Supporting Information (55 pages)

Synthesis of 4-Amino-5-allenyloisoxazoles via Gold(I)-Catalysed Propargyl Aza-Claisen Rearrangement

Masato Tsuda,¹,² Taiki Morita,¹ Shintaro Fukuhara,¹,² Hiroyuki Nakamura*¹

1) School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
2) Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan

Corresponding E-mail: hiro@res.titech.ac.jp

Table of Contents

1. General techniques S2
2. Table S1. Optimization of reaction conditions for the Claisen rearrangement S2
3. Synthesis of 3-substituted-4-aminoisoxazoles S4
4. N-Propargylation of 4-aminoisoxazoles S5
5. References S12
6. NMR spectra S13
1. General techniques

NMR spectra were recorded on a Bruker biospin AVANCE II (400 MHz for \(^1\)H, 100 MHz for \(^{13}\)C) or a Bruker biospin AVANCE III (500 MHz for \(^1\)H, 125 MHz for \(^{13}\)C, 160 MHz for \(^{11}\)B) instrument in the indicated solvent. Chemical shifts are reported in units parts per million (ppm) relative to the signal (0.00 ppm) for internal tetramethylsilane for solutions in CDCl\(_3\) (7.26 ppm for \(^1\)H, 77.16 ppm for \(^{13}\)C). Multiplicities are reported using the following abbreviations: s; singlet, d; doublet, dd; doublet of doublets, t; triplet, q; quartet, m; multiplet, br; broad, \(J\); coupling constants in Hertz. IR spectra were recorded on a JASCO FT/IR-4200 spectrometer. Only the strongest and/or structurally important peaks are reported as IR data given in cm\(^{-1}\). Mass spectra were measured using a JMS-700 Mstation and Bruker micrOTOF II. HRMS (EI, 70 eV) was calibrated as perfluorokerosene and HRMS (ESI-TOF) was calibrated as sodium formate. All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254) with UV light (254 nm), and were visualized using an aqueous alkaline KMnO\(_4\) solution. Gel permeation chromatography (GPC) for purification was performed on Japan Analytical Industry Model LC-9225 NEXT (recycling preparative HPLC) and a Japan Analytical Industry Model UV-600 NEXT ultra violet detector with a polystyrene gel column (JAIGEL-1H, 20 mm × 600 mm), using chloroform as solvent (3.5 mL/min). Column chromatography was performed on Silica Gel 60 N, purchased from Fuji Silysia Chemical Ltd. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (1.0 mm) prepared in our laboratory. 3-(4-chlorophenyl)isoxazole-4-amine,\(^1\) isoxazol-4-amine,\(^2\) trimethylsilyl ynone\(^3\) and trimethylsilyl propargyl bromide\(^4\) were synthesized according to the literatures.

2. Table S1

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solvent</th>
<th>(10\text{ mol% catalyst} \rightarrow \text{rt. 2 h})</th>
<th>yield(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{Ar} = 4\text{-ClC}_6\text{H}_4)</td>
<td>allene 2a</td>
</tr>
<tr>
<td>1</td>
<td>JohnPhosAuCl/AgSbF(_6)</td>
<td>DCE</td>
<td>54</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Et}_3\text{PAuCl/AgSbF}_6)</td>
<td>DCE</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>(\text{Cy}_3\text{PAuCl/AgSbF}_6)</td>
<td>DCE</td>
<td>41</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>(\text{t-Bu}_3\text{PAuCl/AgSbF}_6)</td>
<td>DCE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Ph}_3\text{PAuCl/AgSbF}_6)</td>
<td>DCE</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>CyJhonPhosAuCl/AgSbF(_6)</td>
<td>DCE</td>
<td>68</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Phosphine</td>
<td>Solvent</td>
<td>Reaction Temp</td>
<td>NMR Yield</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>7</td>
<td>SPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>RuPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>77</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>XPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>t-BuXPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>BrettPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>t-BuBrettPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Me-DalPhosAuCl/AgSbF₆</td>
<td>DCE</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>BINAPAuCl/AgSbF₆</td>
<td>DCE</td>
<td>38</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>IPrAuCl/AgSbF₆</td>
<td>DCE</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>L₆AuCl/AgSbF₆</td>
<td>DCE</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>AuCl₃/AgSbF₆</td>
<td>DCE</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>18</td>
<td>RuPhosAuCl/AgNTf₂</td>
<td>DCE</td>
<td>75</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>RuPhosAuCl/AgOTf</td>
<td>DCE</td>
<td>91</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>RuPhosAuCl/AgOTf</td>
<td>toluene</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>RuPhosAuCl/AgOTf</td>
<td>1,4-dioxane</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>RuPhosAuCl/AgOTf</td>
<td>MeCN</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>RuPhosAuCl</td>
<td>MeCN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>AgOTf</td>
<td>MeCN</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Reaction conditions: 1a (0.1 mmol), [Au] catalyst (10 mol%), [Ag] catalyst (10 mol%), solvent (1 mL) at r.t.

