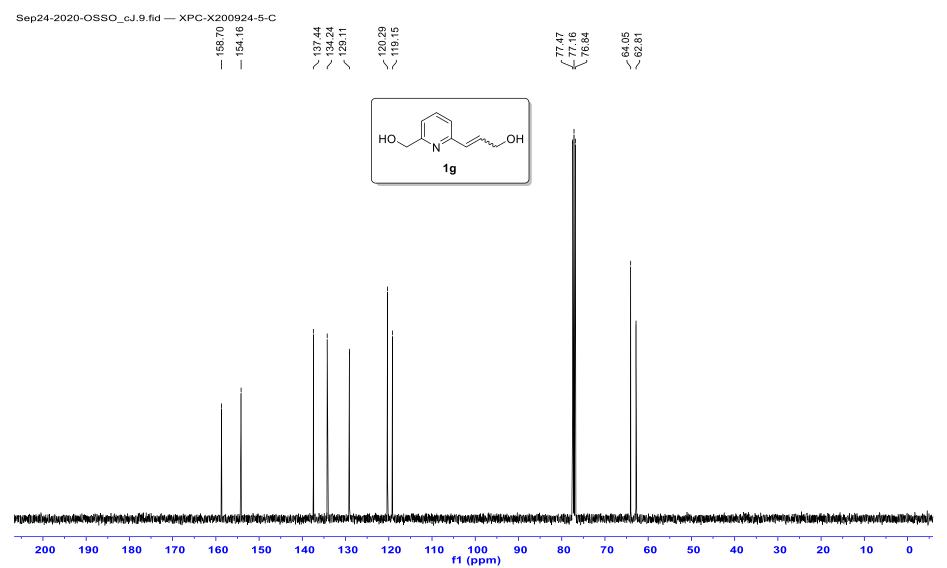


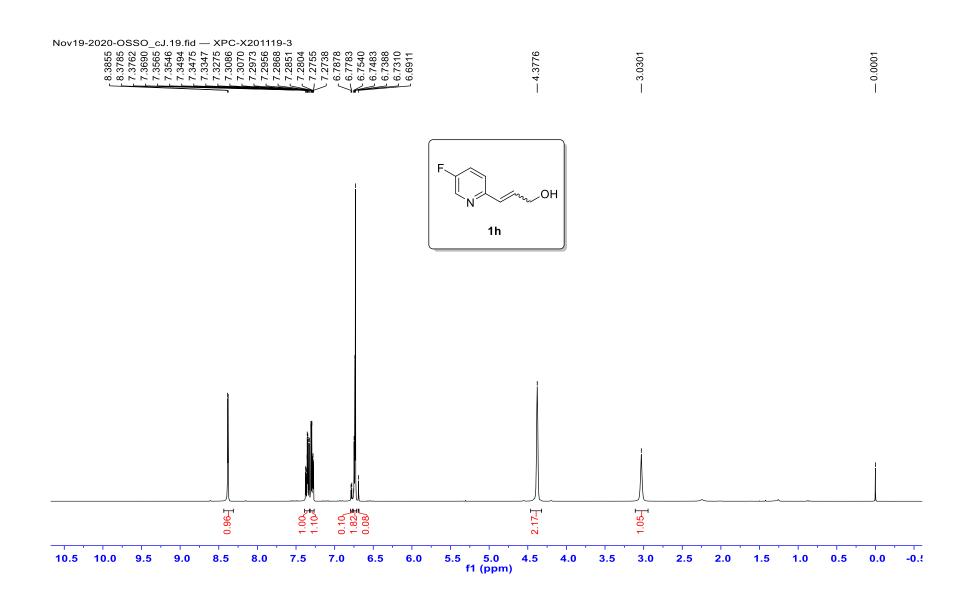

Jan26-2018-OSSO_cJ.38.fid — XPC-X180126-8-CNMR

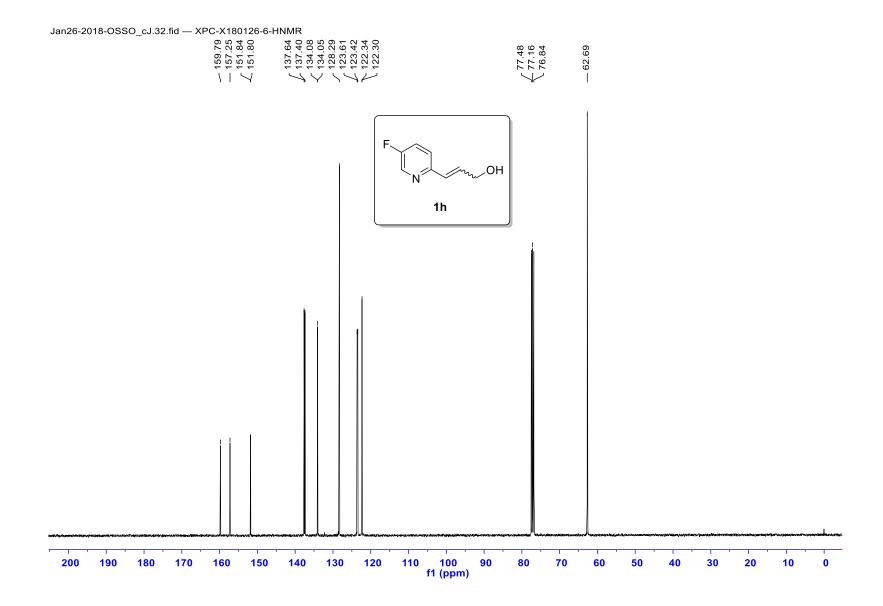
S31

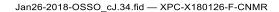


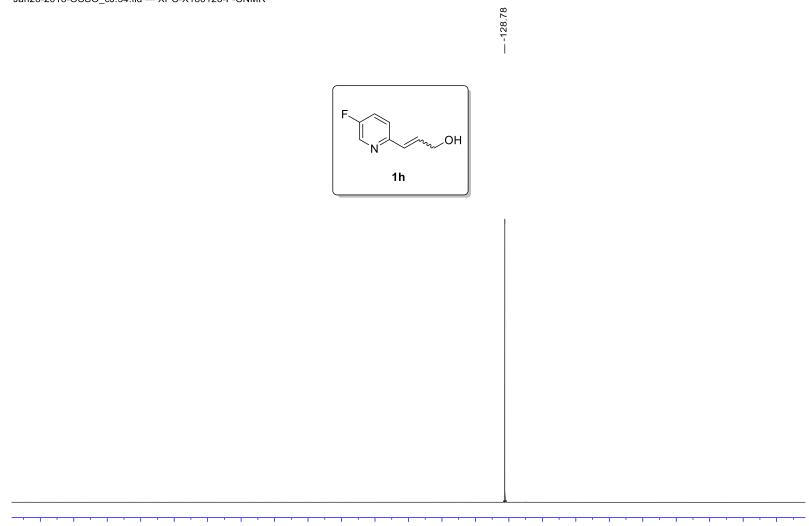

S32

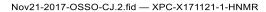


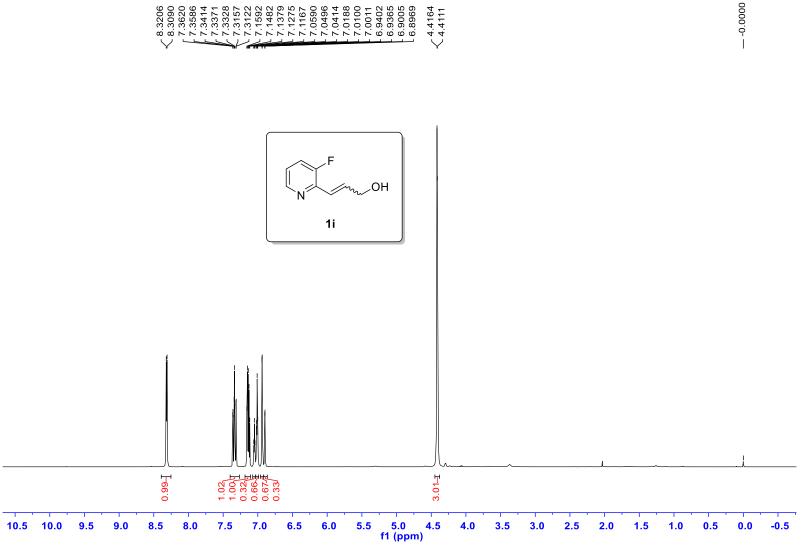

S34

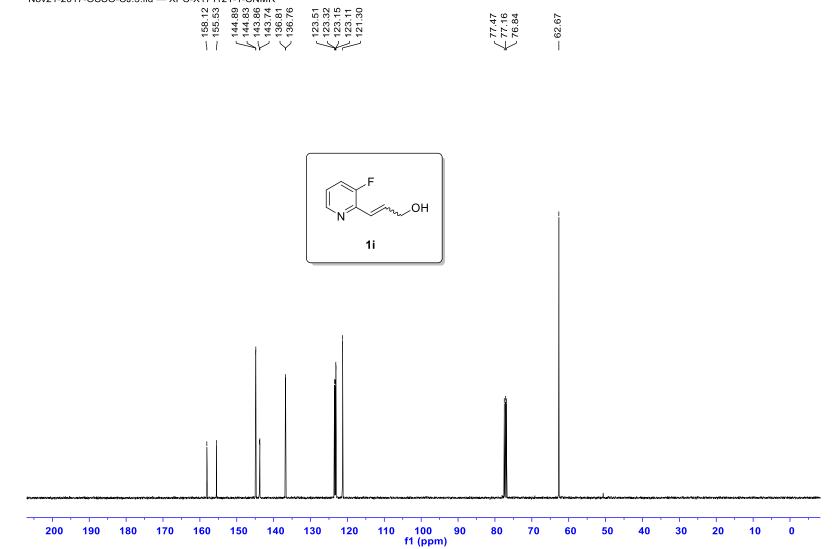




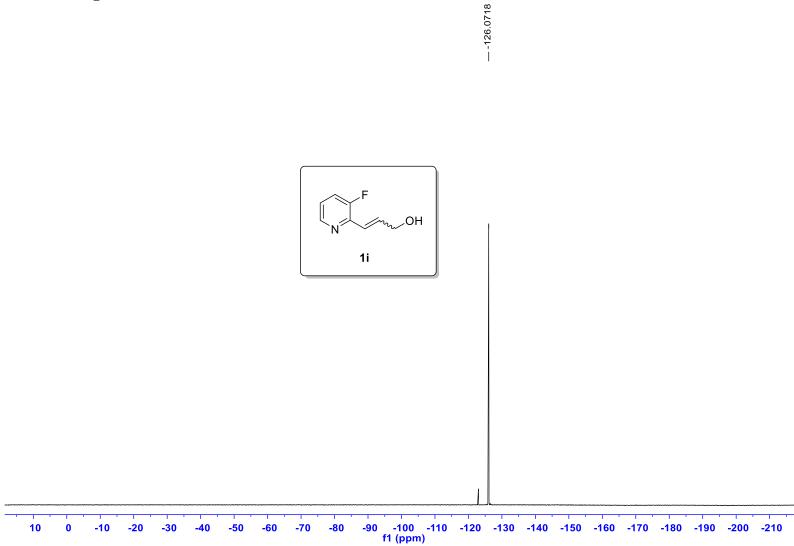


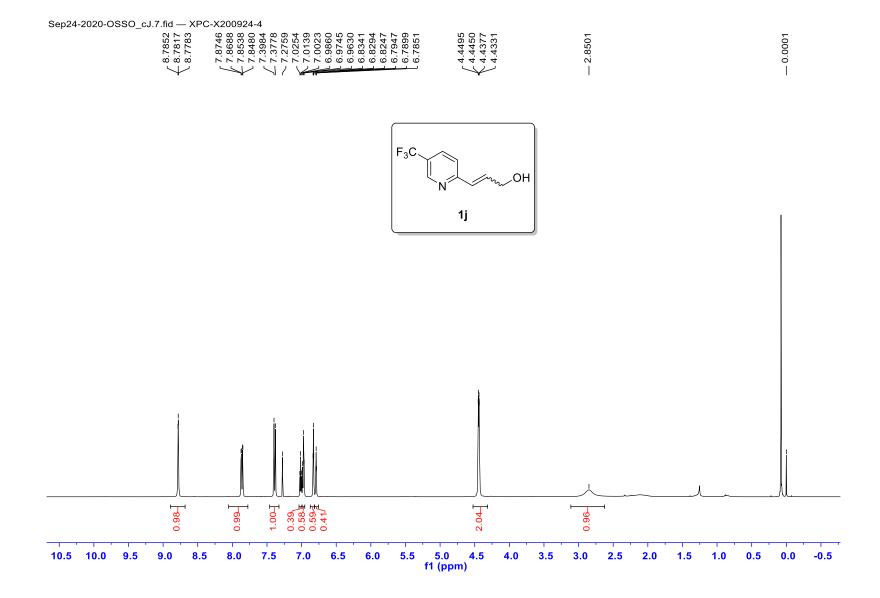


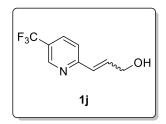


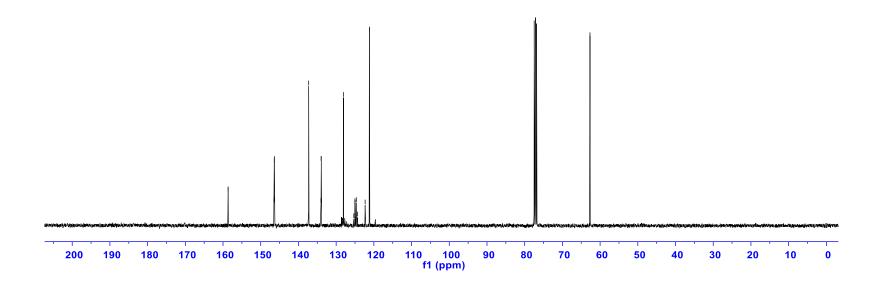


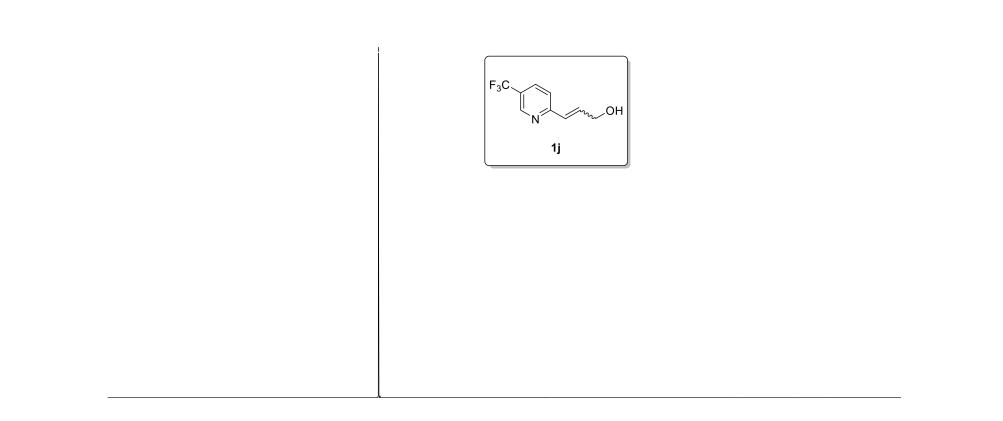
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)




