Supporting Information for

Developed a dual surface inorganic molecularly imprinted Bi₂WO₆-CuO/Ag₂O heterostructured with enhanced activity-selectivity towards photocatalytic degradation of target contaminants

Maryam Amiri^a, Kheibar Dashtian^a, Mehrorang Ghaedi^{a*}, Soleiman Mosleh^b

^a Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran, Tel. /fax: +98-74-33223048

^b Department of Gas and Petroleum, Yasouj University, Gachsaran 75918-74831, Iran

Corresponding author:

*E-Mail: <u>m_ghaedi@yu.ac.ir</u>

Experimental Section

Instrumentation

The absorbance of MG and AO binary mixture of dyes was measured using a UV–Vis spectrophotometer (model PG 180 + instrument, England). The pH of solutions was adjusted and measured using dilute HCl or NaOH applying a pH-meter (Metrohm 691 pH meter, Switzerland). A Hermle Labortechnik GmbH centrifuge model Z206A (Germany) was used to accelerate the phase separation. The morphology of photocatalyst samples was investigated by field emission scanning electron microscopy (SEM: T3 Tescan) under an acceleration voltage of 26.00 KV. X-ray diffraction (XRD, Philips PW 1880, Philips, Amsterdam, Netherland) was applied to characterize the phase and structure of the photocatalysts using CuK α radiation (40 KV and 40 mA). An ultrasonic bath with a heating system (Tecno-GAZ SPA Ultra Sonic System) at 40 kHz frequency and 130 W power was used for the ultrasound-assisted synthesis procedure. The FT-IR spectra of compounds were recorded on a FT/IR-680 instrument (JASCO- Japan) in the range of 400-4000 cm⁻¹ using KBr pellet with ratio of 1:100 for samples to KBr. Other equipment, software and chemical reagents were used according to manufacturer recommendations similar to our previous publications [21-23].

Experimental design and photocatalytic performance test

The central composite design (CCD) was applied to minimize number of experiments and to investigate the combined effect of operational parameters together. This approach leads to the reduction in reagents consumption and operating costs, save time, and also reduce systematic errors. The CCD operates based on the response surface methodology which is a collection of statistical and mathematical techniques useful for developing, improving, and optimizing processes [24]. The preliminary studies showed the significant effects of operational parameters including initial dyes concentration, pH, photocatalyst mass and irradiation time on the degradation efficiency. Response surface methodology was applied to evaluate the individual as well as the mutual effects of operational parameters on dyes degradation. RSM provides a combination of experimental conditions at which maximum degradation of dyes occurs. The levels of the operational parameters and experimental runs which were provided using CCD are given in Table S1. Based on the experiment design during the process, each sample in triplicate was harvested, extracted and analyzed using UV-spectrophotometer for quantitative analysis of dyes residues. For statistical analysis, a quadratic polynomial equation (S1) was used to fit the experimental data based on the Analysis of variance (ANOVA).

$$R = \beta_0 + \sum_{i=1}^{5} \beta_i X_i + \sum_{i=1}^{5} \sum_{j=1}^{5} \beta_{ij} X_i X_j + \sum_{i=1}^{5} \beta_{ii} X_i^2 + \varepsilon$$
(1)

where *R* indicates the predicted photocatalytic degradation percentage as response, while X_i and X_j are the independent parameters, ε is the residual term and β_0 , β_i , β_{ii} and β_{ij} are the model coefficients corresponded to the model constant, linear coefficient, quadratic coefficient and the cross-product coefficient respectively. The statistical significance of the quadratic model was evaluated using a set of statistical and mathematical tests including, P-value, F-test, lack of fit, the predicted residual error sum of squares (PRESS), statistical coefficient of determination R-squared (R²), adjusted R-squared (R²_{adj}) and predicted R-squared (R²_{pred}).