NMR yield using dibromomethane as an internal standard.

L = Tris(2,4-di-tert-butylphenyl)phosphite.

*The amount of AgSbF₆ was 30 mol%. TMS = trimethylsilyl, DCE = 1,2-dichloroethane, JohnPhos = (2-biphenyl)di-tert-butylphosphine, IPr = 1,3-bis(2,6-diisopropoxyphenyl)imidazol-2-ylidene, CyJohnPhos = 2-(dicyclohexylphosphino)biphenyl, XPhos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl, t-BuXPhos = 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl, BrettPhos = 2-(dicyclohexylphosphino)3,6-dimethoxy-2',4',6'-triisopropyl-1,1'-biphenyl, t-BuBrettPhos = 2-(di-tert-butylphosphino)-2',4',6'-triisopropyl-3,6-dimethoxy-1,1'-biphenyl, RuPhos = 2-dicyclohexyl-y-lphosphino-2',6'-diisopropoxybiphenyl, Tf = trifluoromethanesulfonyl.
3. Synthesis of 3-substituted-4-aminoisoxazoles

Representative procedure for the synthesis of 3-phenylisoxazol-4-amine

To a mixture of N-hydroxybenzimidoyl chloride\(^5\) (2.38 g, 12.5 mmol) and ethyl (E)-3-(pyrrolidin-1-yl)acrylate\(^6\) (21.2 g, 12.5 mmol) in MeCN (2 mL/mmol of 3-(pyrrolidin-1-yl)acrylate), NEt\(_3\) (2.07 mL, 15 mmol) was added dropwise at 0 °C under an argon atmosphere. After being stirred at room temperature for 3 h, the residue was poured into diethyl ether and water. The aqueous layer was extracted with diethyl ether. The combined extract was washed with brine, dried over MgSO\(_4\) and concentrated in vacuo. The residue was dissolved in acetic acid (4 mL/mmol of 3-(pyrrolidin-1-yl)acrylate), 6 M HCl (10 mL/mmol of 3-(pyrrolidin-1-yl)acrylate was added under an argon atmosphere. After being refluxed for 6 h, the residue was poured into ethyl acetate and water. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with brine, dried over MgSO\(_4\) and concentrated in vacuo. Then, 4 M HCl in dioxane (10 mL/mmol of 3-(pyrrolidin-1-yl)acrylate) was added to the residue. After being stirred at room temperature for 3 h, saturated aq. NaHCO\(_3\) was added. The mixture was poured into ethyl acetate, the aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with brine, dried over MgSO\(_4\) and concentrated in vacuo to afford 3-phenylisoxazol-4-amine (755 mg, 3.88 mmol, 31% in 4 steps) as a brown oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.03 (s, 1H), 7.73 (d, \(J = 7.9 \text{ Hz}, 2\text{H})\), 7.46-7.41 (m, 3H), 3.13 (brs, 2H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 155.7, 144.1, 129.6, 129.0, 128.4, 127.6, 125.6; FT-IR (neat): 3400, 3333, 3222, 3124, 3124, 3065, 1633, 1454, 1396, 895, 698 cm\(^{-1}\); HRMS (EI, 70 eV): calcd. for [C\(_9\)H\(_8\)N\(_2\)O\(^+\), 160.0637; found 160.0638.

3-(tert-Butyl)isoxazol-4-amine

Following the representative procedure using N-hydroxybenzimidoyl chloride (4.07 g, 30.0 mmol), 3-(tert-butyl)isoxazol-4-amine was obtained (1.64 g, 11.7 mmol, 39% in 4 steps) as a pink solid. Mp 60-61 °C. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.96 (s, 1H), 2.80 (brs, 2H), 1.39 (s, 9H); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 163.5, 145.3, 125.2, 32.6, 28.3; FT-IR (neat): 3397, 3299, 3136, 2967, 2933, 2870, 1637, 1485, 1262 cm\(^{-1}\); HRMS (ESI): calcd. for [C\(_7\)H\(_{12}\)N\(_2\)O+Na\(^+\], 163.0841: found 163.0843.
4. N-Propargylation of 4-aminoisoxazoles

Representative procedure A for the synthesis of 3-(4-chlorophenyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1a)