Nov21-2017-OSSO-CJ.3.fid — XPC-X171121-1-CNMR

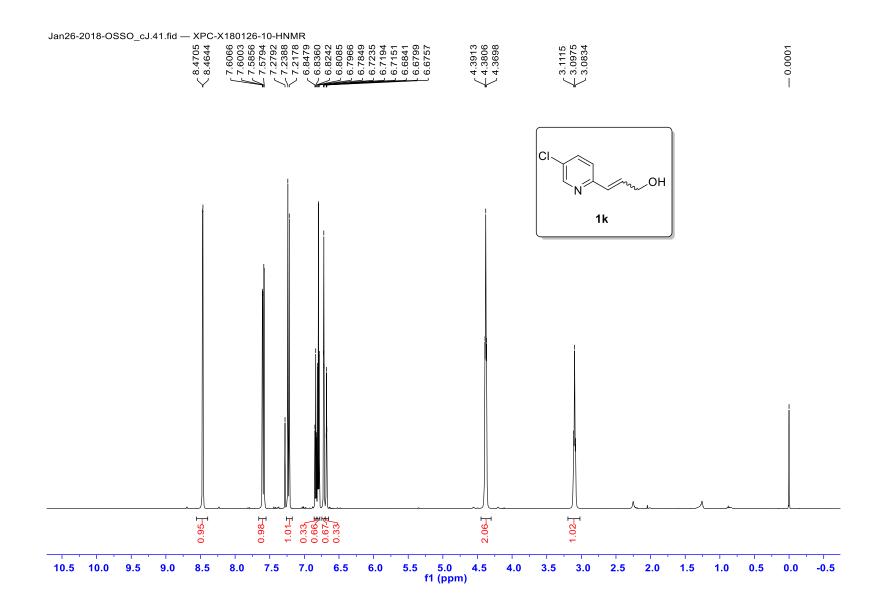


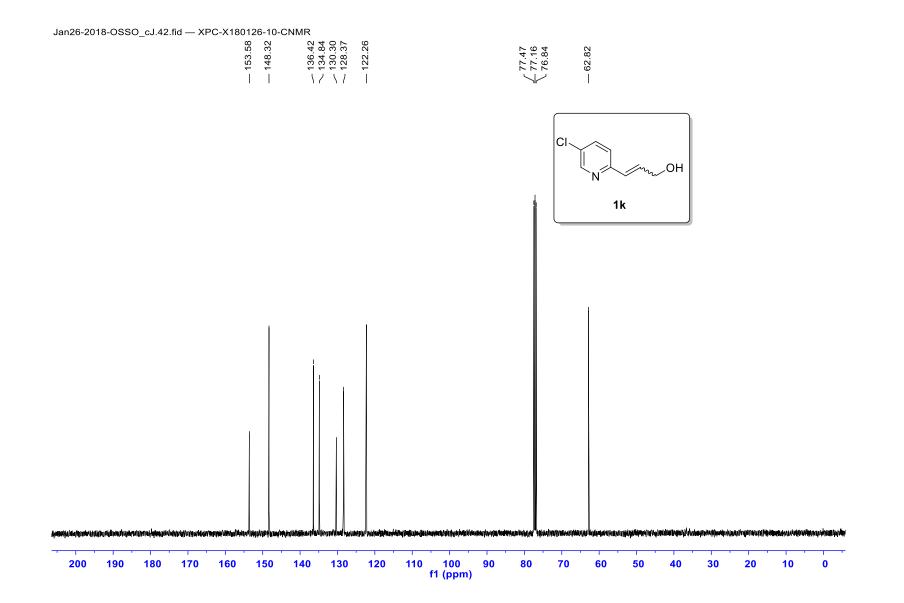

S44

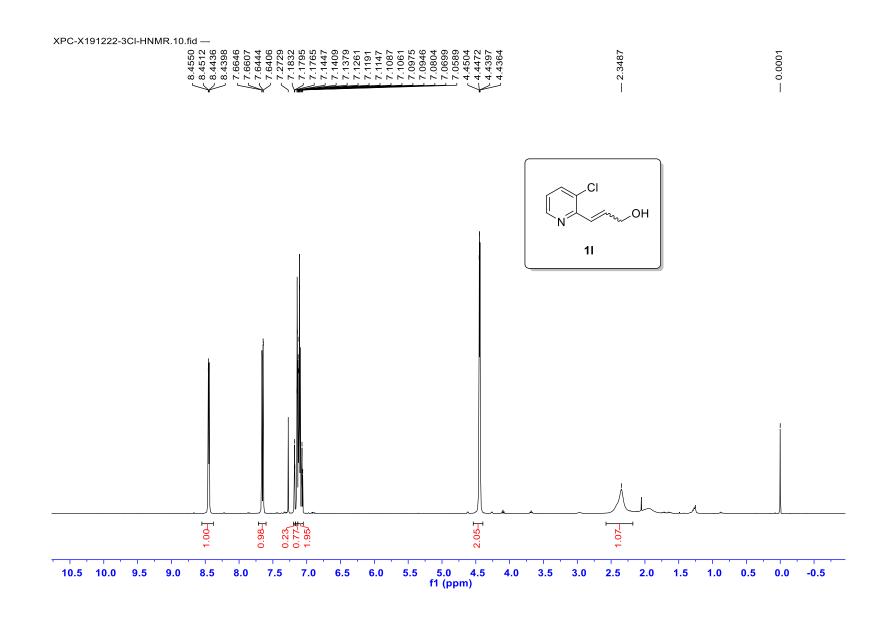

XPC-X191230-S-CF3-CNMR.11.fid ---

υc	> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
99	4400000000000000000
αci	000014000004401
22	444400000000000000
くノ	
Ŷ	

