Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

$\label{lem:metal-Free} \begin{tabular}{ll} Metal-Free~[3+2+1]~Annulation~of~Allylic~Alcohols,~Ketones,~and \\ Ammonium~Acetate:~Radical-Involved~Synthesis~of \end{tabular}$

2,3-Diarylpyridine Derivatives

Danhua Ge, a Xin-Long Luo, a Xi Tang, Chao-Bin Pang, Xin Wang, and Xue-Qiang Chua*

Table of Contents

General information	page S2
General procedure for the synthesis of pyridines 3	page S2
General procedure for the large-scale synthesis of pyridine 3aa	page S2
Mechanistic study	page S3
Characterization data for products	page S4
¹ H, ¹⁹ F, and ¹³ C NMR spectra of products	page S10

^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

^b Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China.

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under air atmosphere using undistilled solvent. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. 1 H, 19 F, and 13 C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI Source). Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedure for the synthesis of pyridines 3

HO Ar¹ Ar² + R¹
$$R^2$$
 + NH₄OAc $\frac{1) \text{ TBPB, } 120 \, ^{\circ}\text{C, } 12 \, \text{h}}{2) \text{ HOAc, } 130 \, ^{\circ}\text{C, } 24 \, \text{h}}$ $\frac{\text{Ar}^1}{\text{Ar}^2}$ $\frac{\text{R}^1}{\text{R}^2}$

A solution of diaryl allylic alcohol **1** (0.5 mmol), ketone **2** (4 mL), NH₄OAc (154 mg, 2.0 mmol), and *tert*-butylperoxybenzoate (TBPB, 194 mg, 1.0 mmol) was stirred at 120 °C under air for 12 h. Upon completion of the reaction (indicated by TLC), the organic solvent (ketone **2**) was removed under vacuum. HOAc (3 mL) was added to above system, and the mixture was stirred at 130 °C under air for 24 h. The reaction was then quenched by saturated NaHCO₃ solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure products **3**.

General procedure for the large scale synthesis of pyridine 3aa

A solution of diaryl allylic alcohol **1a** (1.1 g, 5 mmol), acetone (**2a**, 20 mL), NH₄OAc (1.54 g, 20 mmol), and *tert*-butylperoxybenzoate (TBPB, 1.94 g, 10 mmol) was stirred at 120 °C under air for 12 h. Upon completion of the reaction (indicated by TLC), the organic solvent (acetone) was removed under vacuum. HOAc (30 mL) was added to above system, and the mixture was stirred at 130 °C under air for 24 h. The reaction was then quenched by saturated NaHCO₃ solution (20 mL x 3) and extracted with EtOAc (100 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1 ~ 20/1) as eluent to afford the pure product **3aa** (0.8 g, 66% yield).

Mechanistic study

A solution of diaryl allylic alcohol **1a** (105 mg, 0.5 mmol), acetone (**2a**, 4 mL), NH₄OAc (154 mg, 2.0 mmol), *tert*-butylperoxybenzoate (TBPB, 194 mg, 1.0 mmol), and 2,2,6,6-tetramethylpiperidinooxy (TEMPO, 156 mg, 1 mmol) was stirred at 120 °C under air for 12 h. No desired 1,5-dicarbonyl compound **4aa** was observed. **This result suggested that radical intermediate was involved in the reaction.**

Characterization data for products:

6-Methyl-2,3-diphenylpyridine (3aa): Yield = 71 %. White solid. M.p. 84.0–85.9 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.61 (d, J = 7.8 Hz, 1H), 7.36–7.32 (m, 2H), 7.25–7.17 (m, 7H), 7.16–7.17 (m, 2H), 2.66 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 157.3, 156.7, 140.6, 140.3, 139.0, 133.3, 130.1, 129.8, 128.4, 128.1, 127.8, 127.1, 121.9, 24.6 ppm. HRMS m/z: calcd for C₁₈H₁₆N [M+H]⁺ 246.1277, found: 246.1286.

6-Methyl-2,3-di-*p***-tolylpyridine** (**3ba**): Yield = 48 %. White solid. M.p. 105–107 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.57 (d, J = 7.8 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.14 (d, J = 7.8 Hz, 1H), 7.08 – 7.01 (m, 6H), 2.63 (s, 3H), 2.32 (s, 3H), 2.30 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 157.0, 156.6, 138.9, 137.9, 137.5, 137.4, 136.7, 133.0, 130.0, 129.6, 129.1, 128.8, 121.6, 24.6, 21.4, 21.3 ppm. HRMS m/z; calcd for C₂₀H₂₀N [M+H]⁺ 274.1590, found: 274.1598.