A mixture of 4-(trimethylsilyl)but-3-yn-2-one (976 mg, 7.50 mmol), 3-(4-chlorophenyl)isoxazol-4-amine (974 mg, 5.00 mmol) and MgSO₄ (1.20 g, 10.0 mmol) in dry dichloromethane (15 mL) was stirred at room temperature for 2 h. The mixture was filtered and concentrated in vacuo. The imine residue was dissolved in MeOH (20 mL). To the solution was added NaBH₃CN (3.18 g, 15.0 mmol). After the addition, the mixture was stirred at room temperature for 1 h. The reaction was quenched by addition of water. The resultant mixture was extracted with dichloromethane and the combined organic layers were dried over MgSO₄ and filtered. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography with hexane : ethyl acetate (19 : 1) to give 3-(4-chlorophenyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine 1a (1.83 g, 5.75 mmol, 58%) as a white solid. Mp 69-71 ºC.

\[\text{H NMR (500 MHz, CDCl}_3 \delta 8.21 (s, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 3.87-3.85 (m, 1H), 2.96 (br s, 1H), 1.49 (d, J = 6.5 Hz, 3H), 0.137 (s, 9H); } \]

\[\text{13C NMR (125 MHz, CDCl}_3 \delta 154.6, 144.2, 135.9, 129.4, 129.2, 127.6, 127.3, 106.3, 88.4, 45.2, 22.3, 0.02; } \]

\[\text{FT-IR (neat): 3337, 3129, 2949, 2888, 2153, 1363, 1245, 1088, 835 cm}^-1; \]

\[\text{HRMS (ESI): calcd. for [C}_{16}\text{H}_{19}\text{ClN}_2\text{OSi}^+] , 318.0955: found 318.0955. } \]

Representative procedure B for the synthesis of 3-(4-chlorophenyl)-N-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1j)

A mixture of (3-bromo-3-phenylprop-1-yn-1-yl)trimethylsilane (1.34 g, 5 mmol), 3-(4-chlorophenyl)isoxazol-4-amine (973 mg, 5.00 mmol) and \(N,N \)-diisopropylethylamine (1.70 mL, 10.0 mmol) in acetonitrile (15 mL) was stirred at 60 ºC for 6 h. The reaction was quenched by addition of 1.0 M HCl. The resultant mixture was extracted with ethyl acetate and the combined organic layers were dried over MgSO₄ and filtered. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography with hexane : ethyl acetate (19 : 1) to give 3-(4-chlorophenyl)-N-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine 1j (623 mg, 1.64 mmol, 33%) as a yellow solid. Mp 92-95 ºC. \[\text{H NMR (500 MHz, CDCl}_3 \delta 8.15 (s, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.45-7.36 (m, 4H), 7.37-7.34 (m, 1H), 5.02 (s, 1H), 3.43 (brs, 1H), 0.22 (s, 9H); } \]

\[\text{13C NMR (125 MHz, CDCl}_3 \delta 154.6, 144.2, 135.9, 129.4, 129.2, 127.6, 127.3, 106.3, 88.4, 45.2, 22.3, 0.02; } \]

\[\text{FT-IR (neat): 2958, 2899, 2169, 1412, 1250, 842 cm}^-1; \]

\[\text{HRMS (ESI): calcd. for [C}_{21}\text{H}_{21}\text{ClN}_2\text{OSi}_2^+Na^+, 403.1003: found 403.0997. } \]
N-(4-(tert-Butyldimethylsilyl)but-3-yn-2-yl)-3-(4-chlorophenyl)isoxazol-4-amine (1b)

Following the representative procedure A using 4-(tert-butyldimethylsilyl)but-3-yn-2-one (85.7 mg, 0.480 mmol), compound 1b was obtained (39.7 mg, 0.110 mmol, 27%) after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1) as a white solid. Mp 99-100 ºC. 1H NMR (500 MHz, CDCl3) δ 8.19 (s, 1H), 7.73 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 3.87 (q, J = 6.8 Hz, 1H), 3.00 (br s, 1H), 1.50 (d, J = 6.9 Hz, 3H), 0.88 (s, 9H), 0.064 (d, J = 2.0 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 154.5, 144.2, 135.9, 129.4, 129.1, 127.6, 127.3, 106.9, 86.5, 45.2, 26.1, 22.4, 16.6, -4.56, -4.57; FT-IR (neat): 2928, 1725, 1602, 1413, 1093, 901, 836, 775, 669 cm⁻¹; HRMS (EI, 70 eV): calcd. for [C19H25ClN2OSi]+, 360.1425: found 360.1422.

