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Description: 

1,2-bis[2-methylbenzo[b]thiophen-3-yl]3,3,4,4,5,5-hexafluoro-1-cyclopentene 

(DTE): From the reported crystal structure of DTE[1] the size of the open-ring form was 

estimated to 13.8 Å x 8.7 Å x 10.4 Å by taking the respective van-der-Waals radii into 

account. The elongations in each direction were estimated within Diamond 4.4[2] using 

the grid option. For the closed-ring form a size of 15.3 Å x 7.2 Å x 10.4 Å was estimated 

using MarvinSketch[3].   

 

MOF-5: The crystal structure of MOF-5 consists of two differently sized cavities with a 

diameter of 15.1 Å and 11.0 Å, respectively taking the respective van-der-Waals radii 

into account.[4] The aperture of these cavities was given with 8 Å.[4] The surface area 

according to Langmuir was reported as 2900 m2/g[4] corresponding to a BET surface 

area of 2296 m2/g.[5] In our own measurements we obtained a BET surface area of 

1467 m2/g. 

 

MIL-68(In)/MIL-68(Ga): The hexagonal channels of MIL-68(Ga)/MIL-68(In) have an 

aperture of 16-17 Å and the trigonal channels an aperture of 6 Å.[6] The BET surface 

areas were reported as 1117(24) m2/g for MIL-68(Ga) and 746(31) m2/g for MIL-68(In).[6] 

In our own measurements we obtained slightly higher values: 1560 m2/g for MIL-68(Ga) 

and 1629 m2/g for MIL-68(In).  

 

Conclusion: 

From the results above the porosity of the used MOFs increases from the MIL-68 

compounds to MOF-5 taking their BET surface areas as a measure. Furthermore, the 

trigonal channels of MIL-68 are obviously too small to accommodate DTE molecules. 

However, the cavities of MOF-5 and the hexagonal channels of MIL-68 are obviously 

large enough to accommodate DTE molecules. This interpretation is corroborated by the 

results given in the main body of the manuscript. 
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Fig. S1 XRPD pattern of activated MOF-5 (green curve; 298 K, Huber G670; λ = 1.54051 Å) 

compared to a pattern calculated from the known structure data of MOF-5 (blue curve).[4] 

 

 

Fig. S2 XRPD pattern of activated MIL-68(In) (green curve; 298 K, Huber G670; λ = 1.54051 Å) 

compared to a pattern calculated from the known structure data of MIL-68(In) (blue curve).[6] 
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Fig. S3 XRPD pattern of activated MIL-68(Ga) (green curve; 298 K, Huber G670; λ = 1.54051 Å) 

compared to a pattern calculated from the known structure data of MIL-68(Ga) (blue curve).[6] 

 

 

Fig. S4 XRPD patterns of DTE@MOF-5 (red curve) and unloaded, activated MOF-5 (green 

curve); 298 K, Huber G670; λ = 1.54051 Å; 5% offset along y axis. 
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Fig. S5 XRPD patterns of DTE@MIL-68(Ga) (red curve) and unloaded, activated MIL-68(Ga) 

(green curve); 298 K, Huber G670; λ = 1.54051 Å; 5% offset along y axis. 
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Fig. S6 XPS data of DTE@MOF-5, DTE@MIL-68(In), and DTE@MIL-68(Ga), both 

measurement data (grey) and peak fit (red) are shown. 
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Fig. S7 DSC (blue) and TGA (red) curves of DTE@MIL-68(In). 

 

 

Fig. S8 DSC (blue) and TGA (red) curves of DTE@MIL-68(Ga). 
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Fig. S9 TGA curves of pristine DTE (red curve), the activated MOF (green curve), and 

DTE@MOF (black curve). The expected mass loss for the release of DTE from DTE@MOF as 

obtained from the XPS data is marked with a blue arrow. 
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Fig. S10 Reflection spectra (298 K) of DTE@MOF-5 (left hand side) and DTE@MIL-68(In) (right 

hand side). First row: before and after stepwise irradiation with UV light (λ = 365 nm) and second 

row: before and after irradiation with UV light (λ = 365 nm, 2 min), followed by stepwise 

irradiation with visible light (λ = 405 nm). 