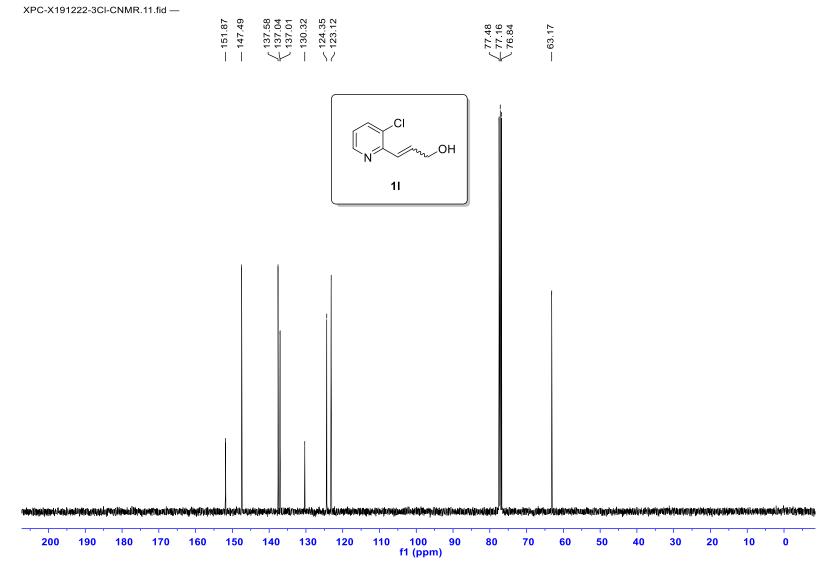
— 62.69

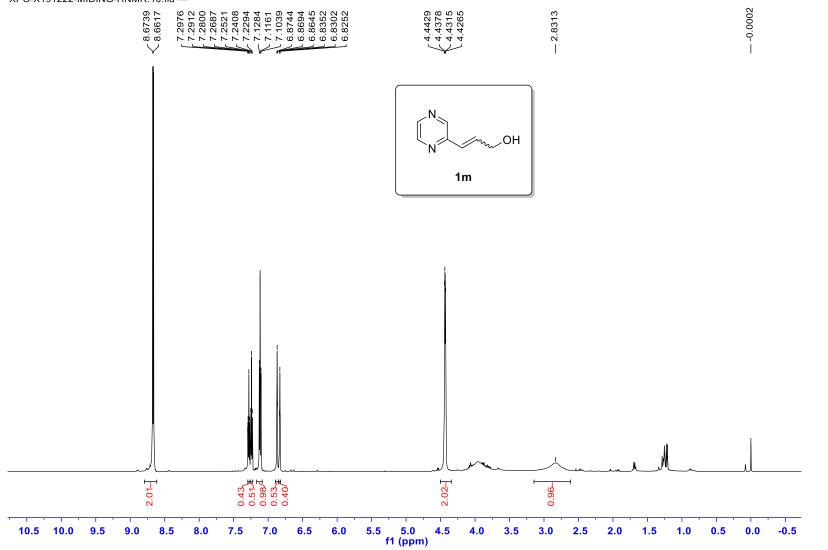


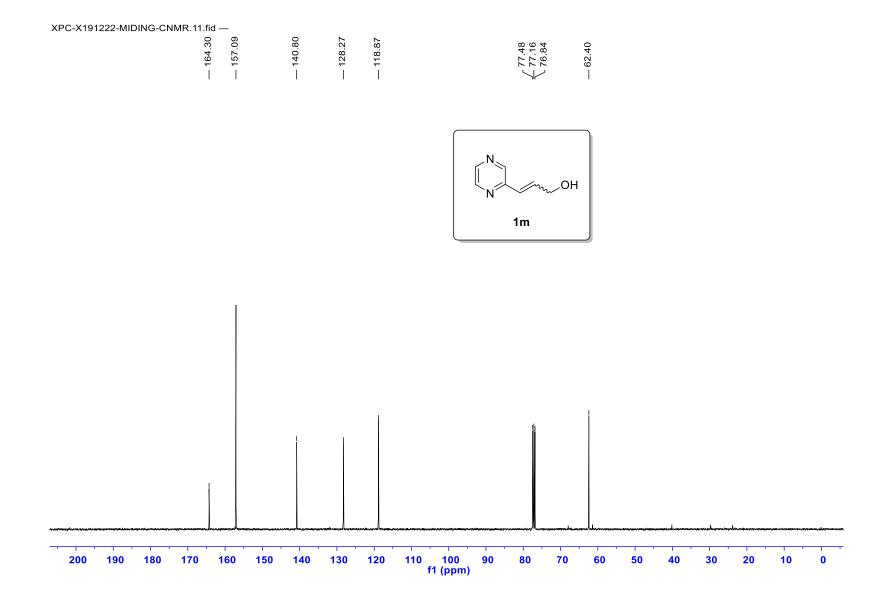


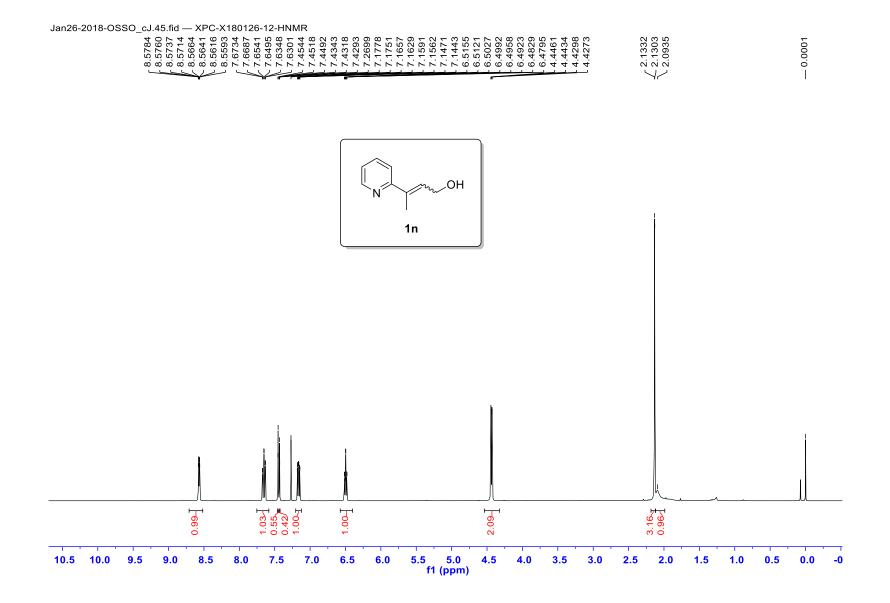


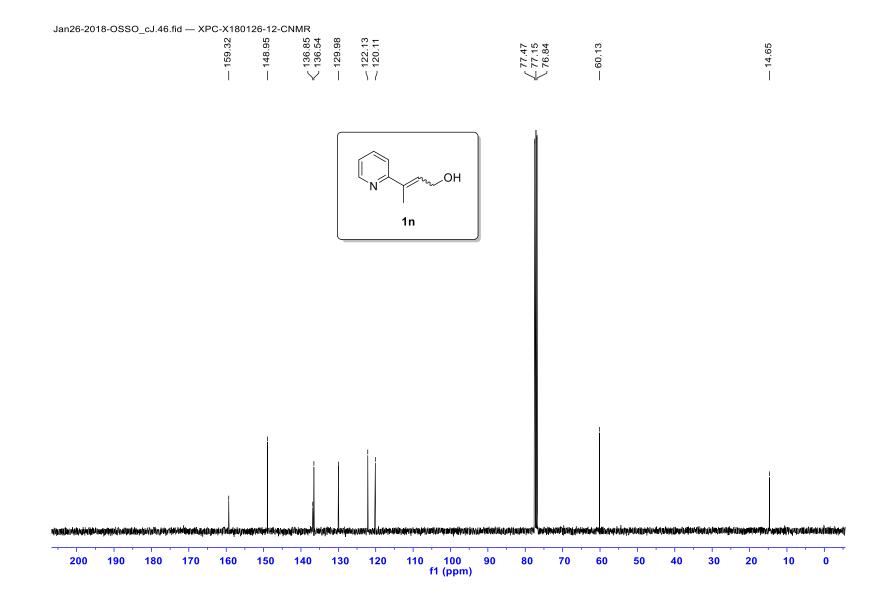
-- -62.32

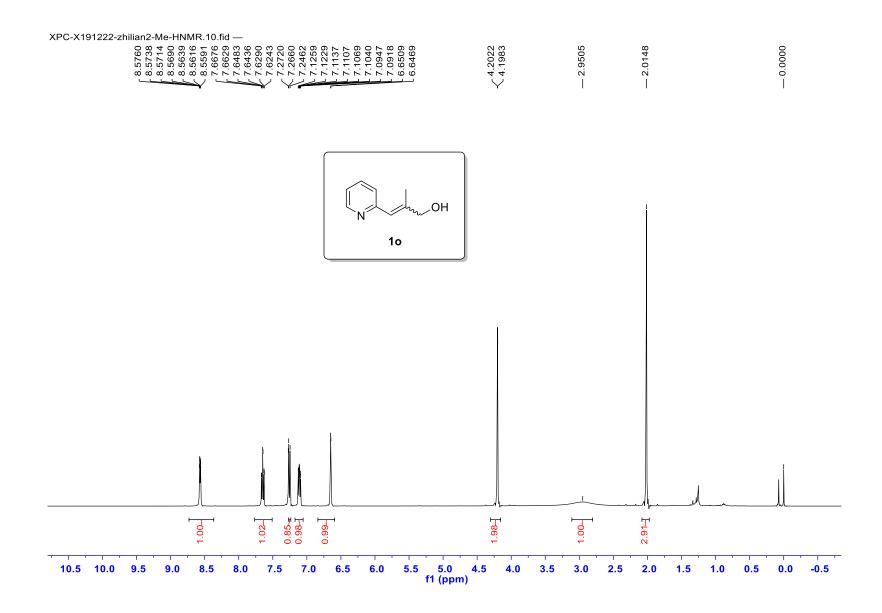

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

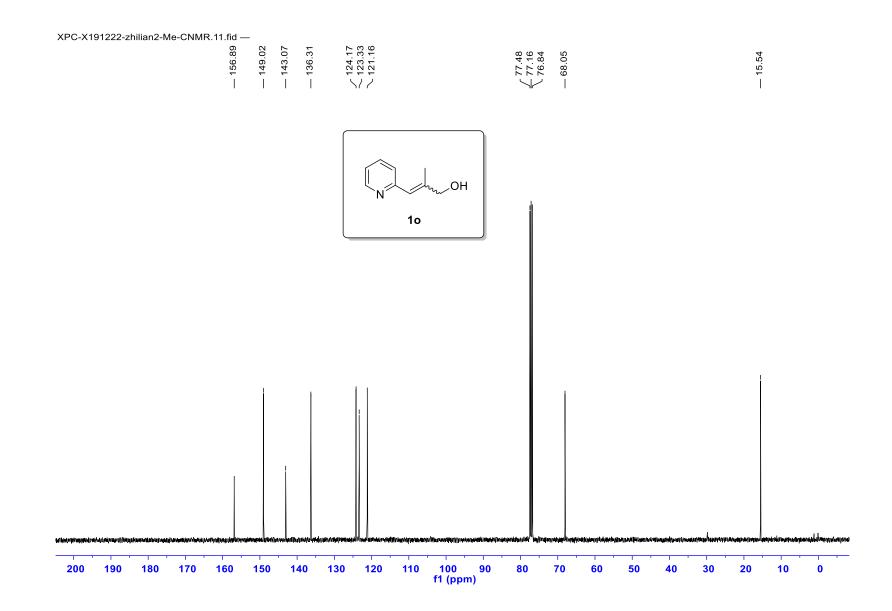


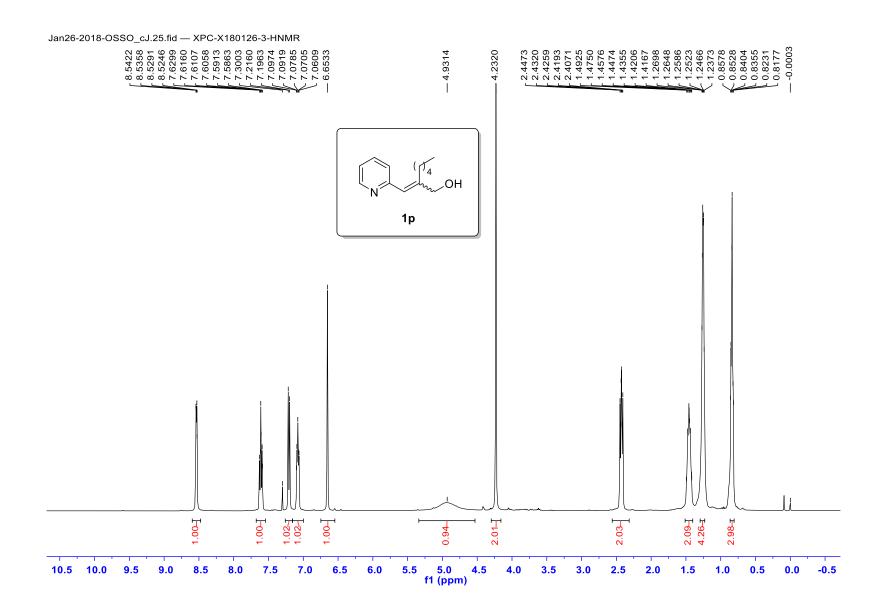


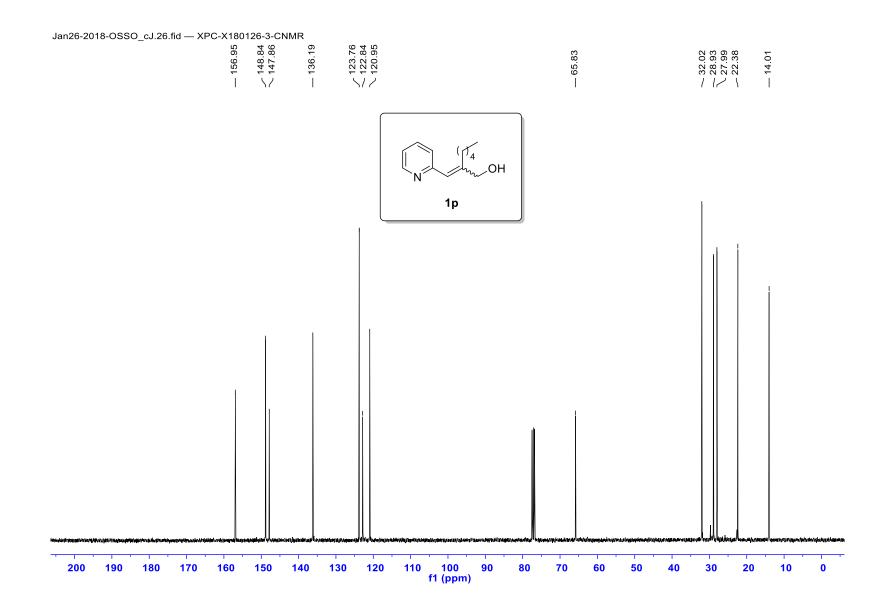

S49

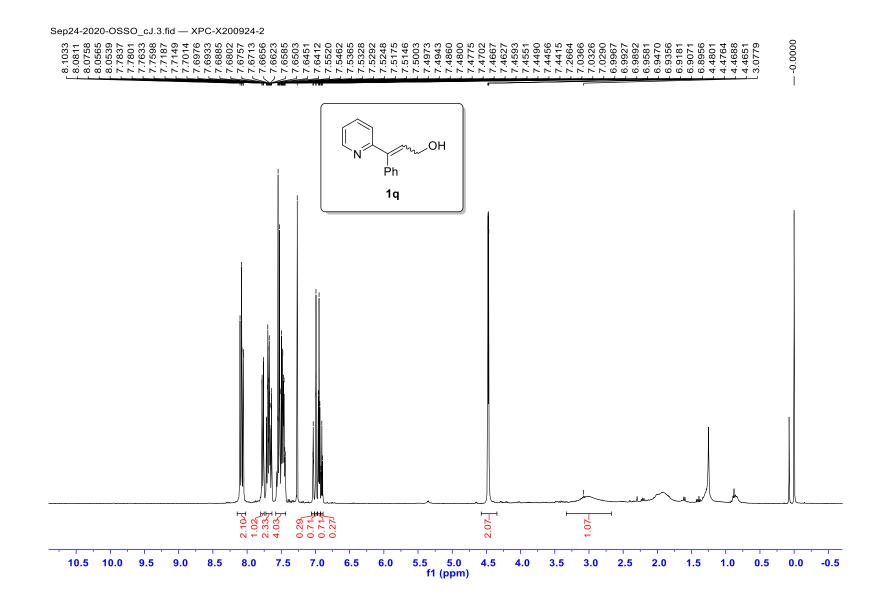


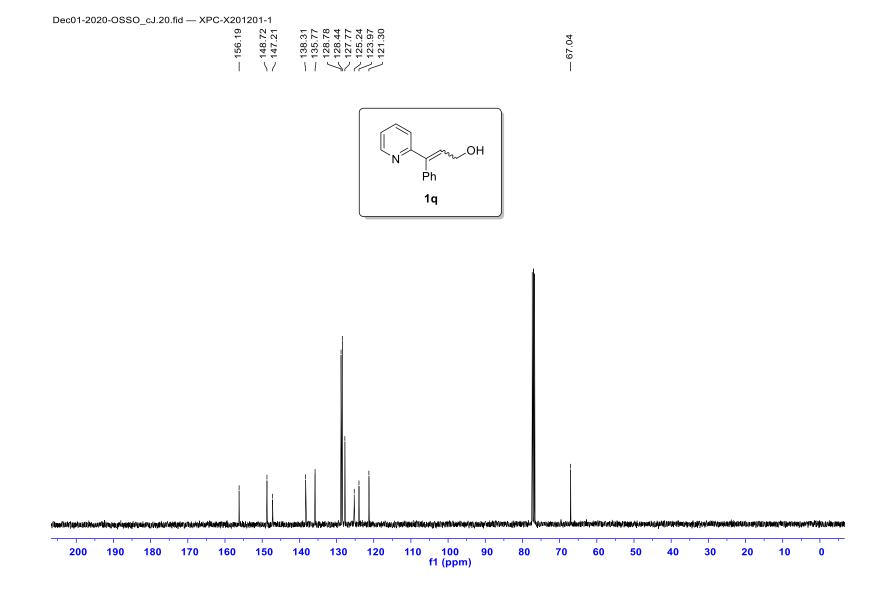