3-(4-Chlorophenyl)-N-(4-(triisopropylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1c)

Following the representative procedure A using 4-(triisopropylsilyl)but-3-yn-2-one (128 mg, 0.480 mmol), compound 1c was obtained (119 mg, 0.294 mmol, 74%) after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1) as a brown oil. 1H NMR (500 MHz, CDCl3) δ 8.21 (s, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 3.90 (q, J = 6.8 Hz, 1H), 1.52 (d, J = 6.9 Hz, 3H), 1.02 (s, 21H); 13C NMR (125 MHz, CDCl3) δ 154.5, 144.2, 135.9, 129.4, 129.1, 127.6, 127.3, 108.3, 84.3, 45.2, 22.6, 18.6, 11.2; FT-IR (neat): 3434, 2943, 2891, 2865, 2161, 1621, 1463, 1094, 882, 835, 678 cm⁻¹; HRMS (ESI): calcd. for [C22H31ClN2OSi +Na]+, 425.1786: found 425.1774.

3-(4-Chlorophenyl)-N-(4-(dimethyl(phenyl)silyl)but-3-yn-2-yl)isoxazol-4-amine (1d)

Following the representative procedure A using 4-(dimethyl(phenyl)silyl)but-3-yn-2-one (304 mg, 1.5 mmol), compound 1d was obtained (308 mg, 0.807 mmol, 81%) after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1) as a brown oil. 1H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.55 (m, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.38 (m, 3H), 3.91 (q, J
N-(But-3-yn-2-yl)-3-(4-chlorophenyl)isoxazol-4-amine (1e)
A mixture of 3-(4-chlorophenyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine 1a (95.7 mg, 0.300 mmol) and cesium fluoride (91.1 mg, 0.600 mmol) in ethanol (3 mL) was stirred at room temperature for 2 h. After being stirred, the residue was poured into ethyl acetate and water. The aqueous layer was extracted with two portions of ethyl acetate. The combined extract was washed with brine, dried over MgSO$_4$ and concentrated in vacuo. The residue was purified silica gel column chromatography with hexane : ethyl acetate (19 : 1) to give N-(But-3-yn-2-yl)-3-(4-chlorophenyl)isoxazol-4-amine 1e (72.1 mg, 0.292 mmol, 97%) as a white solid. Mp 89-90 ºC.

1H NMR (400 MHz, CDCl$_3$) δ 8.20 (s, 1H), 7.75 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 3.87 (qd, J = 6.7 Hz, J = 1.7 Hz, 1H), 2.93 (br, 1H), 2.33 (t, J = 8.4, H), 1.75-1.72 (m, 2H), 1.65-1.63 (m, 2H), 1.48 (d, J = 6.8, 3H), 1.39-1.25 (m, 6H);

13C NMR (125 MHz, CDCl$_3$) δ 154.5, 144.0, 135.9, 129.4, 129.2, 127.8, 127.4, 88.4, 80.4, 44.7, 32.8, 29.0, 25.9, 25.0, 22.9; FT-IR (neat): 2930, 2853, 1619, 1448, 1412, 1093, 938, 835 cm$^{-1}$; HRMS (EI): calcd. for [C$_{19}$H$_{21}$ClN$_2$O+Na]$^+$, 328.1342: found 328.1344.

3-(4-Chlorophenyl)-N-(4-cyclohexylbut-3-yn-2-yl)isoxazol-4-amine (1f)
Following the representative procedure A using 4-cyclohexylbut-3-yn-2-one (225 mg, 1.50 mmol), compound 1f was obtained (118 mg, 0.358 mmol, 36%) as a yellow oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). 1H NMR (500 MHz, CDCl$_3$) δ 8.20 (s, 1H), 7.75 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 3.87 (qd, J = 6.7 Hz, J = 1.7 Hz, 1H), 2.93 (br, 1H), 2.33 (t, J = 8.4, H), 1.75-1.72 (m, 2H), 1.65-1.63 (m, 2H), 1.48 (d, J = 6.8, 3H), 1.39-1.25 (m, 6H);

13C NMR (125 MHz, CDCl$_3$) δ 154.5, 144.0, 135.9, 129.4, 129.2, 127.8, 127.4, 88.4, 80.4, 44.7, 32.8, 29.0, 25.9, 25.0, 22.9; FT-IR (neat): 2930, 2853, 1619, 1448, 1412, 1093, 938, 835 cm$^{-1}$; HRMS (EI, 70 eV): calcd. for [C$_{19}$H$_{21}$ClN$_2$OSi]$^+$, 328.1342: found 328.1344.
3-(4-Chlorophenyl)-N-(5, 5-dimethylhex-3-yn-2-yl)isoxazol-4-amine (1g)

Following the representative procedure A using 5,5-dimethylhex-3-yn-2-one (298 mg, 2.40 mmol), compound 1g was obtained (471 mg, 1.56 mmol, 78%) as a brown oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). 1H NMR (500 MHz, CDCl$_3$) δ 8.20 (s, 1H), 7.76 (d, $J = 8.5$ Hz, 2H), 7.46 (d, $J = 8.5$ Hz, 2H), 3.85 (q, $J = 6.7$ Hz, 1H), 2.91 (brs, 1H), 1.46 (d, $J = 7.0$ Hz, 1H), 1.17 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 154.6, 144.0, 135.9, 129.4, 129.2, 127.8, 127.4, 92.7, 44.7, 31.2, 27.4, 22.8; FT-IR (neat): 2968, 2867, 1618, 1413, 1093, 835 cm$^{-1}$; HRMS (EI, 70 eV): calcd. for [C$_{17}$H$_{19}$ClN$_2$O]$^+$, 302.1186: found 302.1182.