In the total organic carbon (TOC) test, 20 mg of DIMI-Bi₂WO₆/CuO/Ag₂O was added into binary MG and AO solution (6.0 and 3.0 mg L⁻¹, 20 mL, respectively). Before illumination, the solution was stirred in the dark for 20 min to achieve an adsorption-desorption equilibrium. Then suspension was intervals under visible light for 50 min. Carbon content of different suspensions was recorded after filtration by a TOC analyzer (TOC/TNb Analyzer/Elementar, Germany).

The trapping experiment of the active species have similarities with the former photocatalytic activity tests. Different scavengers, including 2-propanole (2-P), benzoquinone (BQ), silver nitrate (SN) and glycerol (Gly) made an addition

to the RhB/Cr(VI) solution to trap the hydroxyl radical (•OH), superoxygen radicals (• O_2^-), the electrons (e⁻) and the holes (h⁺), respectively.

During EIS experiment, 10 mg sample and 5.0 mg conductive carbon past were added into the mixed solution consisting of 1.0 mL H2O and 0.5 mL NMP. Then the mixed solution was treated by ultrasound for 20 minutes. 0.05 mL Nafion was dropped into the above solution and then treated by ultrasound for 20 min. EIS test was conducted in a standard three-electrode system: 0.2 mL of above suspension was dropped onto glassy carbon electrode which was as working electrode, Ag/AgCl electrode was as reference electrode, platinum wire was as counter electrode, 50 mL KCl (1 M) solution containing 0.1 mol/L ascorbic acid (electron donor) was used as electrolyte.

Mechanism Eqs:

$$Bi_{2}WO_{6} - CuO - Ag_{2}O - MIP + h\vartheta \rightarrow Bi_{2}WO_{6} - CuO - Ag_{2}O - MIP(h^{+}) + (e^{-})$$
(2)

$$Bi_{2}WO_{6} - CuO - Ag_{2}O - MIP(e^{-}) + O_{2} \rightarrow Bi_{2}WO_{6} - CuO - Ag_{2}O - MIP + O_{2}^{-}$$
(3)

$$\cdot O_{2}^{-} + 2H_{2}O \rightarrow 2OH^{-} + H_{2}O_{2} + O_{2} \tag{4}$$

$$H_{2}O_{2} + Bi_{2}WO_{6} - CuO - Ag_{2}O - MIP(e^{-}) \rightarrow OH + OH^{-} + Bi_{2}WO_{6} - CuO - Ag_{2}O - MIP$$
(5)
$$OH + O_{2}^{-} + h^{+} + AO/MG \rightarrow Products$$
(6)

Kinetics investigation

$$-\frac{dC}{dt} = k_{obs} C \tag{8}$$

where k_{obs} (min⁻¹) refers to observed first-order rate constant, *C* is the concentration and t is the reaction time. Integration of Eq. (8) gives a concentration–time equation as follows:

$$\ln(\frac{C_0}{C_t}) = k_{obs}t \tag{8}$$

where C_0 and C_t are the dye concentrations at the time 0 and t, respectively.

$$\frac{1}{R} = \frac{1}{k_r K_A C_0} + \frac{1}{k_r}$$
(9)

where kr (mg.min⁻¹. L⁻¹) is the apparent photodegradation rate constant, while $K_A (L.mg^{-1})$ defines as $K_A = \frac{K}{1 + K_s C_s}$.