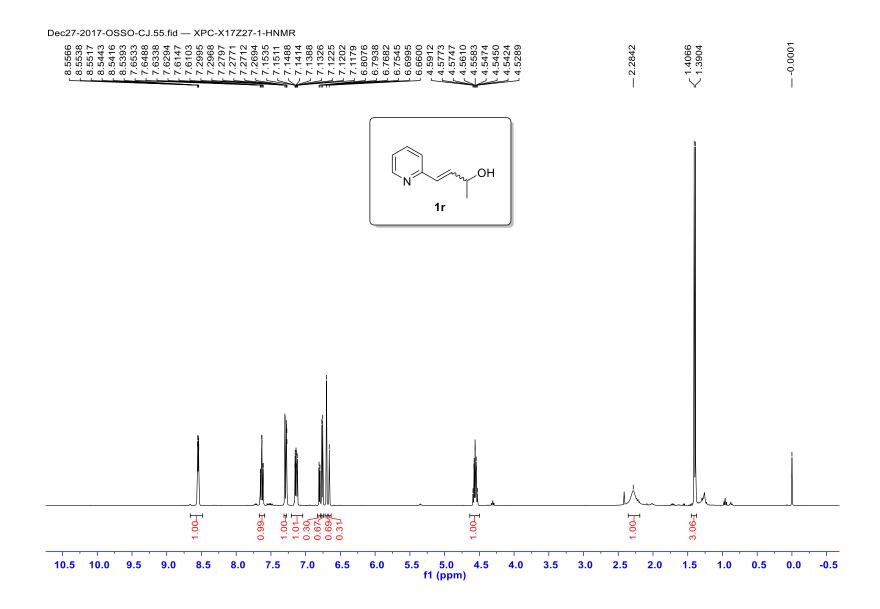


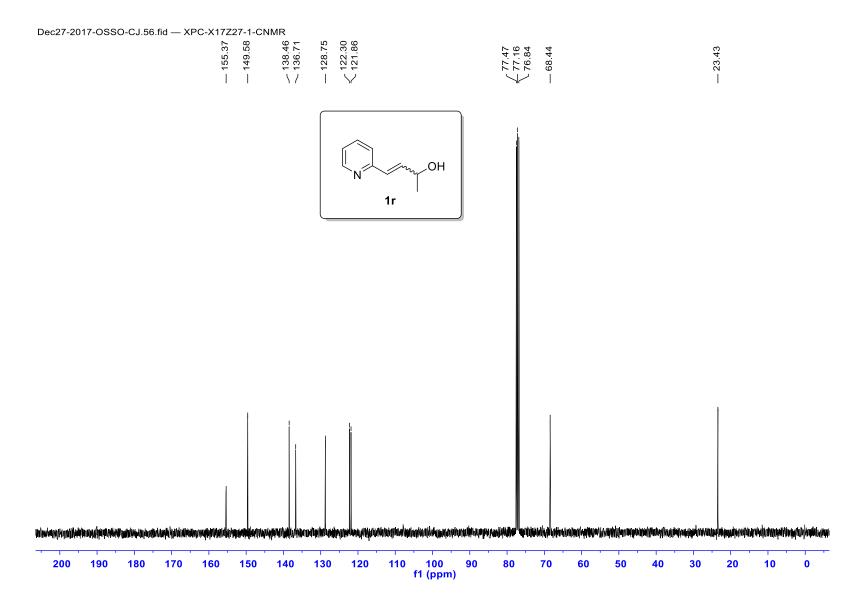


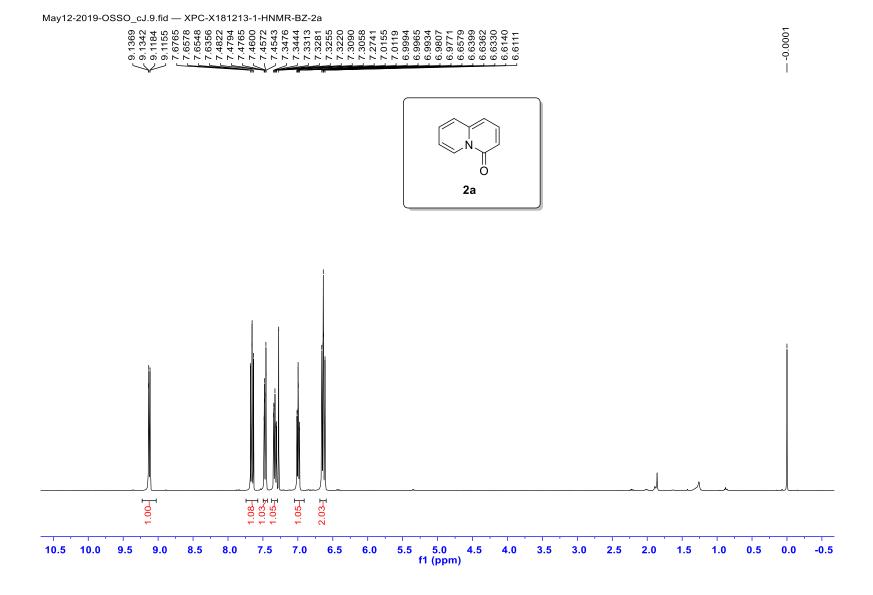




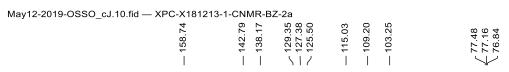


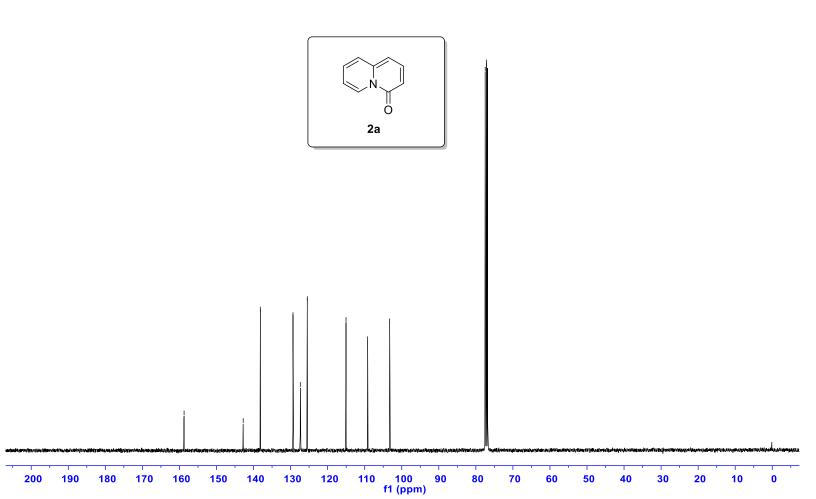


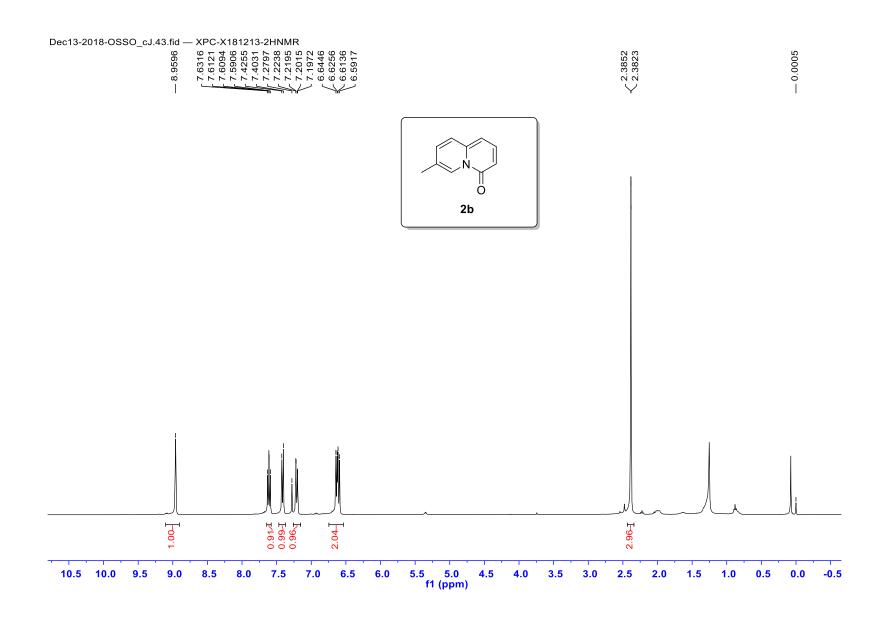


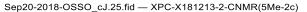


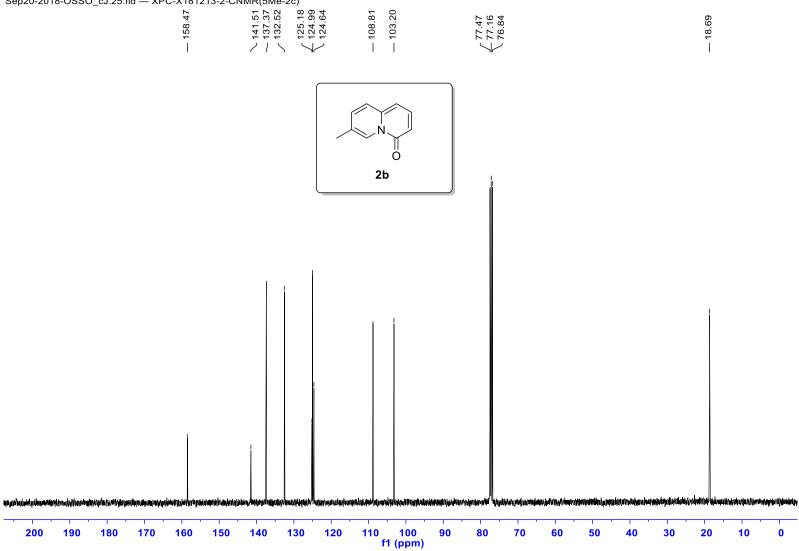
S61

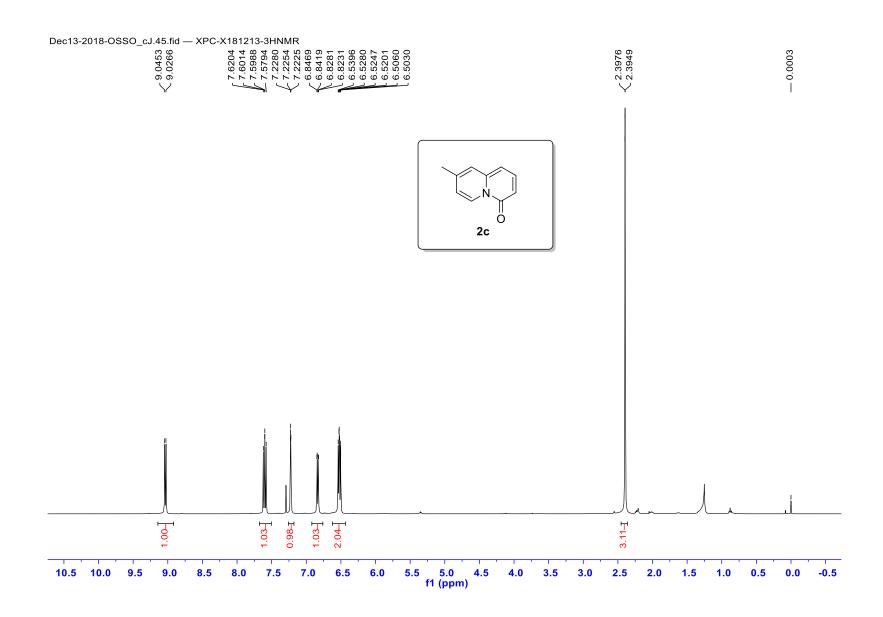


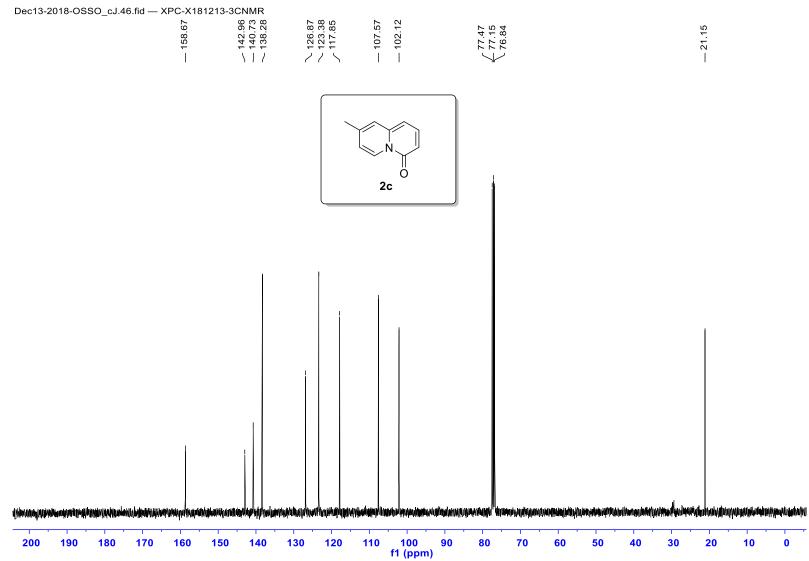


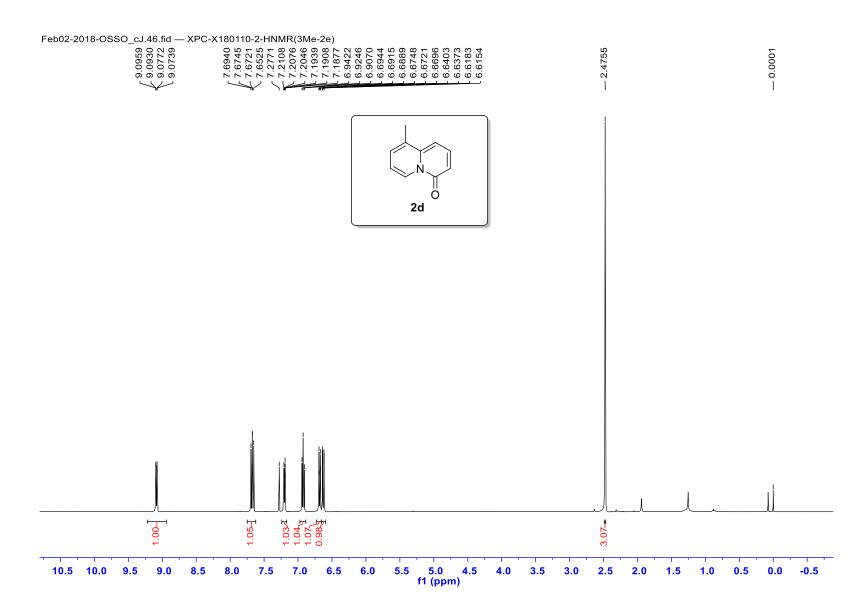


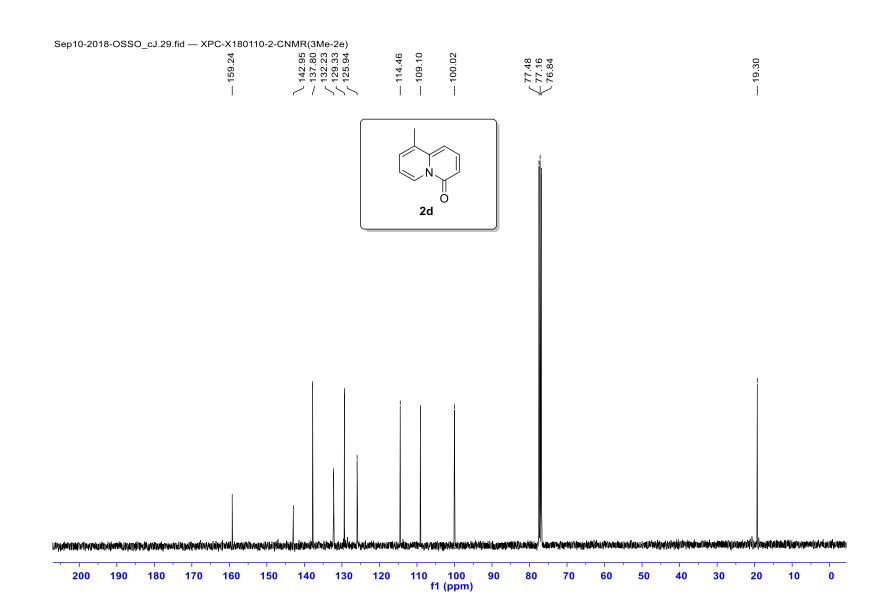

S63

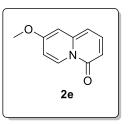