3-(4-Chlorophenyl)-N-(1-(trimethylsilyl)hept-1-yn-3-yl)isoxazol-4-amine (1h)

Following the representative procedure A using 1-(trimethylsilyl)hept-1-yn-3-one (274 mg, 1.50 mmol), compound 1h was obtained (53.7 mg, 0.148 mmol, 15%) as a yellow oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). 1H NMR (500 MHz, CDCl$_3$) δ 8.21 (s, 1H), 7.76 (d, $J = 8.4$ Hz, 2H), 7.46 (d, $J = 8.4$ Hz, 2H), 3.72 (t, $J = 8.4$ Hz, 1H), 1.77-1.73 (m, 2H), 1.51-1.45 (m, 2H), 1.40-1.33 (m, 2H), 0.93 (t, $J = 7.2$ Hz, 3H), 0.138 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 154.7, 144.2, 135.9, 129.4, 127.7, 127.4, 105.6, 89.2, 50.1, 35.5, 28.3, 22.4, 14.1, 0.045; FT-IR (neat): 2961, 2931, 2898, 2872, 2165, 1413, 1249, 841 cm$^{-1}$; HRMS (ESI): calcd. for [C$_{19}$H$_{25}$ClN$_2$O$_3$Si +Na]$^+$, 383.1317: found 383.1310.

3-(4-Chlorophenyl)-N-(4-methyl-1-(trimethylsilyl)pent-1-yn-3-yl)isoxazol-4-amine (1i)

Following the representative procedure A using 4-methyl-1-(trimethylsilyl)pent-1-yn-3-one (253 mg, 1.50 mmol), compound 1i was obtained (47.4 mg, 0.136 mmol, 14%) as a yellow oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). 1H NMR (500 MHz, CDCl$_3$) δ 8.19 (s, 1H), 7.76 (d, $J = 8.4$ Hz, 2H), 7.47 (d, $J = 8.4$ Hz, 2H), 3.54 (d, $J = 5.8$ Hz, 1H), 2.02-1.95 (m, 1H), 1.07 (d, $J = 6.6$ Hz, 3H), 1.06 (d, $J = 6.7$ Hz, 3H), 0.140 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ
3-(4-Chlorophenyl)-N-(1-(4-chlorophenyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1k)

Following the representative procedure B using (3-bromo-3-(4-chlorophenyl)prop-1-yn-1-yl)trimethylsilane (290 mg, 0.960 mmol), compound 1k was obtained (109 mg, 0.520 mmol, 65%) as a yellow solid after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). Mp 108-109 °C. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.11 (s, 1H), 7.73 (d, \(J = 8.5\) Hz, 2H), 7.51 (d, \(J = 8.5\) Hz, 2H), 7.44 (d, \(J = 8.5\) Hz, 2H), 7.36 (d, \(J = 8.5\) Hz, 2H), 4.96 (s, 1H), 3.37 (brs, 1H), 0.187 (s, 9H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 154.8, 144.1, 135.9, 129.4, 128.0, 127.4, 104.2, 56.3, 32.8, 19.5, 18.3, 0.0722; FT-IR (neat): 2957, 2933, 2871, 2861, 2166, 1413, 1250, 1093, 760 cm\(^{-1}\); HRMS (ESI): calcd. for [C\(_{18}\)H\(_{23}\)Cl\(_2\)N\(_2\)O\(_3\)Si + Na\(^+\)]\(^+\), 369.1160; found 369.1153.

3-(4-Chlorophenyl)-N-(1-(4-(trifluoromethyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1l)