 

 

Fig. S11 Reflection spectra (298 K) of a neat powder of DTE before and after irradiation with UV 

light (λ = 365 nm, 2 min) and visible light (λ = 405 nm, 2 min), respectively.  
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Fig. S12 Reflection spectra (298 K) of DTE@MOF-5 (top), DTE@MIL-68(In) (middle), and 

DTE@MIL-68(Ga) (bottom) recorded for the evaluation of the switching cycles (non-irradiated: 

black; λ = 365 nm, 2 min: cyan; λ = 405 nm, 2 min: red). 
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Fig. S13 Top: Absorption spectra (298 K) of DTE dissolved in ethanol (top, left) and in acetone 

(top, right) recorded for the evaluation of the switching cycles (non-irradiated: black; λ = 365 nm, 

2 min: cyan; λ = 535 nm, 2 min: red); bottom: switching cycles of DTE dissolved in ethanol 

(bottom, left) and in acetone (bottom, right). 
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Fig. S14 1H NMR spectrum of DTE emphasizing the aromatic region. The spectrum was 

recorded in DMSO-d6 after addition of DCl. 

 

 

Fig. S15 1H NMR spectrum of DTE emphasizing the methyl region. The spectrum was recorded 

in DMSO-d6 after addition of DCl. 
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Fig. S16 1H NMR spectra of DTE after two switching cycles (red line: colourless state, green 

line: after UV light irradiation, blue line: after visible light exposure, purple line: after UV light 

irradiation). The spectra were recorded in DMSO-d6 after addition of DCl.  

 

 

Fig. S17 1H NMR spectrum of non-irradiated DTE@MOF-5 focusing on the aromatic region. The 

spectrum was recorded in DMSO-d6 after addition DCl. 
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Fig. S18 1H NMR spectrum of non-irradiated DTE@MOF-5 focusing on the methyl region. The 

spectrum was recorded in DMSO-d6 after addition DCl. The signal at 1.88 ppm is attributed to 

side products after addition of DCl. 

 

 

Fig. S19 1H NMR spectrum of DTE@MOF-5 after 15 min of UV light irradiation (λ = 365 nm) 

focusing on the aromatic region. The spectrum was recorded in DMSO-d6 after addition DCl. 
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Fig. S20 1H NMR spectrum of DTE@MOF-5 after 15 min of UV light irradiation (λ = 365 nm) 

focusing on the methyl region. The spectrum was recorded in DMSO-d6 after addition DCl. 

 

 

Fig. S21 1H NMR spectrum of non-irradiated DTE@MIL-68(In) focusing on the aromatic region. 

The spectrum was recorded in DMSO-d6 after addition DCl. 
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Fig. S22 1H NMR spectrum of non-irradiated DTE@MIL-68(In) focusing on the methyl region. 

The spectrum was recorded in DMSO-d6 after addition DCl. 

 

 

Fig. S23 1H NMR spectrum of DTE@MIL-68(In) after 15 min of UV light irradiation (λ = 365 nm) 

focusing on the aromatic region. The spectrum was recorded in DMSO-d6 after addition DCl. 
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Fig. S24 1H NMR spectrum of DTE@MIL-68(In) after 15 min of UV light irradiation (λ = 365 nm) 

focusing on the methyl region. The spectrum was recorded in DMSO-d6 after addition DCl. 

 

 

Fig. S25 1H NMR spectrum of non-irradiated DTE@MIL-68(Ga) focusing on the aromatic region. 

The spectrum was recorded in DMSO-d6 after addition DCl. 
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Fig. S26 1H NMR spectrum of non-irradiated DTE@MIL-68(Ga) focusing on the methyl region. 

The spectrum was recorded in DMSO-d6 after addition DCl. 

 

 

Fig. S27 1H NMR spectrum of DTE@MIL-68(Ga) after 15 min of UV light irradiation (λ = 365 nm) 

focusing on the aromatic region. The spectrum was recorded in DMSO-d6 after addition DCl. 
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Fig. S28 1H NMR spectrum of DTE@MIL-68(Ga) after 15 min of UV light irradiation (λ = 365 nm) 

focusing on the methyl region. The spectrum was recorded in DMSO-d6 after addition DCl. 
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