Factor	Name	!	Units	Minimum	Maximum	Coded	Values		Mean
А	pН		-	3.00	9.00	4.50	7.50		6.06
В	Photo	catalyst mass	g	0.008	0.016	0.010	0.014		0.012
С	Irradia	ation Time	min	90.00	150.00	105.00	135.00		120.58
D	Conce MG	entration of	mg/L	4.00	12.00	6.00	10.00		8.080
Е	Conce	entration of AO	mg/L	2.00	6.00	3.00	5.00		4.04
									,
Run	A	В	C	D	E	Actual R% MG	Predicted R% MG	R%	Predicted R% AO
1	4.50	0.014	105.00	10.00	5.00	83.56	83.47	59.71	59.82
2	6.00	0.012	120.00	8.00	4.00	72.42	72.52	77.78	77.85
3	7.50	0.010	135.00	6.00	5.00	57.23	57.14	50.71	50.82
4	7.50	0.014	135.00	6.00	3.00	80.15	80.06	91.14	91.25
5	6.00	0.012	90.00	8.00	4.00	41.68	41.82	36.84	36.67
6	3.00	0.012	120.00	8.00	4.00	39.57	39.71	33.83	33.66
7	6.00	0.012	120.00	8.00	4.00	72.55	72.52	77.38	77.85
8	6.00	0.012	120.00	4.00	4.00	59.78	59.92	87.21	87.04
9	6.00	0.012	120.00	8.00	2.00	76.74	76.88	75.39	75.22
10	9.00	0.012	120.00	8.00	4.00	84.15	84.29	80.52	80.35
11	7.50	0.014	105.00	10.00	3.00	50.73	50.64	70.37	70.48
12	4.50	0.014	135.00	10.00	3.00	60.5	60.41	54.81	54.92
13	4.50	0.010	135.00	10.00	5.00	63.19	63.10	57.03	57.14
14	7.50	0.010	135.00	10.00	3.00	31.08	30.99	26.5	26.61
15	6.00	0.016	120.00	8.00	4.00	95.33	95.47	96.45	96.28
16	6.00	0.012	120.00	12.00	4.00	62.64	62.78	47.18	47.01
17	6.00	0.012	120.00	8.00	4.00	72.63	72.52	78.13	77.85
18	6.00	0.008	120.00	8.00	4.00	30.09	30.23	36.15	35.98
19	6.00	0.012	150.00	8.00	4.00	85.79	85.93	86.32	86.15
20	4.50	0.014	135.00	6.00	5.00	68.71	68.62	55.21	55.32
21	6.00	0.012	120.00	8.00	4.00	72.37	72.52	77.73	77.85
22	7.50	0.014	105.00	6.00	5.00	48.37	48.28	77.86	77.97
23	6.00	0.012	120.00	8.00	6.00	68.67	68.81	48.73	48.56
24	6.00	0.012	120.00	8.00	4.00	72.92	72.52	77.89	77.85
25	4.50	0.010	105.00	6.00	3.00	67.67	67.48	56.57	56.80
26	7.50	0.010	105.00	10.00	5.00	73.68	73.59	48.71	48.82

 Table S1. Experimental factors and levels in the central composite design.

_		1	R% MG						
		Sequ	ential Model Sum of So	uares					
Source	Sum of	df	Mean Square	F Value	p-value				
	Squares		-		Prob > F				
Mean vs Total	1.101E+005	1	1.101E+005						
Linear vs Mean	1823.12	5	364.62	1.41	0.2623				
2FI vs Linear	4642.09	10	464.21	8.94	0.0009				
Quadratic vs 2FI	<u>518.46</u>	<u>5</u>	<u>103.69</u>	<u>978.79</u>	<u>< 0.0001</u>	Suggested			
Cubic vs Quadratic	0.34	1	0.34	7.23	0.0547	Aliased			
Residual	0.19	4	0.047						
Total	1.171E+005	26	4504.63						
			Lack of Fit Tests						
Source	Sum of	df	Mean Square	F Value	p-value				
	Squares				Prob > F				
Linear	5160.89	16	322.56	6838.16	< 0.0001				
2FI	518.80	6	86.47	1833.10	< 0.0001				
<u>Quadratic</u>	<u>0.34</u>	<u>1</u>	<u>0.34</u>	<u>7.23</u>	<u>0.0547</u>	Suggested			
Cubic	0.000	0				Aliased			
Pure Error	0.19	4	0.047						
		Ν	Iodel Summary Statisti	ics					
Source	Std. Dev.	R-	Adjusted	Predicted	PRESS				
		Squared	R-Squared	R-Squared					
Linear	16.06	0.2610	0.0763	-0.4200	9917.92				
2FI	7.20	0.9257	0.8142	-3.3392	30305.95				
Quadratic	<u>0.33</u>	<u>0.9999</u>	<u>0.9996</u>	<u>0.9725</u>	<u>192.24</u>	Suggested			
Cubic	0.22	1.0000	0.9998		+	Aliased			

Table S2. Sequential Model Sum of Squares for MG degradation.