Following the representative procedure B using (3-bromo-3-(4-(trifluoromethyl)phenyl)prop-1-yn-1-yl)trimethylsilane (156 mg, 0.800 mmol), compound 1l was obtained (248 mg, 0.550 mmol, 69%) as a yellow oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.11 (s, 1H), 7.74 (d, \(J = 8.6\) Hz, 2H), 7.71 (d, \(J = 8.3\) Hz, 2H), 7.65 (d, \(J = 8.3\) Hz, 2H), 7.45 (d, \(J = 8.6\) Hz, 2H), 5.04 (s, 1H), 3.42 (brs, 1H), 0.193 (s, 9H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 154.9, 145.0, 142.0, 136.1, 130.8 (q, \(J_{C-F} = 32.5\) Hz), 129.5, 129.2, 128.0, 127.0, 126.7, 125.9 (q, \(J_{C-F} = 3.5\) Hz), 124.1 (q, \(J_{C-F} = 270.5\) Hz), 102.4, 92.8, 53.4, -0.093; FT-IR (neat): 3337, 3276, 2961, 2900, 2171, 1619, 1414, 1326, 1128, 1068, 844 cm\(^{-1}\); HRMS (EI, 70 eV): calcd. for [C\(_{22}\)H\(_{20}\)Cl\(_3\)F\(_3\)N\(_2\)O\(_3\)Si\(^+\)]\(^+\), 448.0986; found 448.0990.
3-(4-Chlorophenyl)-N-(1-(p-tolyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1m)

Following the representative procedure B using (3-bromo-3-(p-tolyl)prop-1-yn-1-yl)trimethylsilane (270 mg, 0.96 mmol), compound 1m was obtained (106 mg, 0.268 mmol, 33%) as a yellow oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 8.14\) (s, 1H), 7.75 (d, \(J = 8.5\) Hz, 2H), 7.46 (d, \(J = 8.0\) Hz, 2H), 7.44 (d, \(J = 8.5\) Hz, 2H), 7.21 (d, \(J = 8.0\) Hz, 2H), 4.96 (s, 1H), 3.35 (brs, 1H), 2.38 (s, 3H), 0.196 (s, 9H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 154.7, 144.6, 138.4, 135.9, 129.6, 129.4, 127.4, 127.2, 127.1, 103.6, 91.5, 53.5, 21.3, -0.025; FT-IR (neat): 3343, 2958, 2898, 2170, 1619, 1513, 1413, 1251, 1093, 743 cm\(^{-1}\); HRMS (ESI): calcd. for [C\(_{22}\)H\(_{23}\)ClN\(_2\)OSi +Na\(^+\)], 417.1160; found 417.1151.

3-(4-Chlorophenyl)-N-(1-(3-methoxyphenyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1n)

Following the representative procedure B using (3-bromo-3-(3-methoxyphenyl)prop-1-yn-1-yl)trimethylsilane (356 mg, 0.960 mmol), compound 1n was obtained (97.0 mg, 0.236 mmol, 30%) as a brown oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 8.13\) (s, 1H), 7.75 (d, \(J = 8.4\) Hz, 2H), 7.44 (d, \(J = 8.4\) Hz, 2H), 7.33-7.27 (m, 1H), 7.25 (d, \(J = 7.2\) Hz, 2H), 6.88 (m, 1H) 4.97 (s, 1H), 3.82 (s, 3H), 3.39 (brs, 1H), 0.191 (s, 9H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(\delta 160.0, 154.7, 144.7, 139.7, 135.9, 129.9, 129.4, 129.2, 127.2, 127.1, 119.8, 113.9, 113.3, 103.3, 91.7, 55.3, 53.7, -0.044; FT-IR (neat): 3331, 2958, 2898, 2834, 2170, 1602, 1488, 1413, 1251, 1093, 842, 760 cm\(^{-1}\); HRMS (ESI): calcd. for [C\(_{22}\)H\(_{23}\)ClN\(_2\)O\(_2\)Si +Na\(^+\)], 433.1109; found 433.1097.
3-(4-Chlorophenyl)-N-(3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1o)

Following the representative procedure A using 3-(trimethylsilyl)propionaldehyde (284 mg, 2.25 mmol), compound 1o was obtained (161 mg, 0.520 mmol, 35%) as a white solid after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). Mp 84-85 °C. 1H NMR (500 MHz, CDCl3) δ 8.14 (s, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 3.80 (s, 2H), 3.20 (br s, 1H), 0.150 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 154.2, 143.1, 135.9, 129.3, 129.0, 128.5, 127.1, 101.7, 89.7, 37.8, -0.121; FT-IR (neat): 3356, 3133, 2959, 2897, 2171, 1621, 1415, 1250, 1093, 843 cm⁻¹; HRMS (ESI): calcd. for [C15H17ClN2OSi +Na]+, 327.0690: found 327.0683.

N-(4-(Trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1p)

Following the representative procedure A using 4-(trimethylsilyl)but-3-yn-2-one (421 mg, 3.00 mmol) and isoxazol-4-amine (168 mg, 2.00 mmol), compound 1p was obtained (68.5 mg, 0.329 mmol, 33%) as a brown oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). 1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 8.09 (s, 1H), 3.87 (q, J = 6.8 Hz, 2H), 3.02 (brs, 1H), 1.45 (d, J = 7.0 Hz, 3H), 0.16 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 145.3, 143.1, 129.0, 106.6, 88.3, 45.3, 22.2, 0.0; FT-IR (neat): 3322, 2960, 1629, 1251, 878, 842, 759 cm⁻¹; HRMS (EI, 70 eV): calcd. for [C10H16N2O]+, 208.1032: found 208.1033.