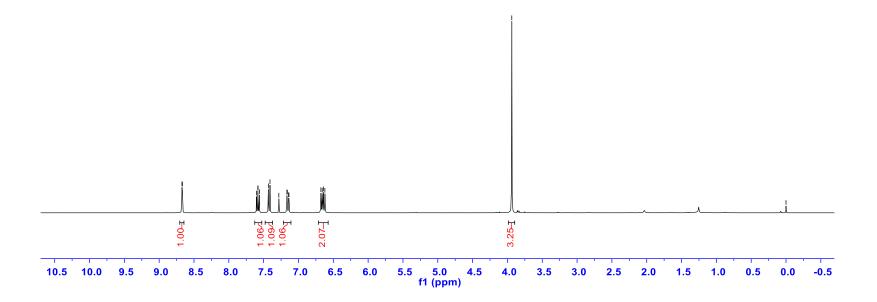


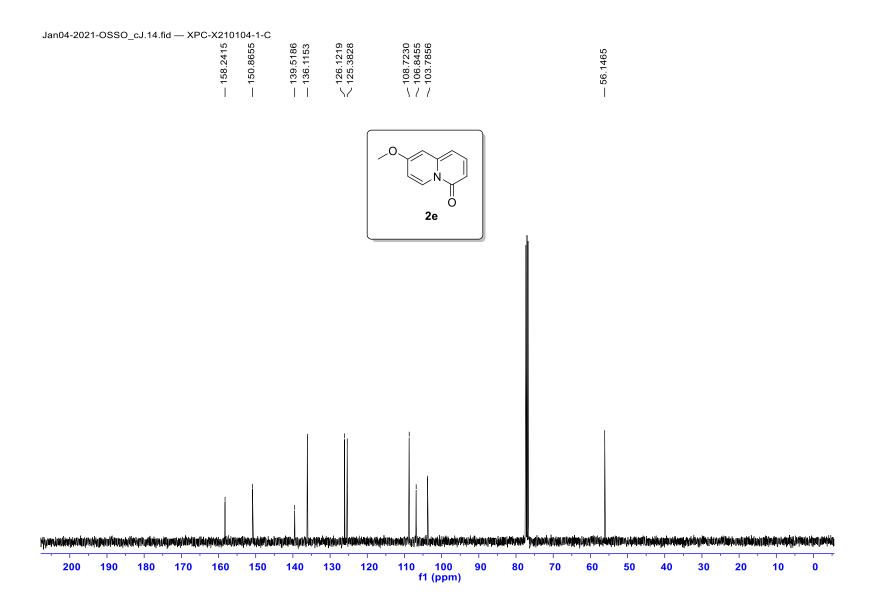


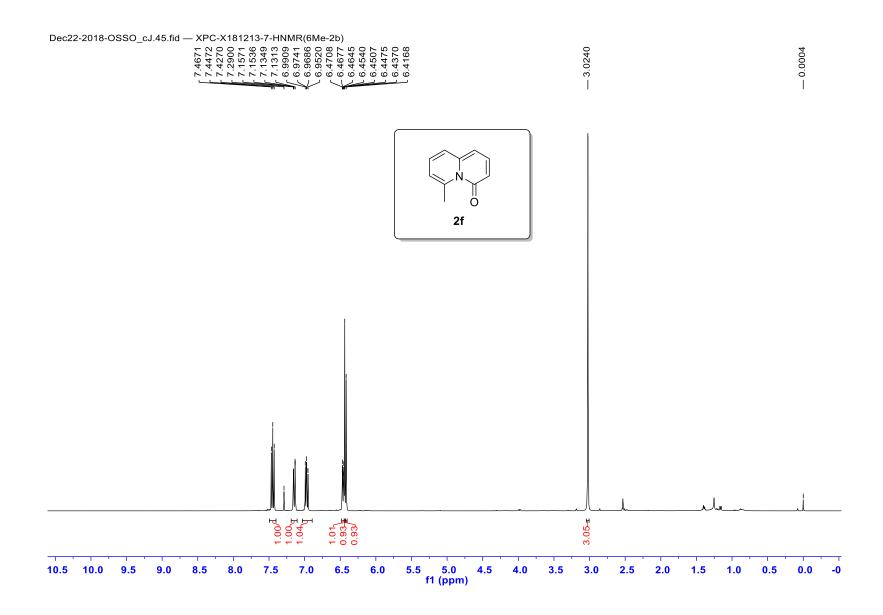


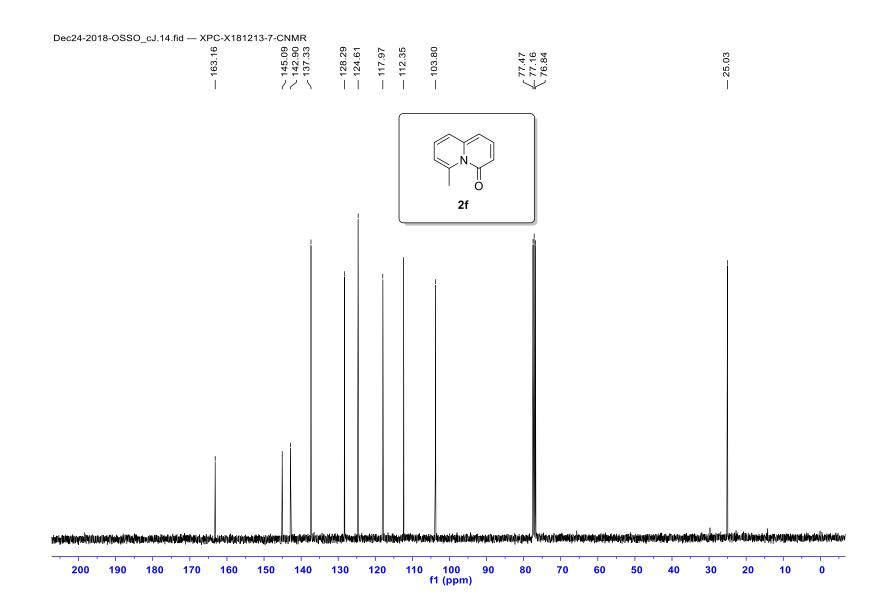


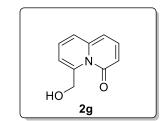


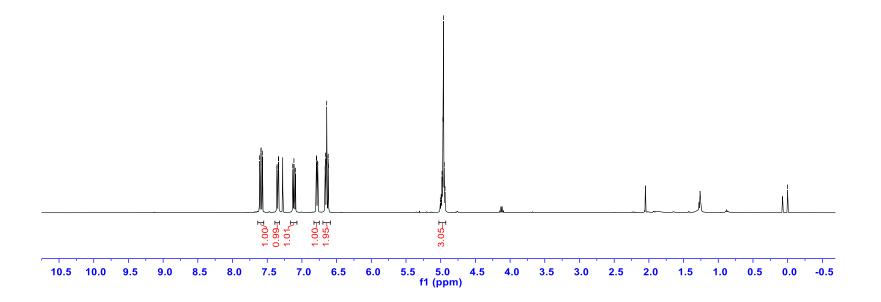


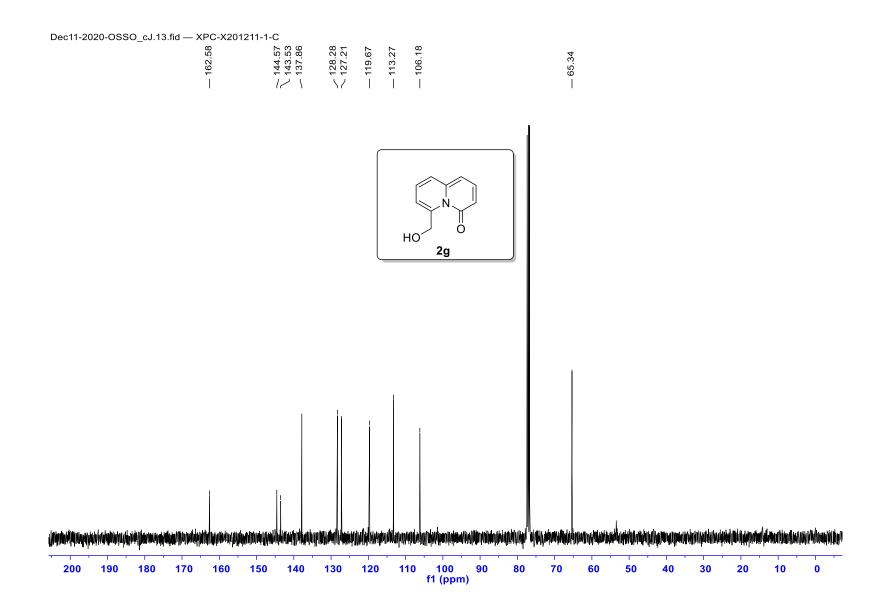


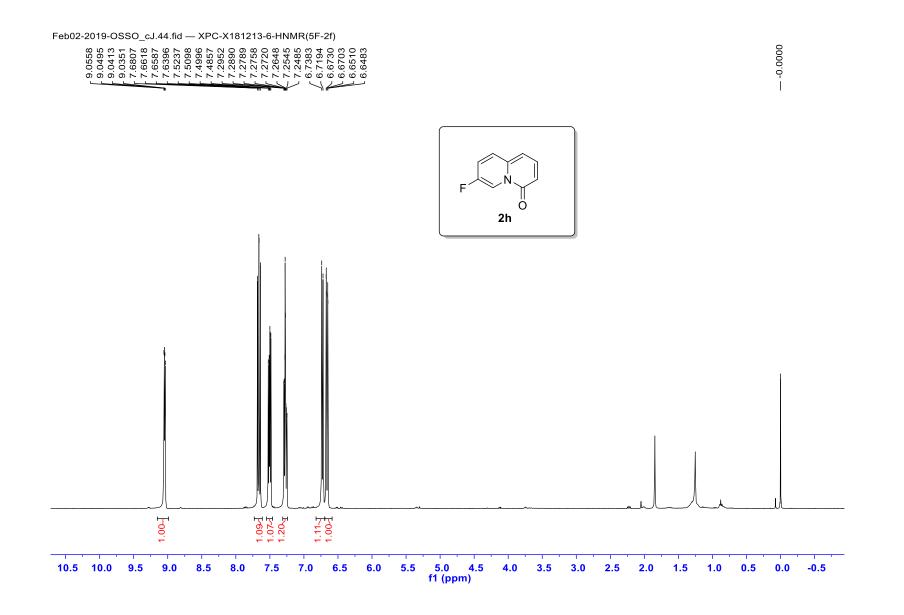


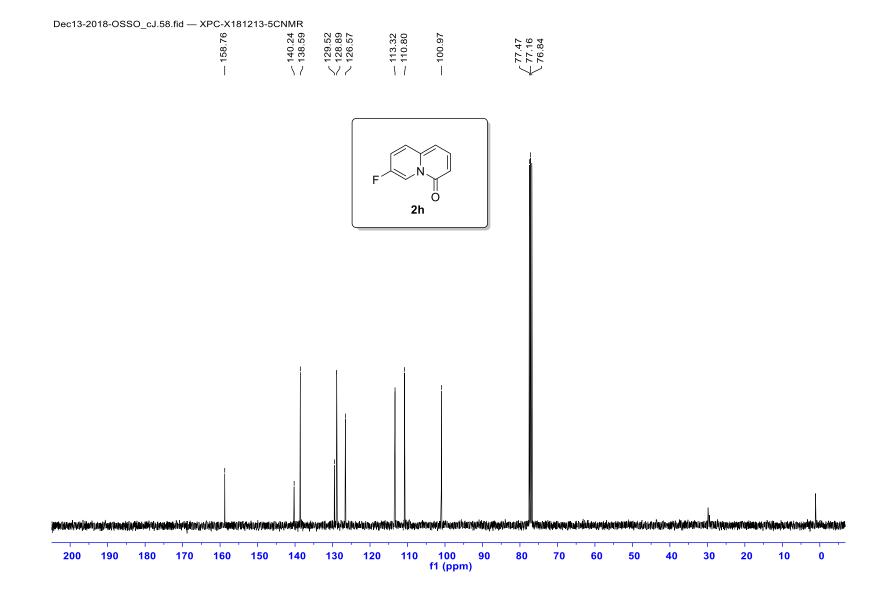

Jan04-2021-OSSO_cJ.6.fid — XPC-X210104-1 8.6731 8.6672 8.6672 7.5808 7.5808 7.5808 7.5808 7.4090 7.14090 7.1405 7.1405 7.1405 7.1405 7.1405 7.1405 7.1405 6.6578 6.6578 6.6572 6.6207