· · · · ·			R% AO							
		Sequ	ential Model Sum of S	quares						
Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F					
Mean vs Total	1.068E+005	1	1.068E+005							
Linear vs Mean	4921.45	5	984.29	4.35	0.0077					
2FI vs Linear	3155.68	10	315.57	2.30	0.1031					
Quadratic vs 2FI	<u>1373.86</u>	<u>5</u>	<u>274.77</u>	<u>1714.79</u>	<u>< 0.0001</u>	Suggested				
Cubic vs Quadratic	0.50	1	0.50	6.79	0.0597	Aliased				
Residual	0.30	4	0.074							
Total	1.162E+005	26	4470.12							
			Lack of Fit Tests							
Source	Sum of	df	Mean Square	F Value	p-value					
	Squares				Prob > F					
Linear	4530.05	16	283.13	3812.14	< 0.0001					
2FI	1374.37	6	229.06	3084.17	< 0.0001					
Quadratic	<u>0.50</u>	<u>1</u>	<u>0.50</u>	<u>6.79</u>	<u>0.0597</u>	Suggested				
Cubic	0.000	0				Aliased				
Pure Error	4530.05	16	283.13	3812.14	< 0.0001					
				F Value p-value Prob > F 4.35 0.0077 2.30 0.1031 1714.79 \leq 0.0001 Suggested 6.79 0.0597 Aliased 6.79 0.0597 Aliased 7 \leq 0.0001 Suggested 6.79 0.0597 Aliased 7 \leq 0.0001 \leq 0.0001 812.14 \leq 0.0001 \leq 0.0001 3812.14 $<$ 0.0001 \leq 0.0001 3084.17 $<$ 0.0001 \leq 0.0001 3812.14 $<$ 0.0001 \leq 0.0001 3812.14 $<$ 0.0001 \leq 0.0001 6.79 0.0597 Suggested 1 $<$ 0.0001 \leq 0.0001 0.1701 7843.88 $<$ 0.1701 0.1701 7843.88 $<$ 0.1701 0.1701 7843.88 $<$ 0.9699 0.9699 284.20 Suggested						
	1	1	Model Summary Statis	tics	1					
Source	Std. Dev.	R-	Adjusted	Predicted	PRESS					
		Squared	R-Squared	R-Squared						
Linear	15.05	0.5207	0.4009	0.1701	7843.88					
2FI	11.72	0.8546	0.6364	-12.0251	1.231E+005					
Quadratic	<u>0.40</u>	<u>0.9999</u>	<u>0.9996</u>	<u>0.9699</u>	<u>284.20</u>	Suggested				
Cubic	0.27	1.0000	0.9998		+	Aliased				

Table S3. Sequential Model Sum of Squares for	· AO degradation
---	------------------