3-Phenyl-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1q)

Following the representative procedure A using 4-(trimethylsilyl)but-3-yn-2-one (316 mg, 2.25 mmol) and 3-phenylisoxazol-4-amine (240 mg, 1.50 mmol), compound 1q was obtained (309 mg, 1.08 mmol, 72%) as a brown oil after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1) as a brown oil. 1H NMR (500 MHz, CDCl3) δ 8.18 (s, 1H), 7.77 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.48-7.42 (m, 3H), 3.88 (q, J = 6.5 Hz, 1H), 1.48 (d, J = 6.5 Hz, 3H), 0.143 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 154.5, 144.0, 135.9, 131.8, 129.4, 129.2, 128.5, 128.4, 127.7, 127.3, 122.6, 89.6, 83.7, 45.1, 22.5; FT-IR (neat): 3435, 2960, 1629, 1251, 878, 842, 759 cm⁻¹; HRMS (ESI): calcd. for [C16H20N2OSi +Na]+, 307.1237: found 307.1233.

S11
3-(p-Tolyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1r)

Following the representative procedure A using 3-(p-tolyl)isoxazol-4-amine (190 mg, 1.09 mmol), compound 1r was obtained (79.3 mg, 0.266 mmol, 24%) as a yellow after purification by silica gel chromatography with hexane and ethyl acetate (19 : 1). ^1H NMR (400 MHz, CDCl$_3$) δ 8.17 (s, 1H), 7.66 (d, $J = 7.2$ Hz, 2H), 7.29 (d, $J = 7.2$ Hz, 2H), 3.87 (d, $J = 6.0$ Hz, 1H), 3.03 (s, 1H), 2.41 (s, 3H), 1.49 (d, $J = 4.0$ Hz, 3H), 0.14 (s, 9H); ^13C NMR (100 MHz, CDCl$_3$) δ 155.4, 143.3, 139.8, 129.8, 127.74, 127.68, 125.9, 106.5, 88.1, 45.2, 22.3, 21.5, -0.013; FT-IR (neat): 3321, 3121, 3065, 2953, 2827, 2151, 1612, 1245, 835 cm$^{-1}$; HRMS (EI, 70 eV): calcd. for [C$_{17}$H$_{22}$N$_2$O$_2$Si]$,^+$, 314.1451: found 314.1445.

3-(tert-Butyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1s)

Following the representative procedure A using 4-(trimethylsilyl)but-3-yn-2-one (421 mg, 3.00 mmol) and 3-(tert-butyl)isoxazol-4-amine (280 mg, 2.00 mmol), compound 1s was obtained (171 mg, 0.647 mmol, 32%) as white solid. ^1H NMR (400 MHz, CDCl$_3$) δ 8.08 (s, 1H), 3.75 (quin., $J = 7.6$ Hz, 1H), 2.72 (d, $J = 8.4$ Hz, 1H), 1.44 (d, $J = 6.8$ Hz, 3H), 1.34 (s, 9H), 0.097 (s, 9H); ^13C NMR (100 MHz, CDCl$_3$) δ 163.1, 144.4, 127.5, 107.1, 87.7, 45.3, 32.5, 28.3, 22.4, -0.053; FT-IR (neat): 3331, 3121, 2953, 2827, 2151, 1612, 1245, 835 cm$^{-1}$; HRMS (EI, 70 eV): calcd. for [C$_{14}$H$_{24}$N$_2$OSi]$^+$, 264.1658: found 264.1656.

5. References

6. NMR spectra

3-Phenylisoxazol-4-amine

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Methoxyphenyl)isoxazol-4-amine

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-\((\text{tert-Butyl})\text{isoazol-4-amine}\)

\(^{1}\text{H NMR (500 MHz, CDCl}_3\)\)

\[^{13}\text{C NMR (125 MHz, CDCl}_3\)\)
3-(4-Chlorophenyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1a)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)

S16
N-(4-(tert-Butyldimethylsilyl)but-3-yn-2-yl)-3-(4-chlorophenyl)isoxazol-4-amine (1b)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(4-(triisopropylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1c)

1H NMR (500 MHz, CDCl$_3$)

\[
\begin{align*}
\text{13C NMR (125 MHz, CDCl}_3) & \quad 126.82, 124.23, 143.89, 134.89, 125.31, 127.62, 121.71, 118.29, 108.27, 94.26, 77.11, 74.11, 74.93, 32.42, 22.81, 21.09
\end{align*}
\]
3-(4-Chlorophenyl)-N-(4-(dimethyl(phenyl)silyl)but-3-yn-2-yl)isoazol-4-amine (1d)