2,3-Bis(4-methoxyphenyl)-6-methylpyridine (3ca): Yield = 55 %. White solid. M.p. 110.0-112.0 °C. ¹H NMR (400MHz, CDCl₃): $\delta = 7.55$ (d, J = 7.8 Hz, 1H), 7.32 - 7.27 (m, 2H), 7.12 (d, J = 7.8 Hz, 1H), 7.10 - 7.05 (m, 2H), 6.83 - 6.75 (m, 4H), 3.79 (s, 3H), 3.77 (s, 3H), 2.63 (s, 3H) ppm. 13 C NMR (100 MHz, CDCl₃): $\delta = 159.3$, 158.7, 156.8, 156.2, 138.9, 133.3, 132.8, 132.5, 132.4, 131.4, 130.8, 121.4, 113.9, 55.4, 55.4, 24.6 ppm. HRMS m/z: calcd for $C_{20}H_{20}NO_{2}$ [M+H] $^{+}$ 306.1489, found: 306.1493.

2,3-Bis(4-bromophenyl)-6-methylpyridine (3da): Yield = 60 %. White solid. M.p. 164.9–166.6 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.57 (d, J = 7.9 Hz, 1H), 7.44 – 7.36 (m, 4H), 7.24 – 7.17 (m, 3H), 7.04 – 6.98 (m, 2H), 2.64 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 158.0, 155.3, 139.2, 138.9, 132.1, 131.8, 131.8, 131.5, 131.3, 122.5, 122.3, 121.7, 24.6 ppm. HRMS m/z: calcd for C₁₈H₁₄Br₂N [M+H]+ 401.9488, found: 401.9489.

2,3-Bis(4-chlorophenyl)-6-methylpyridine (3ea): Yield = 52 %. White solid. M.p. 159.2–161.4 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.57 (d, J = 7.9 Hz, 1H), 7.29 – 7.26 (m, 3H), 7.25 – 7.18 (m, 4H), 7.10 – 7.04 (m, 2H), 2.65 (s, 3H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 157.9, 155.3, 138.9, 138.8, 138.4, 134.2, 133.5, 132.1, 131.5, 131.0, 128.9, 128.5, 122.3, 24.6 ppm. HRMS m/z: calcd for C₁₈H₁₄Cl₂N [M+H]+ 314.0498, found: 314.0500.

2,3-Bis(4-fluorophenyl)-6-methylpyridine (3fa): Yield = 40 %. White solid. M.p. 58.7–59.8 °C.

¹H NMR (400MHz, CDCl₃): δ = 7.57 (d, J = 7.8 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.18 (d, J = 7.8 Hz, 1H), 7.13 – 7.06 (m, 2H), 7.00 – 6.88 (m, 4H), 2.65 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 162.5 (d, J = 200.3 Hz), 162.4 (d, J = 290.9 Hz), 157.6, 155.6, 138.9, 136.5 (d, J = 3.2 Hz), 136.0 (d, J = 3.4 Hz), 132.2, 131.9 (d, J = 8.2 Hz), 131.3 (d, J = 8.0 Hz), 122.1, 115.5 (d, J = 40.7 Hz), 115.3 (d, J = 40.8 Hz), 24.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃- d_6): δ = -114.28 (s, 1F), -115.18 (s, 1F) ppm. HRMS m/z: calcd for C₁₈H₁₄F₂N [M+H]⁺ 282.1089, found: 282.1097.

6-Methyl-2,3-bis(**3-(trifluoromethyl)phenyl)pyridine** (**3ga):** Yield = 56 %. Colourless liquid. 1 H NMR (400MHz, CDCl₃): δ = 7.66 (d, J = 7.9 Hz, 1H), 7.59 (s, 1H), 7.54 – 7.47 (m, 3H), 7.42 – 7.33 (m, 3H), 7.31 – 7.25 (m, 2H), 2.68 (s, 3H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 158.5, 155.2, 140.7, 140.4, 138.9, 133.4, 133.1, 132.1, 131.0 (d, J = 48.0 Hz), 130.8 (d, J = 48.0 Hz), 129.1, 128.7, 127.2 (m), 126.5 (m), 125.4 (d, J = 9.8 Hz), 124.8 (m), 124.2 (m), 122.7 (d, J = 9.8 Hz), 122.7, 24.6 ppm. 19 F NMR (376 MHz, CDCl₃) δ = -62.92, -62.95 ppm. HRMS m/z: calcd for C₂₀H₁₄F₆N [M+H]⁺ 382.1025, found: 382.1079.

