Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Zn(OTf)₂-Catalyzed Hydroamination of Ynamides with Aromatic

Amines

Zhuo Chen ^{a,b}, Xiao-Di Nie^b, Jian-Ting Sun ^b, Ai-Mei Yang, ^{*,a} and Bang-Guo Wei^{*,b}

^a College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 ^bDepartment of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China

Email: aimeiyang@163.com; bgwei1974@fudan.edu.cn

Table of Contents

I. X-Ray Structure for compound 3aa	S2-S4
II. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectrum	

I. X-Ray Structure for compound 3 aa

ORTEP drawing of the X-ray crystallographic structure of 3aa

CCDC- 2052690. For detailed crystallographic data, please refer to the Cambridge Crystallographic Data Centre at http://ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for	Jaa.
Identification code	3aa
Empirical formula	C28 H26 N2 O2 S
Formula weight	454.57
Temperature	193(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/n
Unit cell dimensions	$a = 10.0012(8) \text{ Å}$ $\alpha = 90^{\circ}.$
b = 22.074(2) Å	$\beta = 90.349(3)^{\circ}.$
c = 10.7284(10) Å	$\gamma = 90^{\circ}$.
Volume	2368.4(4) Å ³
Z	4
Density (calculated)	1.275 Mg/m ³
Absorption coefficient	0.165 mm ⁻¹
F(000)	960
Crystal size	0.150 x 0.120 x 0.070 mm ³

Table 1. Crystal data and structure refinement for 3aa.

Theta range for data collection	2.748 to 25.497°.
Index ranges	-10<=h<=12, -26<=k<=26, -12<=l<=12
Reflections collected	22334
Independent reflections	4391 [R(int) = 0.0700]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6366
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4391 / 0 / 299
Goodness-of-fit on F ²	1.118
Final R indices [I>2sigma(I)]	R1 = 0.0608, wR2 = 0.1143
R indices (all data)	R1 = 0.0994, wR2 = 0.1316
Extinction coefficient	n/a
Largest diff. peak and hole	0.203 and -0.405 e.Å ⁻³

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for mo_dd20113_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)	
S(1)	8100(1)	7058(1)	4279(1)	51(1)	
O(1)	7489(3)	7597(1)	4769(2)	75(1)	
O(2)	9393(2)	6888(1)	4727(2)	69(1)	
N(1)	6984(2)	6508(1)	4528(2)	41(1)	
N(2)	8289(2)	5804(1)	3514(2)	41(1)	
C(1)	7160(3)	5931(1)	3982(3)	36(1)	
C(2)	5928(3)	5537(1)	3962(3)	34(1)	
C(3)	4779(3)	5804(1)	3208(3)	34(1)	
C(4)	3478(3)	5761(1)	3637(3)	46(1)	
C(5)	2421(3)	5975(2)	2925(3)	56(1)	
C(6)	2666(3)	6248(2)	1797(3)	57(1)	
C(7)	3950(4)	6308(2)	1373(3)	53(1)	
C(8)	5003(3)	6081(1)	2069(3)	44(1)	
C(9)	5931(3)	6607(1)	5469(3)	45(1)	
C(10)	6063(3)	6215(1)	6608(3)	42(1)	
C(11)	7270(3)	5974(1)	7001(3)	49(1)	
C(12)	7334(4)	5626(2)	8076(3)	64(1)	
C(13)	6196(4)	5511(2)	8747(3)	67(1)	

C(14)	4997(4)	5742(2)	8368(3)	68(1)	
C(15)	4926(3)	6094(2)	7292(3)	55(1)	
C(16)	8494(3)	5239(1)	2933(3)	37(1)	
C(17)	8778(3)	4729(1)	3649(3)	45(1)	
C(18)	8981(3)	4171(2)	3075(4)	60(1)	
C(19)	8915(4)	4123(2)	1797(4)	70(1)	
C(20)	8689(3)	4631(2)	1088(3)	62(1)	
C(21)	8482(3)	5189(2)	1651(3)	49(1)	
C(22)	8149(3)	7123(1)	2654(3)	40(1)	
C(23)	7080(3)	7395(2)	2048(4)	59(1)	
C(24)	7116(3)	7457(2)	769(4)	61(1)	
C(25)	8175(3)	7256(1)	82(3)	49(1)	
C(26)	9226(3)	6993(2)	716(4)	60(1)	
C(27)	9223(3)	6922(1)	1991(3)	54(1)	
C(28)	8213(4)	7340(2)	-1317(3)	75(1)	

II. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectrum

т 00