$^{1}\text{H NMR (500 MHz, CDCl}_3\text{)}$

$^{13}\text{C NMR (125 MHz, CDCl}_3\text{)}$
N-(But-3-yn-2-yl)-3-(4-chlorophenyl)isoxazol-4-amine (1e)

1H NMR (500 MHz, CDCl$_3$)

1C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(4-cyclohexylbut-3-yn-2-yl)isoxazol-4-amine (1f)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-chlorophenyl)-N-(5, 5-dimethylhex-3-yn-2-yl)isoxazol-4-amine (1g)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(1-(trimethylsilyl)hept-1-yn-3-yl)isoxazol-4-amine (1h)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(4-methyl-1-(trimethylsilyl)pent-1-yn-3-yl)isoxazol-4-amine (1i)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1j)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(1-(4-chlorophenyl)-3-((trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1k)

1H NMR (500 MHz, CDCl$_3$

13C NMR (125 MHz, CDCl$_3$

![Chemical structure and NMR spectra](image-url)
3-(4-Chlorophenyl)-N-(1-(4-(trifluoromethyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1I)

\(^1\)H NMR (500 MHz, CDCl\(_3\))

\(^{13}\)C NMR (125 MHz, CDCl\(_3\))
3-(4-Chlorophenyl)-N-(1-(p-tolyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1m)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(1-(3-methoxyphenyl)-3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (1n)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-N-(3-(trimethylsilyl)prop-2-yn-1-yl)isoxazol-4-amine (10)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(4-(Trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1p)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-Phenyl-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1q)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)

S32
3-(p-Tolyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1r)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(tert-Butyl)-N-(4-(trimethylsilyl)but-3-yn-2-yl)isoxazol-4-amine (1s)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(1-(trimethylsilyl)buta-1,2-dien-1-yl)isoaxol-4-yl)-4-methylenesulfonamide (2a)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(1-(trimethylsilyl)buta-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4a)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(1-(dimethyl(phenyl)silyl)buta-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4d)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(1-(trimethylsilyl)hepta-1,2-dien-1-yl)isoxazol-4-yl)-4-
methylbenzenesulfonamide (4h)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-\((3\text{-}(4\text{-Chlorophenyl})\text{-}5\text{-}(4\text{-methyl-1\text{-}(trimethylsilyl)penta-1,2-dien-1-yl)}\text{-}isoxazol-4\text{-yl})\text{-}4\text{-methylbenzenesulfonamide} \ (4i)$

1H NMR (500 MHz, CDCl$_3$)

1C NMR (125 MHz, CDCl$_3$)

S39
N-(3-(4-Chlorophenyl)-5-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4j)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(3-(4-chlorophenyl)-1-(trimethylsilyl)propa-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4k)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(3-(4-(trifluoromethyl)phenyl)-1-(trimethylsilyl)propa-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4l)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(3-(p-tolyl)-1-(trimethylsilyl)propa-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4m)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
5-(3-(3-Methoxyphenyl)-1-(trimethylsilyl)propa-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4n)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Chlorophenyl)-5-(1-(trimethylsilyl)propa-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4o)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
4-Methyl-N-(5-(1-(trimethylsilyl)buta-1,2-dien-1-yl)isoxazol-4-yl)benzenesulfonamide (4p)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
4-Methyl-N-(3-phenyl-5-(1-(trimethylsilyl)buta-1,2-dien-1-yl)isoxazol-4-yl)benzenesulfonamide

1H NMR (500 MHz, CDCl$_3$) (4q)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(4-Methoxyphenyl)-5-(1-(trimethylsilyl)buta-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4r)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
N-(3-(tert-Butyl)-5-(1-(trimethylsilyl)buta-1,2-dien-1-yl)isoxazol-4-yl)-4-methylbenzenesulfonamide (4s)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3, 5-Dimethoxy-\(N\)-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-yl)aniline (5)

\(^1\text{H NMR (500 MHz, CDCl}_3\))

\(^{13}\text{C NMR (100 MHz, CDCl}_3\))
N-(3, 5-Dimethoxy-2-(3-phenyl-1-(trimethylsilyl)propa-1,2-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (6)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-5-methyl-7-(trimethylsilyl)isoxazo[4,5-b]pyridine (3a)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-5-methylisoxazolo[4,5-b]pyridine (3e)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
3-(4-Chlorophenyl)-7-cyclohexyl-5-methylisoxazolo[4,5-b]pyridine (3f)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
7-(tert-Butyl)-3-(4-chlorophenyl)-5-methylisoxazolo[4,5-b]pyridine (3g)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)