6-(tert-Butyl)-2,3-diphenylpyridine (3ab): Yield = 56 %. White solid. M.p. 112.6–114.0 °C. ¹H

NMR (400MHz, CDCl₃): δ = 7.61 (d, J = 8.0 Hz, 1H), 7.44 – 7.40 (m, 2H), 7.33 (d, J = 8.0 Hz, 1H), 7.27 – 7.19 (m, 6H), 7.19 – 7.14 (m, 2H), 1.44 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 168.0, 155.2, 140.9, 140.8, 138.9, 132.8, 130.5, 129.8, 128.4, 127.8, 127.7, 127.0, 117.4, 37.7, 30.5 ppm. HRMS m/z: calcd for C₂₁H₂₂N [M+H]⁺ 288.1747, found: 288.1753.

6-(*tert***-Butyl)-2,3-bis**(**4-chlorophenyl**)**pyridine** (**3eb**): Yield = 49 %. White solid. M.p. 120.2-122.5 °C. ¹H NMR (400MHz, CDCl₃): $\delta = 7.58$ (d, J = 8.1 Hz, 1H), 7.38 - 7.31 (m, 3H), 7.28 - 7.24 (m, 2H), 7.23 - 7.19 (m, 2H), 7.12 - 7.07 (m, 2H), 1.42 (s, 9H) ppm. 13 C NMR (100 MHz, CDCl₃): $\delta = 168.4$, 153.7, 138.9, 138.7, 138.7, 133.8, 133.2, 131.5, 131.4, 130.8, 128.7, 128.0, 117.6, 37.5, 30.2 ppm. HRMS m/z: calcd for $C_{21}H_{20}C_{12}N$ [M+H]⁺ 356.0967, found: 378.0789.

2-Ethyl-3-methyl-5,6-diphenylpyridine (**3ac**): Yield = 51 %. White solid. M.p. 118.3–119.2 °C.
¹H NMR (400MHz, CDCl₃): δ = 7.43 (s, 1H), 7.38 – 7.33 (m, 2H), 7.25 – 7.19 (m, 6H), 7.17 – 7.13 (m, 2H), 2.95 – 2.86 (m, 2H), 2.38 (s, 3H), 1.36 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.5, 154.0, 140.7, 140.5, 140.3, 133.4, 130.2, 129.8, 129.2, 128.4, 128.0, 127.5, 127.0, 28.7, 18.4, 13.2 ppm. HRMS m/z: calcd for C₂₀H₂₀N [M+H]⁺ 274.1590, found: 274.1590.

2,3-Dimethyl-5,6-diphenylpyridine (**3ad**): Yield = 56 %. White solid. M.p. 75.2–78.0 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.44 (s, 1H), 7.36 – 7.31 (m, 2H), 7.25 – 7.18 (m, 6H), 7.16 – 7.12 (m, 2H), 2.60 (s, 3H), 2.35 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 156.0, 154.0, 140.6, 140.3, 139.8, 133.6, 130.1, 130.0, 129.8, 128.4, 128.0, 127.5, 127.0, 22.7, 18.9 ppm. HRMS m/z: calcd for C₁₉H₁₈N [M+H]⁺ 260.1434, found: 260.1423.

2,3-Diphenyl-6,7,8,9-tetrahydro-5*H***-cyclohepta[***b***]pyridine (3ae): Yield = 51 %. White solid. M.p. 117.0–119.5 °C. ¹H NMR (400MHz, CDCl₃): \delta = 7.41 (s, 1H), 7.34 (dd, J = 6.6, 3.0 Hz, 2H), 7.26 – 7.19 (m, 6H), 7.18 – 7.14 (m, 2H), 3.19 – 3.10 (m, 2H), 2.90 – 2.80 (m, 2H), 1.97 – 1.87 (m,**

2H), 1.82 - 1.69 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.2$, 153.5, 140.6, 140.4, 139.3, 136.7, 133.5, 130.2, 129.8, 128.4, 128.0, 127.5, 127.0, 39.5, 35.1, 32.8, 28.3, 26.9 ppm. HRMS m/z: calcd for $C_{22}H_{22}N$ [M+H]⁺ 300.1747, found: 300.1749.