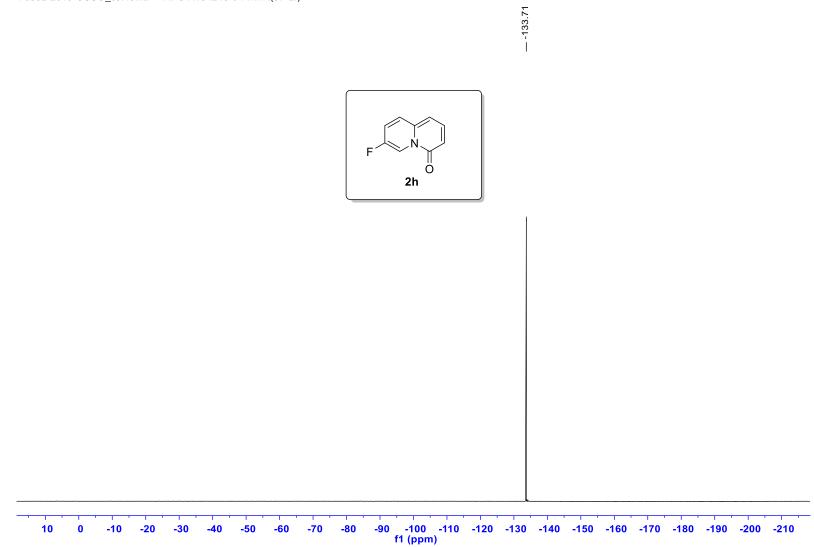


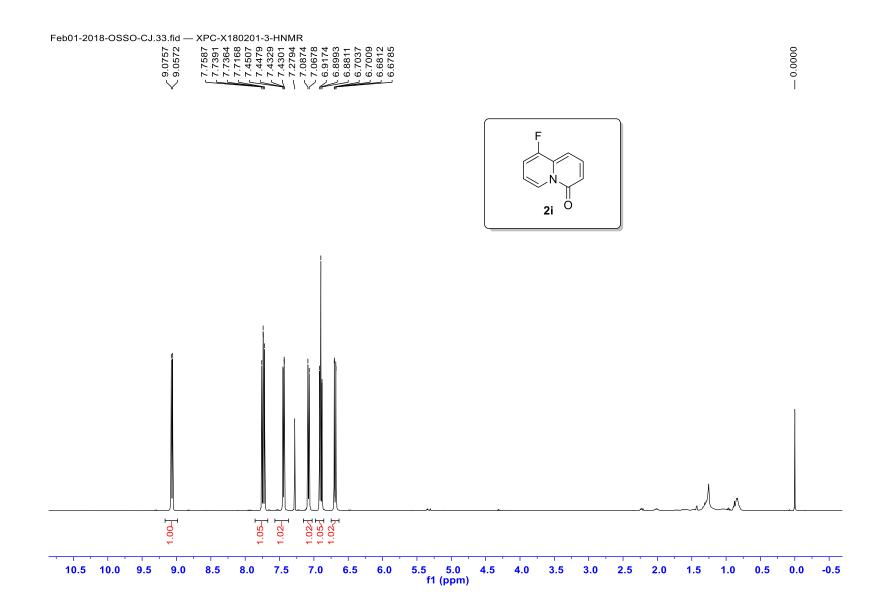



Dec10-2020-OSSO_cJ.50.fid — XPC-X201210-1

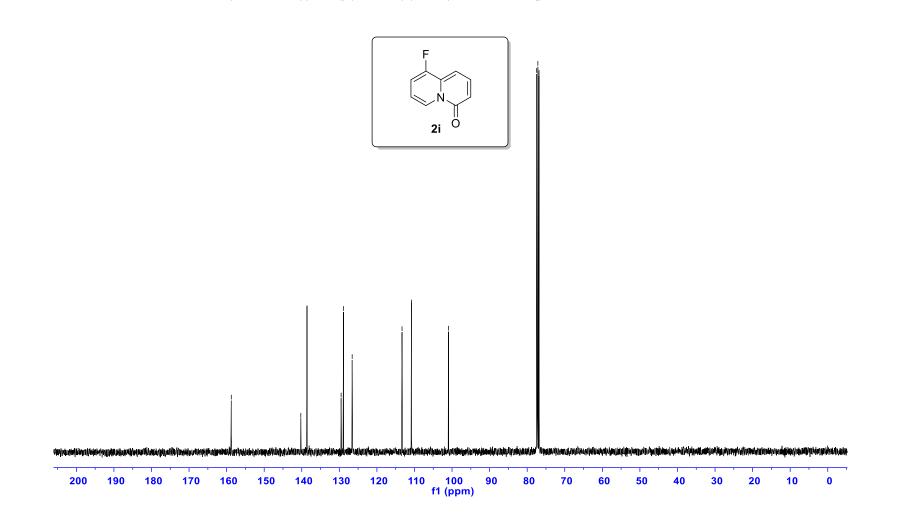


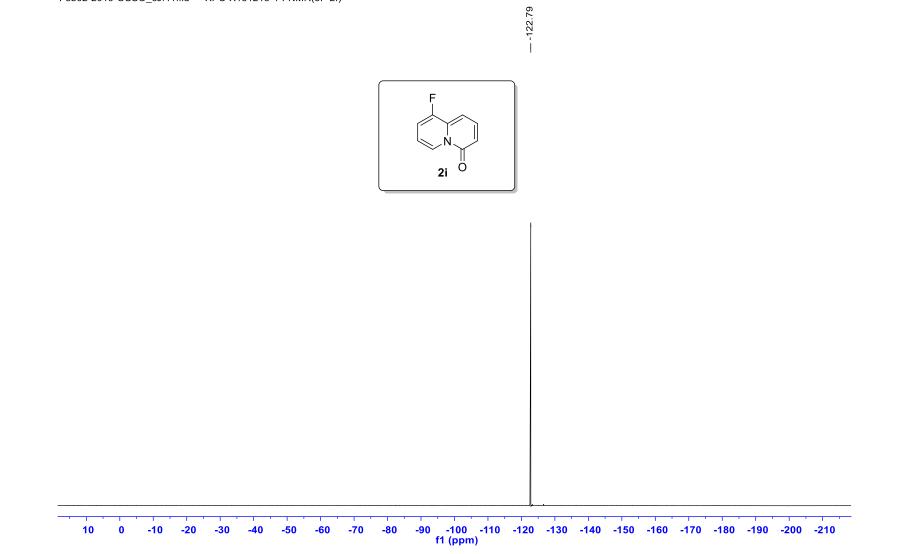


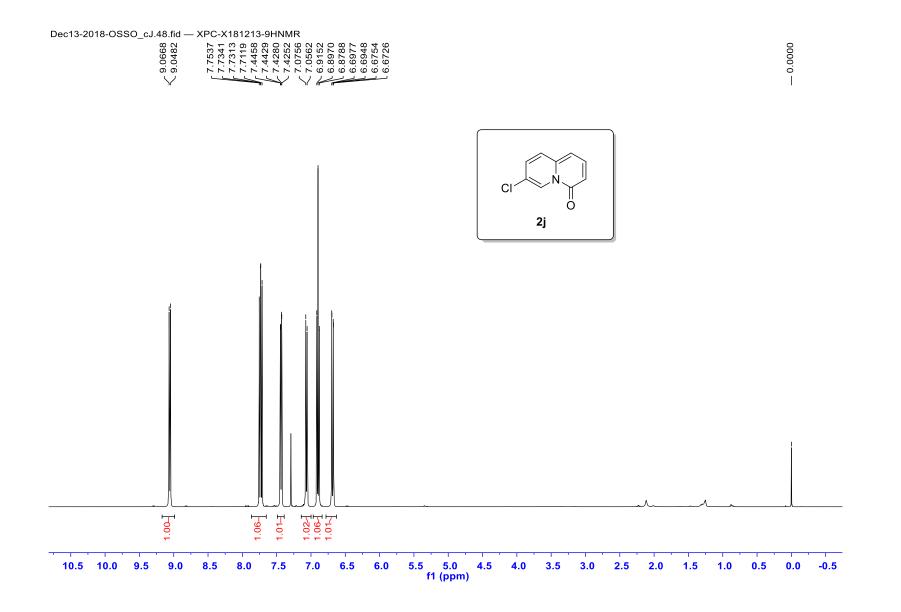

----0.0000



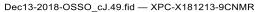
Feb02-2019-OSSO_cJ.45.fid — XPC-X181213-6-FNMR(5F-2f)



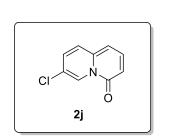


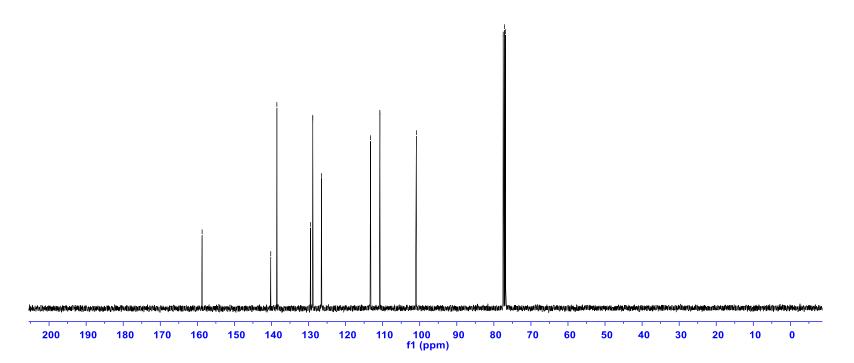


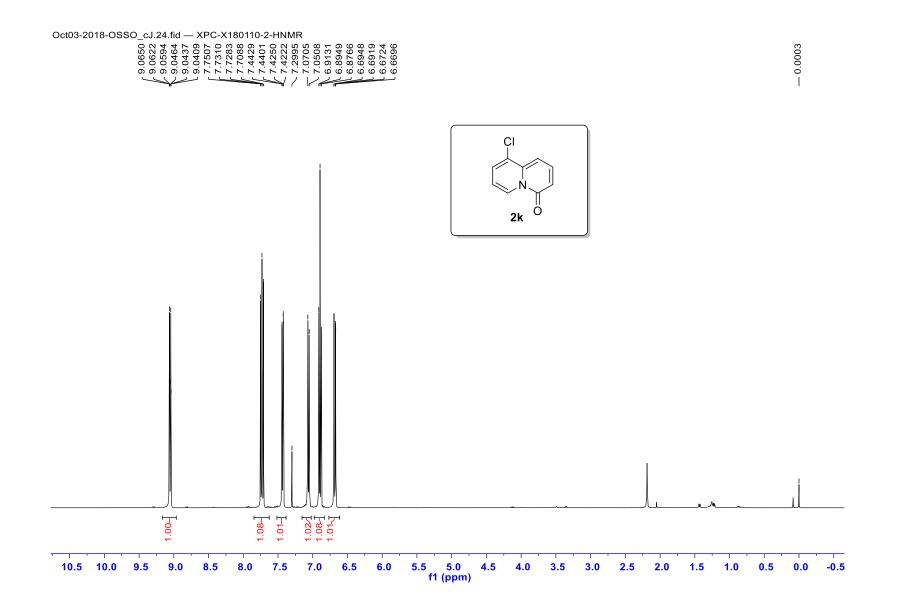
158.77	140.25 138.60	129.53 128.89 126.59	113.31 110.82	100.96	77.48 77.16 76.84
	57	\leq / /	11	1	\searrow