			R% of MO	G			R%	o of AO	
Source	df	Sum of Squares	Mean	F Value	p-value	Sum of	Mean	F Value	p-value
			Square		Prob > F	Squares	Square		Prob > F
Model	20	6983.68	349.18	3296.06	< 0.0001	9450.99	472.55	2949.07	< 0.0001
A	1	993.69	993.69	9379.76	< 0.0001	1089.98	1089.98	6802.28	< 0.0001
В	1	2128.13	2128.13	20088.13	< 0.0001	1818.04	1818.04	11345.97	< 0.0001
С	1	972.85	972.85	9183.02	< 0.0001	1224.14	1224.14	7639.53	< 0.0001
D	1	4.09	4.09	38.61	0.0016	801.20	801.20	5000.09	< 0.0001
Ε	1	32.56	32.56	307.37	< 0.0001	355.38	355.38	2217.83	< 0.0001
AB	1	329.24	329.24	3107.81	< 0.0001	0.30	0.30	1.86	0.2311
AC	1	179.16	179.16	1691.20	< 0.0001	798.45	798.45	4982.91	< 0.0001
AD	1	0.13	0.13	1.27	0.3102	6.08	6.08	37.92	0.0016
AE	1	243.83	243.83	2301.56	< 0.0001	118.87	118.87	741.82	< 0.0001
BC	1	16.55	16.55	156.24	< 0.0001	377.08	377.08	2353.29	< 0.0001
BD	1	67.45	67.45	636.71	< 0.0001	204.35	204.35	1275.32	< 0.0001
BE	1	253.99	253.99	2397.53	< 0.0001	138.60	138.60	864.94	< 0.0001
CD	1	0.23	0.23	2.20	0.1984	4.63	4.63	28.90	0.0030
CE	1	414.75	414.75	3914.98	< 0.0001	9.13	9.13	56.99	0.0006
DE	1	2890.32	2890.32	27282.70	< 0.0001	2058.99	2058.99	12849.62	< 0.0001
A^2	1	189.22	189.22	1786.12	< 0.0001	743.15	743.15	4637.81	< 0.0001
B^2	1	159.88	159.88	1509.15	< 0.0001	234.98	234.98	1466.42	< 0.0001
C^2	1	127.78	127.78	1206.16	< 0.0001	462.28	462.28	2885.00	< 0.0001
D^2	1	213.33	213.33	2013.66	< 0.0001	200.47	200.47	1251.06	< 0.0001
E^2	1	0.18	0.18	1.71	0.2483	435.69	435.69	2719.02	< 0.0001
Residual	5	0.53	0.11			0.80	0.16		
Lack of Fit	1	0.34	0.34	7.23	0.0547	0.50	0.50	6.79	0.0597
Pure Error	4	0.19	0.047			0.30	0.074		
Cor Total	25	6984.21				9451.80			

Table S4. Analysis of variance (ANOVA) results for quadratic model of degradation process.

 Table S5. Statistical supplementary results of quadratic model.

	R% AO	R% MG
Std. Dev.	0.40	0.33
Mean	64.08	65.08
C.V. %	0.62	0.50
PRESS	284.20	192.24
-2 Log Likelihood	-16.69	0.9999
R-Squared	0.9999	0.9996
Adj R-Squared	0.9996	0.9725
Pred R-Squared	0.9699	0.9999
Adeq Precision	193.642	223.029
BIC	51.73	40.97
AICc	256.31	245.55

	Kinetics parameters						
	k _{obs}	R ²	k _r	R ²	K _A	R ²	
AO	0.035	0.99	0.162	0.99	0.062	0.99	
MG	0.030	0.99	0.111	0.99	0.159	0.99	

Table S6. Kinetics Parameters

Fig. S1. EDS spectra of (a) Bi_2WO_6 and DIMI- $Bi_2WO_6/CuO/Ag_2O$ before (b) and after (c) MG and AO extraction

Fig. S2. 3D plots of RSM at optimal conditions.

Fig. S3. Profiles for predicated values and desirability function for photocatalytic degradation process. Dashed line

shows optimum values.

Fig. S4. Schematic diagram of the possible reaction mechanism for photocatalytic degradation of AO.

Fig. S5. Schematic diagram of the possible reaction mechanism for photocatalytic degradation of MG.

Fig. S6. XRD pattern (A) and SEM images of before and after photocatalysis over DIMI-Bi₂WO₆/CuO/Ag₂O

composite photocatalyst