2,3-Bis(4-chlorophenyl)-5,6,7,8-tetrahydroquinoline (3ef): Yield = 75 %. White solid. M.p. 158–169 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.35 (s, 1H), 7.26 – 7.18 (m, 6H), 7.06 (d, J = 8.4 Hz, 2H), 3.00 (t, J = 6.3 Hz, 2H), 2.84 (t, J = 6.2 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.91 – 1.83 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 156.9, 153.0, 139.1, 138.7, 138.4, 133.8, 133.3, 132.2, 131.4, 131.3, 130.9, 128.7, 128.3, 32.6, 28.6, 23.3, 22.8 ppm. HRMS m/z: calcd for C₂₁H₁₈Cl₂N [M+H]⁺ 354.0811, found: 354.0798.

2,3-Di-*p***-tolyl-6,7-dihydro-***5H***-cyclopenta**[*b*]**pyridine** (**3bg**): Yild = 62 %. White solid. M.p. 92–94 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.49 (s, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.06 – 6.98 (m, 6H), 3.10 (t, J = 7.7 Hz, 2H), 3.00 (t, J = 7.4 Hz, 2H), 2.32 (s, 3H), 2.29 (s, 3H), 2.22 – 2.17 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 164.3, 155.4, 137.9, 137.9, 136.9, 136.3, 135.3, 134.6, 133.4, 129.8, 129.5, 128.9, 128.5, 34.2, 30.5, 23.4, 21.2, 21.1 ppm. HRMS m/z: calcd for C₂₂H₂₂N [M+H] $^+$ 300.1747, found: 300.1745.

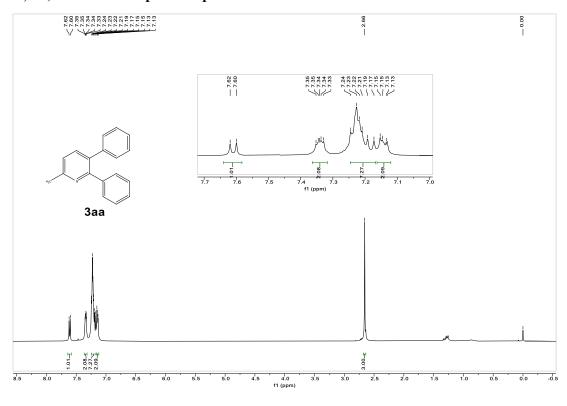
2,3-Bis(**4-bromophenyl**)-**6,7-dihydro-5***H***-cyclopenta[***b***]pyridine (3dg**): Yild = 63 %. White solid. M.p. 145.8–147.0 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.48 (s, 1H), 7.42 – 7.34 (m, 4H), 7.21 – 7.15 (m, 2H), 7.03 – 6.97 (m, 2H), 3.10 (t, J = 7.7 Hz, 2H), 3.01 (t, J = 7.4 Hz, 2H), 2.20 (p, J = 7.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 165.5, 154.2, 139.5, 136.4, 134.6, 132.6, 131.8, 131.8, 131.5, 131.4, 122.1, 121.5, 34.4, 30.7, 23.5 ppm. HRMS m/z: calcd for C₂₀H₁₆Br₂N [M+H]⁺ 427.9644, found: 427.9640.

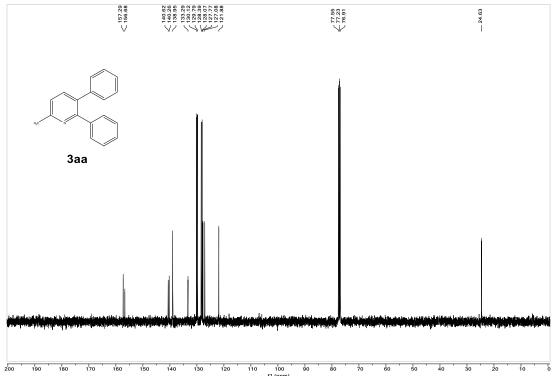
1,2,5-Triphenylpentane-1,5-dione (3ai'): Yield = 37 %. White solid. M.p. 60.5–63.5 °C. ¹H