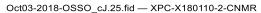


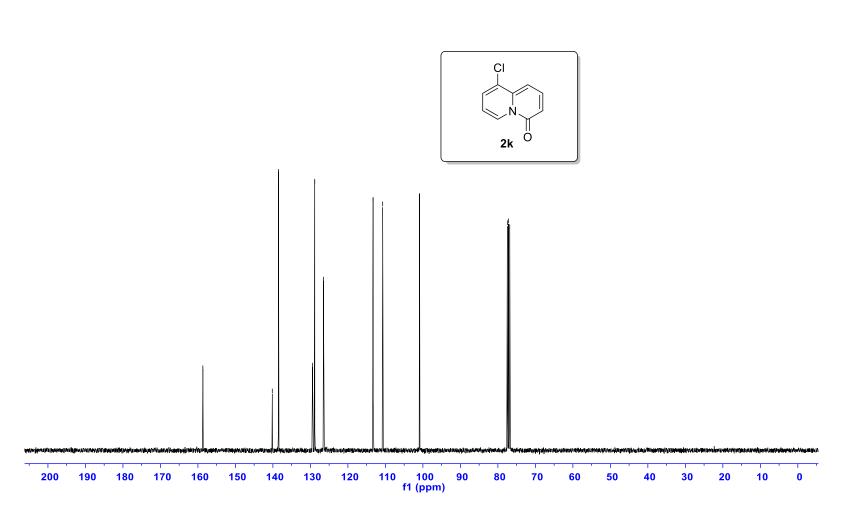
Feb02-2019-OSSO_cJ.41.fid — XPC-X181213-4-FNMR(5F-2f)

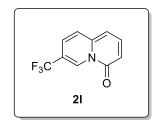


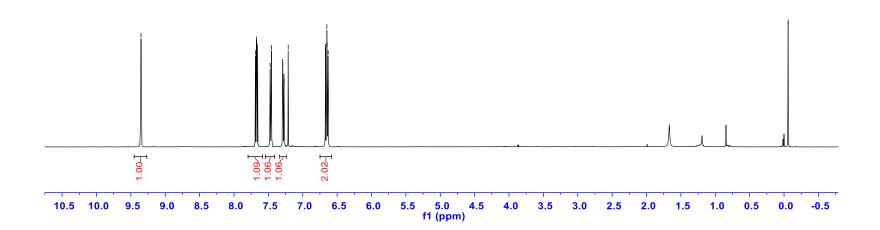

S83

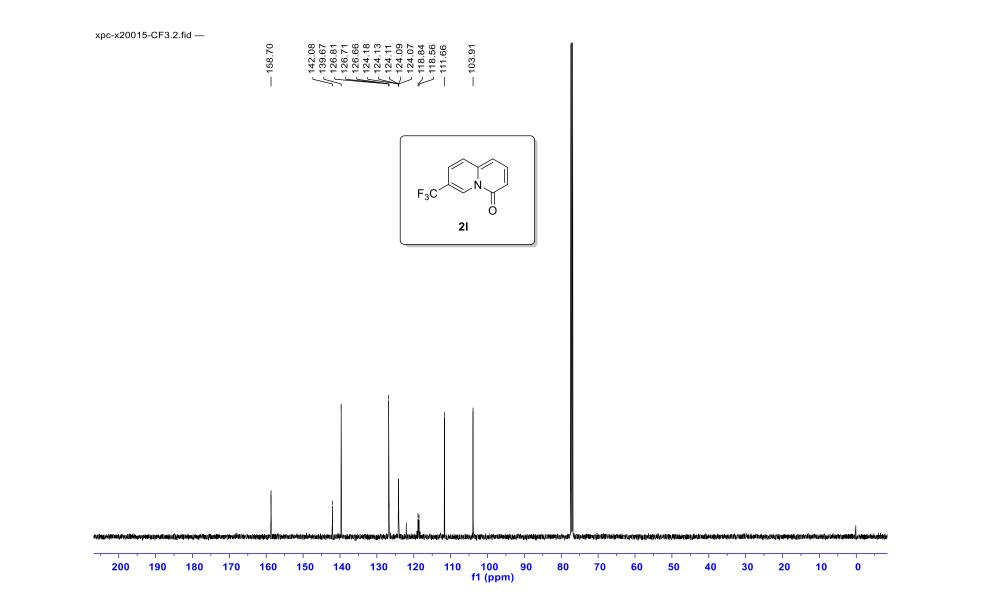



158.70	140.19 138.55	129.47 128.86 126.52	113.28 110.75	100.91	
	57	577	1 1		

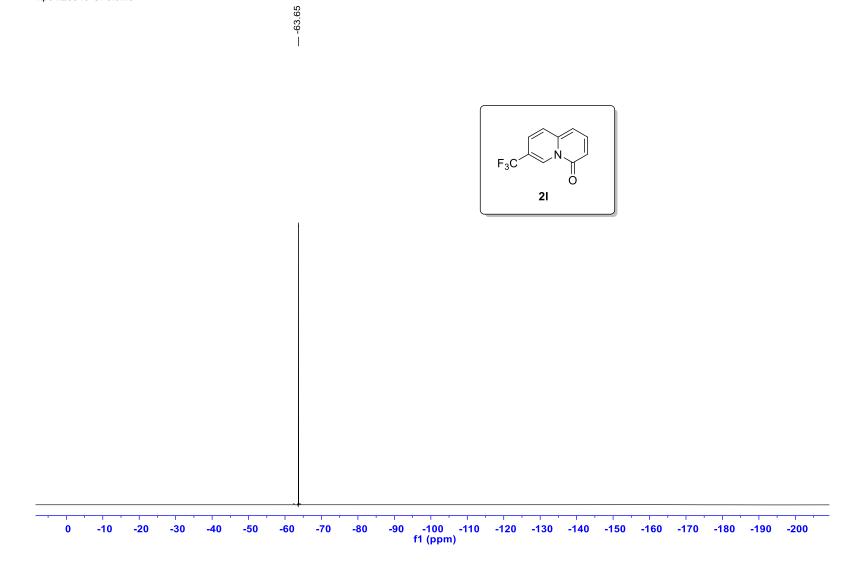

<u>√</u> 77.48 √ 77.16 76.84

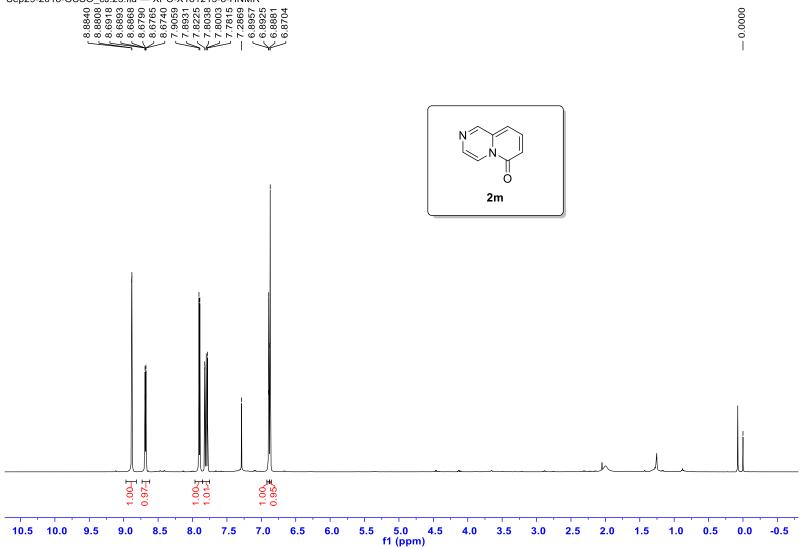


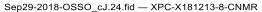

158.68	140.17 138.53	129.44 128.85 126.49	113.27 110.72	100.89	77.47 77.16 76.84
	17	$\langle \rangle \rangle$	1 1		\checkmark



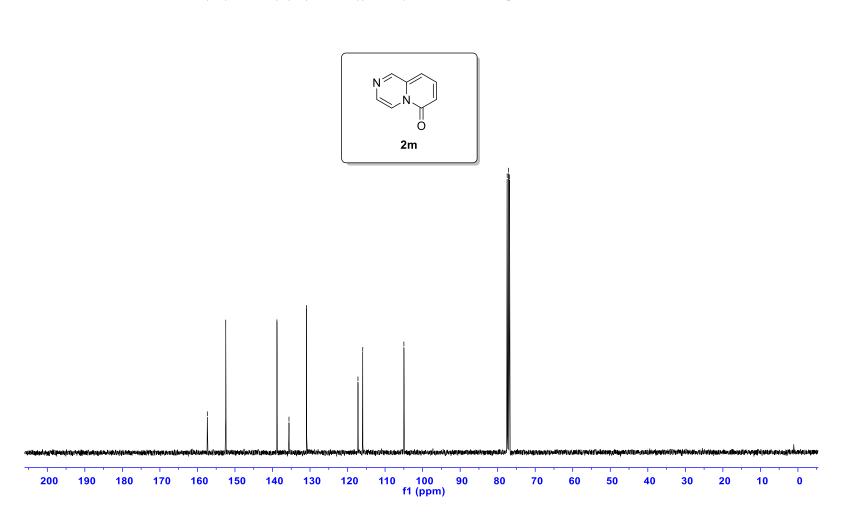
xpc-x20015-CF3.1.fid —

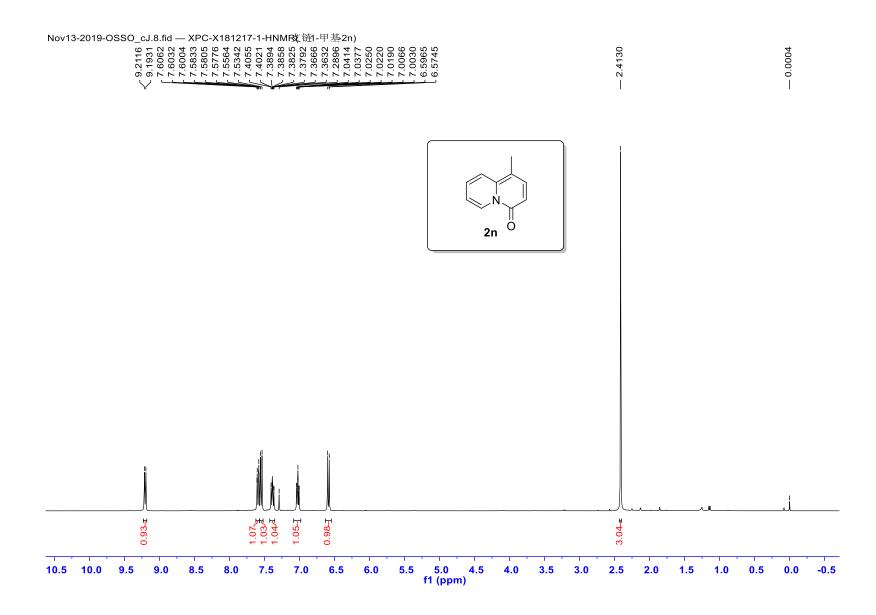

3559 3524 3492	6891 6741 6741 6741 6550 6576 22745 22745 22745 22745 6699 6699 6676 6679 6679 6679 66793 66756 66793 66756 66793 66756 66793 66756 6775676 777576 77757676 77757677777777
ດ່ດ່ວ່	~~~~~~
\checkmark	





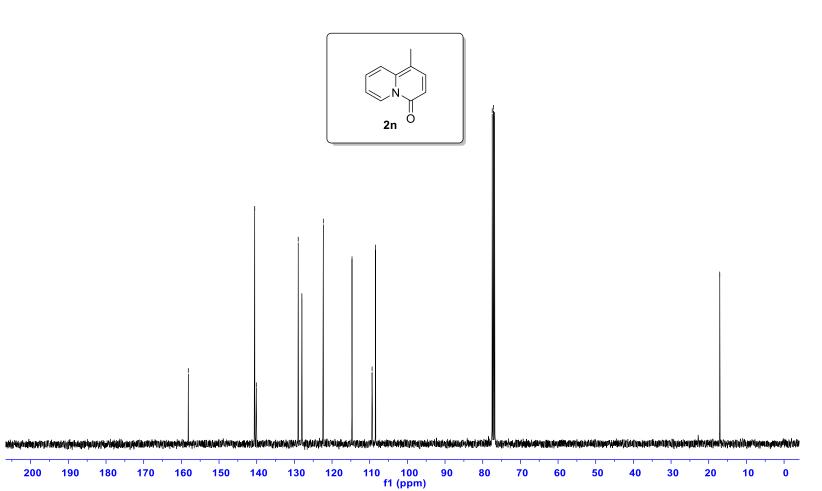
xpc-x20015-CF3.3.fid —



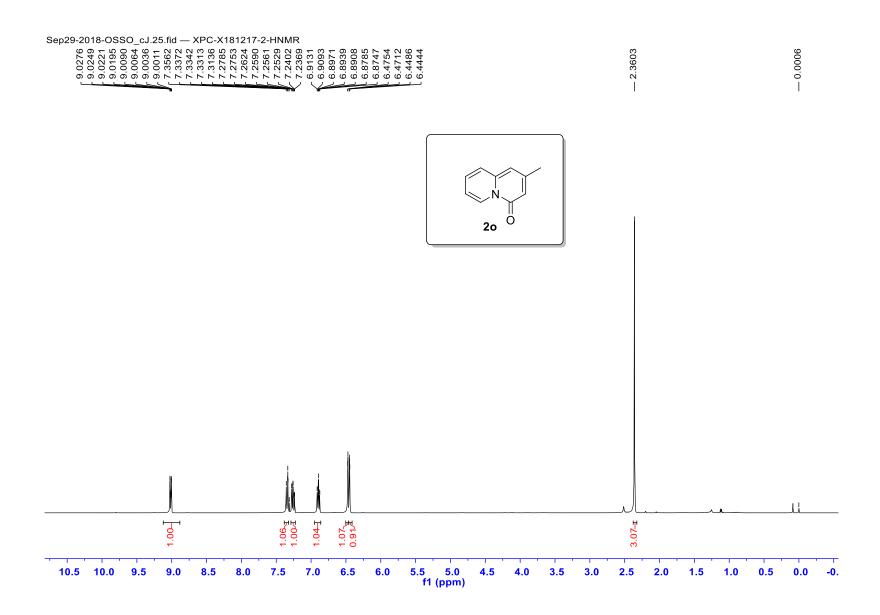


Sep29-2018-OSSO_cJ.23.fid — XPC-X181213-8-HNMR

157.37	152.46	138.82 135.61 130.91	117.23 115.96	104.99	77.47 77.16 76.84
		275	57		\searrow

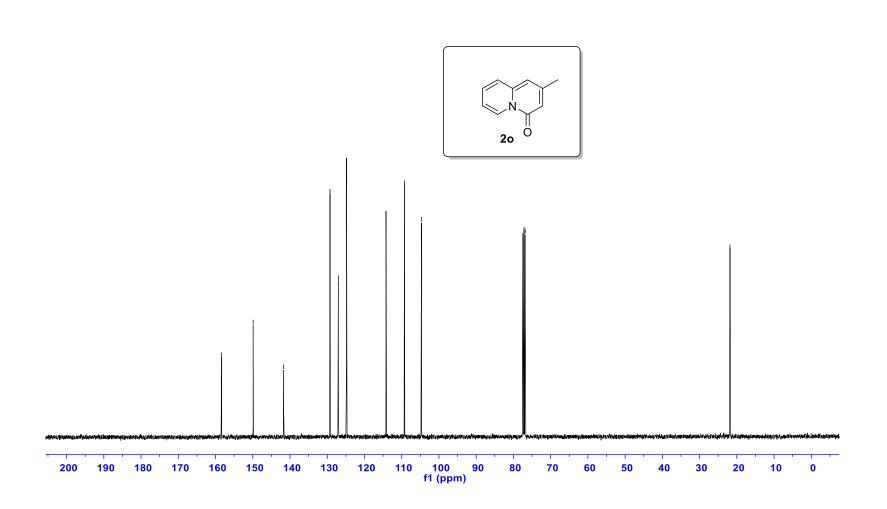


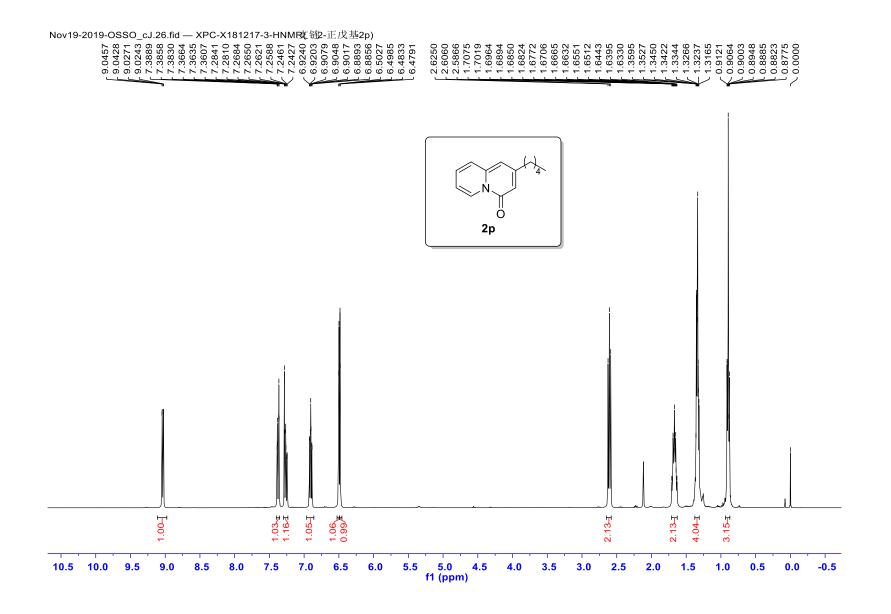
S92

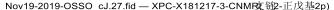

Nov17-2019-OSSO_cJ.13.fid — XPC-X181217-1-CNM改链1-甲基2n)

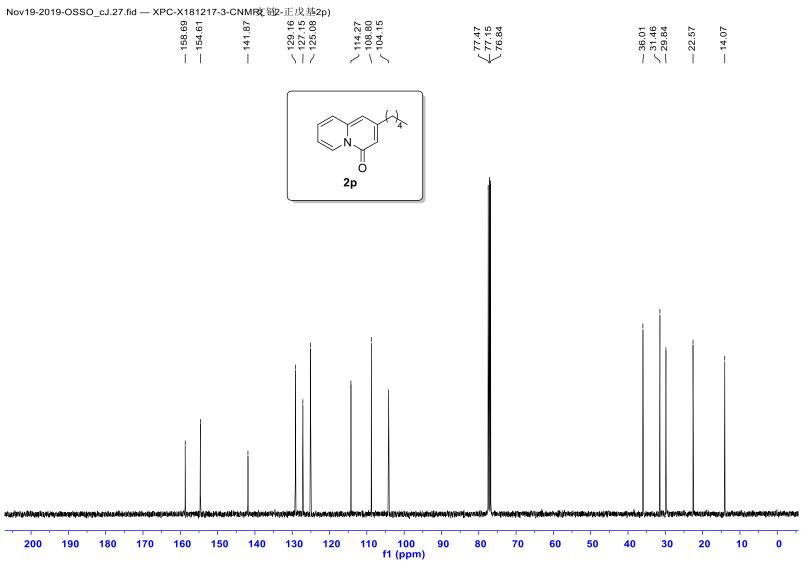
158.16	140.52 140.10	128.97 128.01 122.31	114.70 109.36 108.46	77.48 77.16 76.84
	$\mathbf{\mathbf{n}}$	$l \sim 1$	$ \leq $	

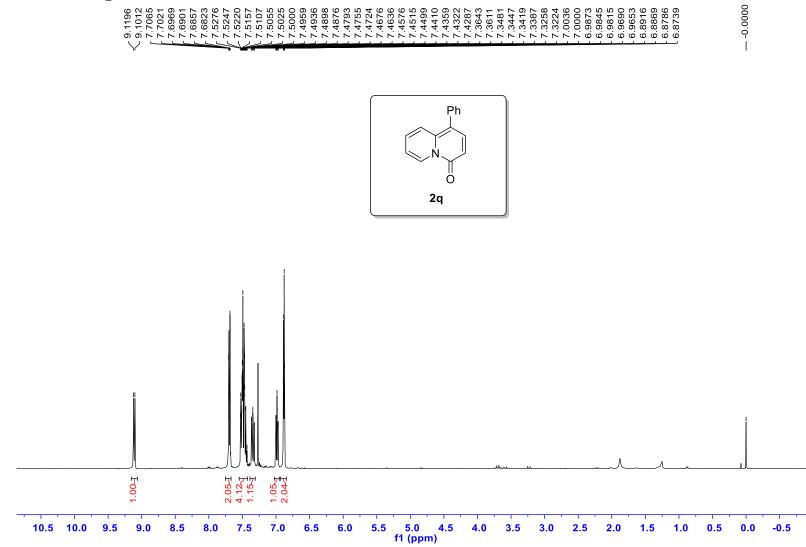
— 17.08

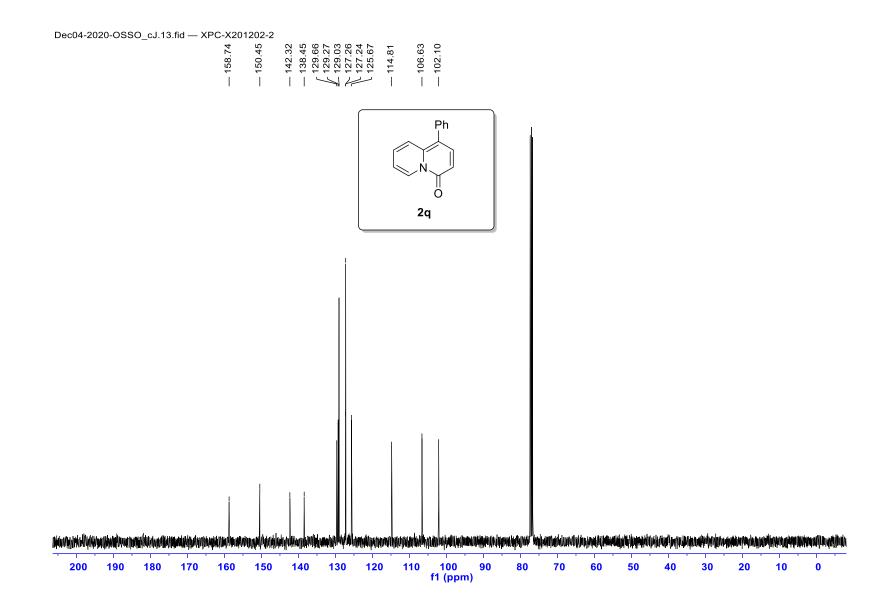


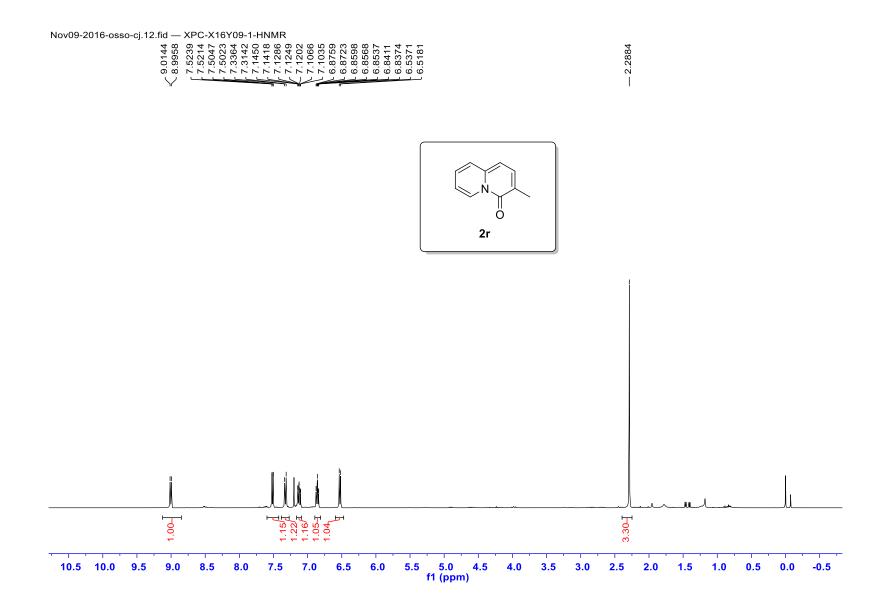

S94

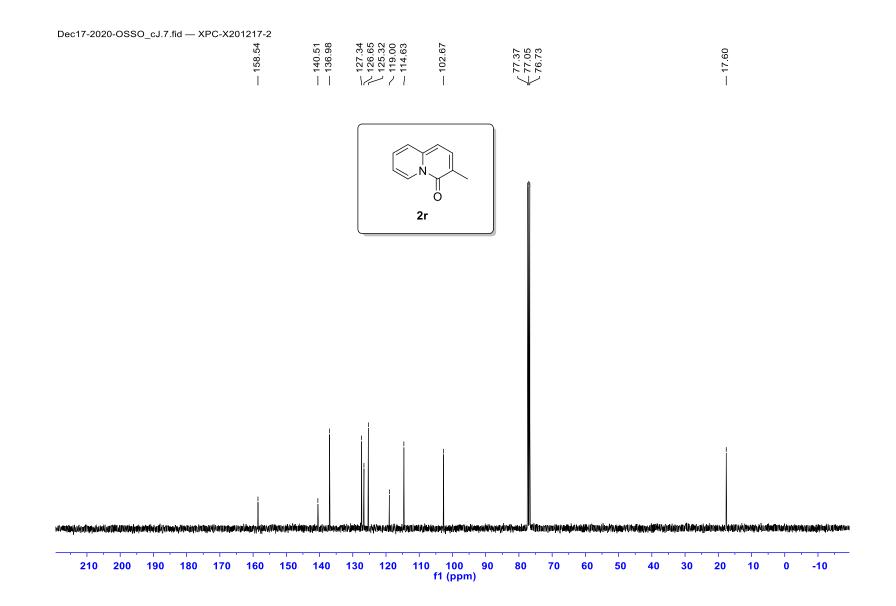



158.37	149.89	141.70	129.25 127.03 124.82	114.20 109.29 104.70	77.48 77.16 76.84
	1		517	215	\searrow


— 21.85


'93 '55 724 576


576 199


 Dec01-2020-OSSO_cJ.21.fid — XPC-X201201-2

107 055 025 000 959 936 936 898 898

7.0000 6.9873 6.9845 6.9845 6.9815 6.9815 6.9815 6.9853 6.8916 6.8869 6.8738