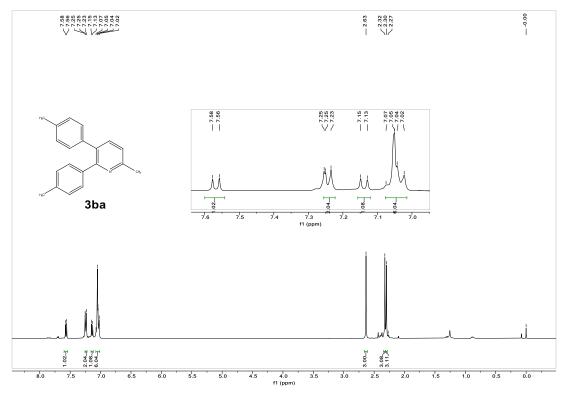
NMR (400MHz, CDCl₃): δ = 8.03 – 7.98 (m, 2H), 7.96 – 7.90 (m, 2H), 7.59 – 7.54 (m, 1H), 7.51 – 7.39 (m, 5H), 7.36 – 7.29 (m, 4H), 7.26 – 7.20 (m, 1H), 4.80 (t, J = 7.3 Hz, 1H), 3.10 – 2.89 (m, 2H), 2.67 – 2.56 (m, 1H), 2.38 – 2.25 (m, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 200.1, 199.8, 139.3, 137.0, 136.8, 133.2, 133.1, 129.2, 128.9, 128.7, 128.7, 128.5, 128.2, 127.4, 52.6, 36.1, 28.4 ppm. HRMS m/z: calcd for $C_{23}H_{21}O_{2}$ [M+H] $^{+}$ 329.1536, found: 329.1546.

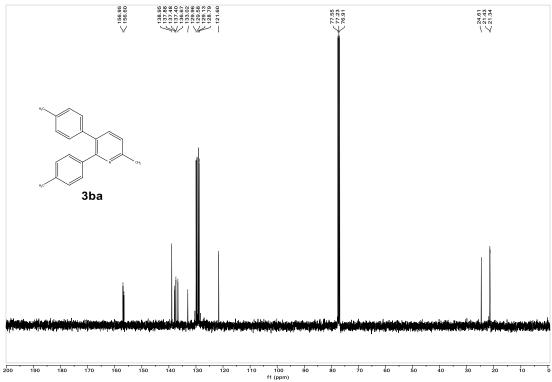
1,2-diphenylhexane-1,5-dione (4aa): Yield = 95 %. White solid. M.p. 60–62 °C. ¹H NMR (400MHz, CDCl₃): $\delta = 7.98 - 7.92$ (m, 2H), 7.50 - 7.44 (m, 1H), 7.41 - 7.35 (m, 2H), 7.32 - 7.26 (m, 4H), 7.23 - 7.18 (m, 1H), 4.69 - 4.61 (m, 1H), 2.46 - 2.34 (m, 3H), 2.17 - 2.10 (m, 1H), 2.08 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 208.7$, 199.7, 139.2, 136.8, 133.2, 129.2, 128.9, 128.7, 128.5, 127.4, 52.4, 41.2, 30.2, 27.8 ppm. HRMS m/z: calcd for $C_{18}H_{19}O_2$ [M+H]⁺ 267.1380, found: 267.1390.

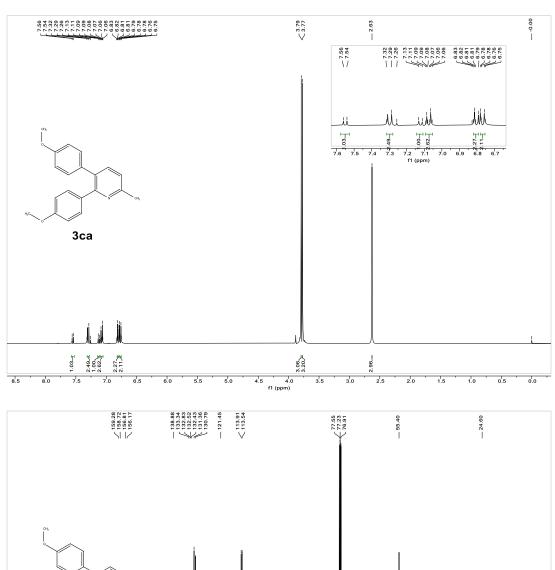
1,2-bis(4-bromophenyl)hexane-1,5-dione (4da): Yield = 84 %. Colorless oil. 1 H NMR (400MHz, CDCl₃): δ = 7.82 – 7.76 (m, 2H), 7.53 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 4.59 (t, J = 7.1 Hz, 1H), 2.43 – 2.39 (m, 2H), 2.38 – 2.30 (m, 1H), 2.09 (s, 3H), 2.08 – 2.00 (m, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 208.4, 198.3, 137.8, 135.2, 132.5, 132.2, 130.4, 130.1, 128.6, 121.7, 51.6, 40.7, 30.3, 27.5 ppm. HRMS m/z: calcd for $C_{18}H_{17}Br_2O_2$ [M+H]⁺ 422.9590, found: 422.9602.


1-(2-Chlorophenyl)-2-(4-chlorophenyl)hexane-1,5-dione (4ia): Yield = 59 %. Colorless oil. 1 H NMR (400MHz, CDCl₃): δ = 7.36 – 7.28 (m, 2H), 7.28 – 7.23 (m, 2H), 7.21 – 7.15 (m, 1H), 7.14 – 7.08 (m, 3H), 4.51 – 4.45 (m, 1H), 2.48 – 2.40 (m, 3H), 2.10 (s, 3H), 2.09 – 2.05 (m, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 208.2, 202.7, 139.4, 136.0, 133.7, 131.7, 130.6, 130.5, 130.2, 129.3, 129.1, 126.9, 56.0, 40.9, 30.2, 26.5 ppm. HRMS m/z: calcd for $C_{18}H_{17}C_{12}O_{2}$ [M+H]⁺ 335.0600, found: 335.0619.


2-(2-Chlorophenyl)-3-(4-chlorophenyl)-6-methylpyridine (**3ha**): Yield = 75 %. White solid. M.p. 64–65.2 °C. ¹H NMR (400MHz, CDCl₃): δ = 7.62 (d, J = 7.9 Hz, 1H), 7.31 – 7.20 (m, 5H), 7.16 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 2.65 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 157.4, 155.0, 139.5, 138.0, 137.7, 133.4, 133.3, 133.0, 131.7, 130.6, 129.8, 129.5, 128.4, 126.9, 122.9, 24.5 ppm. HRMS m/z: calcd for C₁₈H₁₄Cl₂N [M+H]+ 314.0498, found: 314.0507.


1-Phenyl-2-(pyridin-3-yl)hexane-1,5-dione (4ja): Yield = 64 %. White solid. M.p. 99.3–101.9 °C.
¹H NMR (400MHz, CDCl₃): δ = 8.58 (s, 1H), 8.49 (d, J = 3.6 Hz, 1H), 7.97 (d, J = 7.4 Hz, 2H), 7.64 (d, J = 7.9 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.24 (dd, J = 7.8, 4.7 Hz, 1H), 4.75 (t, J = 7.0 Hz, 1H), 2.51 – 2.37 (m, 3H), 2.16 – 2.04 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 208.12, 199.10, 150.12, 148.90, 136.28, 135.67, 134.92, 133.61, 128.94, 128.87, 124.12, 49.30, 40.80, 30.22, 27.76 ppm. HRMS m/z: calcd for C₁₇H₁₈NO₂ [M+H]⁺ 268.1332, found: 268.1340.


6-Methyl-2-phenyl-3,3'-bipyridine (**3ja**): Yield = 55 %. White solid. M.p. 71.1–72.2 °C. 1 H NMR (400MHz, CDCl₃): δ = 8.55 – 8.41 (m, 2H), 7.63 (d, J = 7.8 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.34 – 7.29 (m, 2H), 7.27 – 7.21 (m, 4H), 7.18 – 7.12 (m, 1H), 2.68 (s, 3H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 158.3, 157.1, 150.2, 148.3, 139.9, 138.8, 137.1, 136.0, 130.1, 129.6, 128.4, 128.2, 123.1, 122.1, 24.7 ppm. HRMS m/z: calcd for $C_{17}H_{15}N_2$ [M+H]⁺ 247.1230, found: 247.1229.


$^{1}\mathrm{H},\,^{19}\mathrm{F},\,\mathrm{and}\,\,^{13}\mathrm{C}$ NMR spectra of products:

