Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2020

Supporting Information for

Improving Photosensitivity without Changing Thermal Reactivity in Photochromic Diarylbenzenes Based on Accurate Prediction by DFT Calculations

Daichi Kitagawa*, Naoko Takahashi, Tatsumoto Nakahama, and Seiya Kobatake*

Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-

138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

*E-mail: kitagawa@osaka-cu.ac.jp; kobatake@a-chem.eng.osaka-cu.ac.jp

1a		5a		6a		
Wavelength Oscillator /nm Strength		Wavelength /nm	Oscillator Strength	Wavelength /nm	Oscillator Strength	
306.2	0.050	328.6	0.281	356.0	1.273	
290.1	0.019	312.2	0.022	339.7	0.046	
286.8	0.649	302.2	0.697	326.9	0.028	
274.3	0.001	301.6	0.021	325.7	0.639	
267.3	0.046	290.8	0.160	314.3	0.029	
264.5	0.368	277.5	0.079	295.4	0.026	

Table S1. Oscillator strength of **1a**, **5a**, and **6a** calculated by time–dependent density functional theory (TD–DFT) at the MPW1PW91/6–31G(d)//M06-2X/6–31G(d) level.

Table S2. The Results for the TDDFT calculation of 1a, 5a, and 6a.

Excitation energies and oscillator strengths pf 1a:

Excited State 1: Singlet-A 4.0496 eV 306.17 nm f=0.0504 <S**2>=0.000

127 ->128 0.65550

127 ->130 -0.24858

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2273.06566911

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Singlet-A	4.2746 eV 290.05 nm	f=0.0191 <\$	\$**2>=0.000
126 ->128	-0.23228			
126 ->130	0.11495			
127 ->129	0.64198			
127 ->129	0.64198			

Excited State	3:	Singlet-A	4.3237 eV	286.76 nm	f=0.6486	<s**2>=0.000</s**2>
127 ->128		0.25340				
127 ->130		0.64431				

Excited State	4:	Singlet-A	4.5195 eV	274.33 nm	f=0.0010	<s**2>=0</s**2>	.000
126 ->128		0.61321					
126 ->130		-0.19525					
127 ->129		0.26393					

Excited State	5:	Singlet-A	4.6378 eV 267.	.33 nm	f=0.0463	<s**2>=</s**2>	=0.000
124 ->128		-0.19924					
126 ->130		-0.14930					
127 ->131		0.63069					
Б. 1 (1 () ((A (077 N O(A	40	6 0 2 (0 4	-0++0	0.000

Exciled State	0:	Singlet-A	4.08//ev	204.49 nm	1=0.3084	$<5^{++2} = 0.$	000
125 ->128		0.10755					
126 ->129		0.68583					

Excitation energies and oscillator strengths of **5a**:

Excited State	1:	Singlet-A	3.7734 eV	328.57 nm	f=0.2813	<s**2>=0.000</s**2>
137 ->138		0.68980				
137 ->140		-0.13498				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -2993.25858826

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Singlet-A	3.9716 eV	312.18 nm	f=0.0221	<s**2>=0.000</s**2>
136 ->138		-0.16737				
137 ->139		0.67274				

Excited State 3: Singlet-A 4.1034 eV 302.15 nm f=0.6966 <S**2>=0.000

- 136 ->139 0.25461
- 137 ->138 0.12544
- 137 ->140 0.63777
- Excited State 4: Singlet-A 4.1114 eV 301.56 nm f=0.0214 <S**2>=0.000 136 ->138 0.66571 136 ->140 -0.11418 137 ->139 0.17922
- Excited State 5: Singlet-A 4.2633 eV 290.82 nm f=0.1599 <S**2>=0.000 136 ->139 0.64658 137 ->140 -0.24186

Excited State 6:	Singlet-A	4.4682 eV 27	7.48 nm f=0	.0792 <s**2>=</s**2>	=0.000
136 ->138	0.12035				
136 ->140	0.57064				
137 ->141	0.35803				

Excitation energies and oscillator strengths of **6a**:

Excited State	1:	Singlet-A	3.4830 eV	355.97 nm	f=1.2730	<s**2>=0.000</s**2>
168 ->171		0.14252				
169 ->170		0.68892				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3376.66378857

Copying the excited state density for this state as the 1-particle RhoCI density.

- Excited State 2: Singlet-A 3.6500 eV 339.69 nm f=0.0458 <S**2>=0.000 169 ->171 0.69660
- Excited State 3: Singlet-A 3.7930 eV 326.87 nm f=0.0276 <S**2>=0.000 168 ->170 0.69453
- Excited State 4: Singlet-A 3.8063 eV 325.74 nm f=0.6389 <S**2>=0.000 168 ->171 0.53399 169 ->172 0.44050
- Excited State 5: Singlet-A 3.9446 eV 314.32 nm f=0.0293 <S**2>=0.000 168 ->171 -0.42783 169 ->170 0.10694 169 ->172 0.53521

Excited State	6:	Singlet-A	4.1969 eV	295.42 nm	f=0.0259	<s**2>=0.000</s**2>
168 ->172		0.66245				
169 ->173		0.16215				

Figure S1. Absorption spectra of (a) **5b** ([**5a**] = 9.8×10^{-5} M) and (b) **6b** ([**6a**] = 4.2×10^{-5} M) in THF upon irradiation with 313 nm light at 298 K (69 mW cm⁻²) and absorbance change of (c) **5b** and (d) **6b** in THF relative to time upon irradiation with 313 nm light (69 mW cm⁻²) for 0.7 s (**5b**) and 0.3 s (**6b**) and thermal bleaching at 298 K. The data points of each absorbance were averaged over the data from 740 to 770 nm (**5b**) and from 775 to 805 nm (**6b**) and were recorded at 60 ms intervals for **5b** and **6b**.

Figure S2. (a) Absorption spectra of **1b** in THF ([**1a**] = 3.8×10^{-5} M) upon irradiation with 313 nm light at 298 K (69 mW cm⁻²) and (b) absorbance change of **1b** in THF relative to time upon irradiation with 313 nm light (69 mW cm⁻²) for 0.4 s and thermal bleaching at 298 K. The data points of each absorbance were averaged over the data from 710 to 740 nm and were recorded at 60 ms intervals.

Figure S3. Calculated absorption spectra of 1b (black), 5b (blue), and 6b (red) by TD-DFT (MPW1PW91/6-31G(d)//M06-2X/6-31G(d) level of the theory), modeled with a HWHM of 2000 cm^{-1} .

	11	b	51)	6b		
-	Wavelength /nm	Oscillator Strength	Wavelength /nm	Oscillator Strength	Wavelength /nm	Oscillator Strength	
	741.6	0.330	761.1	0.434	801.0	0.660	
	428.6	0.001	452.0	0.006	488.1	0.016	
	375.7	0.260	389.7	0.003	421.6	0.001	
	373.7	0.020	383.9	0.253	402.8	0.261	
	357.1	0.006	364.6	0.015	396.3	0.968	
	339.5	0.026	355.9	0.632	381.0	0.030	

Table S3. Oscillator strength of **1b**, **5b**, and **6b** calculated by time-dependent density functional theory (TD-DFT) at the MPW1PW91/6-31G(d)//M06-2X/6-31G(d) level.

Compound	$E_{\rm HOMO}^{}/{\rm eV}$	$E_{\rm LUMO}^{\rm}/{\rm eV}$	$E_{\rm HOMO-LUMO}/{\rm eV}$
1b	-0.20479	-0.07654	-0.12825
5b	-0.19969	-0.07679	-0.12290
6b	-0.20060	-0.08152	-0.11908

Table S4. HOMO and LUMO level data of the 1,2-diarylbenzenes calculated by DFT at the M06-2X/6-31G(d) level

Kinetic analysis of thermal back-reaction

The reaction kinetics of the thermal back-reaction was analyzed as follows: If the thermal back-reaction from the closed-ring isomer to the open-ring isomer obey a first-order kinetics, the kinetic equation is expressed as following equation by using Lambert-Beer law.

$$\ln\frac{A_t}{A_0} = -kt$$

where k is reaction rate constant, t is reaction time, and A_0 and A_t are absorbance of the closed-ring isomer at initial state (t = 0 s) and at arbitrary reaction time t, respectively. The k value can be calculated from the slope of the linear plot. The calculated k values are summarized in Table S5 and S6.

Arrhenius equation can be described as follows.

$$\ln k = \ln A - \frac{E_a}{RT}$$

where *A* is frequency factor, E_a is activation energy, *R* is gas constant, and *T* is absolute temperature. The linear relationship can be obtained by plotting $\ln k$ relative to 1/T as shown in Figure 6. The E_a and *A* values can be determined from the slope and intercept of the linear plot. The results are summarized in Table 4. Eyring equation can be described as follows.

$$\ln\left(\frac{k}{T}\right) = -\frac{\Delta H^{\ddagger}}{R}\frac{1}{T} + \ln\frac{k_B}{h} + \frac{\Delta S^{\ddagger}}{R}$$

where ΔH^{\ddagger} is enthalpy of activation, ΔS^{\ddagger} is entropy of activation, and $k_{\rm B}$ is Boltzmann constant. The linear relationship can be obtained by plotting $\ln(k/T)$ relative to 1/T as shown in Figures S5– S7. The ΔH^{\ddagger} and ΔS^{\ddagger} values can be determined from the slope and intercept of the linear plot. The Gibbs energy of activation (ΔG^{\ddagger}) was also determined using the relationship of $\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger}$. The results are summarized in Table S8.

 T/K
 k/s⁻¹

 238
 0.002630

 233
 0.001267

 228
 0.000591

 223
 0.000267

Table S5. First-order rate constants for the thermal back-reaction of 5b.

Table S6. First-order rate constants for the thermal back-reaction of 6b.

T/K	k/s^{-1}
228	0.003179
223	0.001542
218	0.000746
213	0.000304

Figure S4. (a) Absorption decay curves at λ_{max} for 1b in THF at various temperatures and (b) temperature dependence of the rate constant (*k*) for thermal back-reaction of 1b.

T/K	k/s^{-1}
228	0.003624
223	0.001750
218	0.000787
213	0.000361

Table S7. First-order rate constants for the thermal back-reaction of 1b.

Figure S5. Eyring plot for the thermal back-reaction of 1b.

Figure S6. Eyring plot for the thermal back-reaction of 5b.

Figure S7. Eyring plot for the thermal back-reaction of 6b.

Table S8. ΔH^{\ddagger} , ΔS^{\ddagger} . and ΔG^{\ddagger} values for 1, 5, and 6 estimated from the Eyring plot.

Compound	$\Delta H^{\ddagger}/\mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta S^{\ddagger}/J \text{ K}^{-1} \text{ mol}^{-1}$	$\Delta G^{\ddagger}/\text{kJ} \text{ mol}^{-1}$ at 25 °C
1	60.6	-23.9	67.7
5	65.5	-17.5	70.7
6	61.0	-22.9	67.8

Atom	X/Å	Y/Å	Z/Å
С	-0.653589	1.686643	0.269377
С	0.653587	1.686641	-0.269374
С	1.272635	2.913970	-0.506794
С	0.644333	4.124730	-0.254271
С	-0.644332	4.124732	0.254266
С	-1.272635	2.913974	0.506793
С	-1.419057	0.456306	0.580414
С	-2.736745	0.230660	0.064073
С	-3.262928	-0.980078	0.409719
Н	-3.248249	0.938963	-0.578981
С	1.419053	0.456302	-0.580408
С	2.736741	0.230657	-0.064067
С	3.262928	-0.980078	-0.409718
Н	3.248244	0.938960	0.578988
S	-2.140847	-1.855340	1.409031
S	2.140847	-1.855341	-1.409029
С	-0.965467	-0.587451	1.346590
С	0.965466	-0.587453	-1.346589
С	0.328279	-0.733005	2.085862

 Table S9. Cartesian coordinates of 1a optimized at the M06-2X/6-31G(d) level.

Н	1.033447	-1.371447	1.540968
Н	0.797322	0.245737	2.215882
Н	0.166211	-1.169064	3.075905
С	-0.328280	-0.733007	-2.085862
Н	-1.033453	-1.371439	-1.540962
Н	-0.797317	0.245737	-2.215891
Н	-0.166213	-1.169078	-3.075899
F	-2.507548	2.959801	1.015461
F	-1.263539	5.273577	0.507396
F	1.263543	5.273573	-0.507405
F	2.507548	2.959793	-1.015462
С	4.569034	-1.544155	-0.041243
С	4.755933	-2.926235	0.080233
С	5.654116	-0.693454	0.205872
С	5.994271	-3.443753	0.442777
Н	3.919546	-3.598449	-0.093899
С	6.887625	-1.212637	0.579642
Н	5.529706	0.378320	0.081340
С	7.063637	-2.589537	0.698534
С	-4.569033	-1.544156	0.041243
С	-4.755930	-2.926236	-0.080240
С	-5.654117	-0.693456	-0.205866

С	-5.994268	-3.443755	-0.442784
Н	-3.919542	-3.598449	0.093889
С	-6.887626	-1.212640	-0.579637
Н	-5.529709	0.378318	-0.081329
С	-7.063636	-2.589539	-0.698536
Н	-8.029196	-2.993711	-0.985920
Н	8.029198	-2.993708	0.985918
Н	-7.718312	-0.539073	-0.767090
Н	-6.121025	-4.518158	-0.534347
Н	6.121030	-4.518156	0.534335
Н	7.718310	-0.539070	0.767099

Atom	X/Å	Y/Å	Z/Å
С	-0.740019	1.767262	-0.000393
С	0.740020	1.767264	0.000395
С	1.396598	3.049966	0.103103
С	0.716290	4.212823	0.059481
С	-0.716299	4.212820	-0.059481
С	-1.396602	3.049961	-0.103102
С	-1.427705	0.582406	0.119438
С	-2.834236	0.312933	0.074410
С	-3.160515	-1.007519	0.053503
Н	-3.582487	1.089333	0.004798
С	1.427707	0.582408	-0.119435
С	2.834238	0.312934	-0.074409
С	3.160517	-1.007518	-0.053501
Н	3.582490	1.089333	-0.004799
S	-1.763637	-2.089238	0.056274
С	-0.630435	-0.681282	0.430823
С	0.630438	-0.681281	-0.430818
С	-0.351181	-0.696146	1.949679
Н	0.166792	-1.609661	2.246423
Н	0.258432	0.166720	2.232853

 Table S10.
 Cartesian coordinates of 1b optimized at the M06-2X/6-31G(d) level.

Н	-1.305917	-0.642225	2.478292
С	0.351181	-0.696142	-1.949673
Н	-0.166769	-1.609668	-2.246422
Н	-0.258455	0.166711	-2.232840
Н	1.305915	-0.642193	-2.478288
F	-2.731952	3.096112	-0.195721
F	-1.330140	5.392142	-0.122753
F	1.330127	5.392147	0.122753
F	2.731948	3.096125	0.195724
С	4.514208	-1.570514	-0.007858
С	4.732094	-2.883125	0.430901
С	5.618942	-0.801568	-0.404272
С	6.017906	-3.407864	0.485239
Н	3.890082	-3.493823	0.745364
С	6.902262	-1.327435	-0.347246
Н	5.465399	0.204777	-0.781080
Н	6.168315	-4.425062	0.832918
Н	7.745731	-0.720432	-0.660948
С	-4.514206	-1.570516	0.007857
С	-4.732087	-2.883131	-0.430892
С	-5.618943	-0.801568	0.404257
С	-6.017898	-3.407873	-0.485234

Н	-3.890072	-3.493831	-0.745344
С	-6.902262	-1.327437	0.347227
Н	-5.465405	0.204780	0.781057
Н	-6.168304	-4.425074	-0.832905
Н	-7.745734	-0.720433	0.660918
S	1.763639	-2.089237	-0.056271
С	7.107388	-2.632141	0.098813
Н	8.111318	-3.042901	0.139557
С	-7.107384	-2.632147	-0.098822
Н	-8.111313	-3.042908	-0.139569

Atom	X/Å	Y/Å	Z/Å
С	0.635212	1.865161	0.324418
С	-0.635222	1.865170	-0.324453
С	-1.224100	3.083997	-0.624799
С	-0.615738	4.299243	-0.312671
С	0.615739	4.299235	0.312671
С	1.224095	3.083982	0.624782
С	1.316281	0.590981	0.608983
С	2.669078	0.341280	0.385600
С	3.029334	-0.998425	0.469726
Н	3.378366	1.117262	0.115005
С	-1.316298	0.590998	-0.609040
С	-2.669091	0.341295	-0.385640
С	-3.029352	-0.998408	-0.469794
Н	-3.378373	1.117273	-0.115017
S	1.646679	-1.986274	0.886428
S	-1.646707	-1.986248	-0.886547
С	0.524807	-0.600720	0.832969
С	-0.524829	-0.600699	-0.833061
С	-0.511118	-0.637139	1.940661
Н	-0.003942	-0.669522	2.908466

 Table S11. Cartesian coordinates of transition state of 1 optimized at the M06-2X/6-31G(d) level.

Η	-1.136655	0.257180	1.912994
Н	-1.154601	-1.518376	1.856209
С	0.511095	-0.637098	-1.940754
Н	0.003921	-0.669430	-2.908562
Н	1.136655	0.257205	-1.913050
Н	1.154557	-1.518353	-1.856337
F	2.410617	3.134647	1.239127
F	1.214845	5.445783	0.618920
F	-1.214837	5.445799	-0.618904
F	-2.410621	3.134676	-1.239143
С	4.308436	-1.591871	0.207882
С	4.652821	-2.924524	0.216792
С	6.020065	-3.150262	-0.096077
Н	3.942969	-3.714150	0.438710
С	6.722276	-2.004207	-0.341125
Н	6.476195	-4.133321	-0.139286
С	-4.308446	-1.591858	-0.207924
С	-4.652855	-2.924505	-0.216954
С	-6.020075	-3.150255	0.096012
Н	-3.943040	-3.714118	-0.439031
С	-6.722242	-2.004215	0.341259
Н	-6.476220	-4.133309	0.139144

S	5.697673	-0.610975	-0.193130
S	-5.697628	-0.610985	0.193334
С	8.170106	-1.859796	-0.691835
Н	8.710778	-1.274544	0.058990
Н	8.631476	-2.848826	-0.748282
Н	8.304468	-1.366598	-1.659847
С	-8.170039	-1.859820	0.692115
Н	-8.710777	-1.274503	-0.058612
Н	-8.631411	-2.848851	0.748524
Н	-8.304307	-1.366699	1.660179

Atom	X/Å	Y/Å	Z/Å
С	0.632026	1.772497	-0.316772
С	-0.632020	1.772583	0.316784
С	-1.232798	2.999430	0.598259
С	-0.624289	4.209799	0.299816
С	0.624479	4.209715	-0.300082
С	1.232895	2.999266	-0.598386
С	1.365865	0.539356	-0.688601
С	2.721959	0.306865	-0.286920
С	3.212269	-0.900150	-0.694699
Н	3.307155	1.024411	0.278814
С	-1.365953	0.539539	0.688753
С	-2.722043	0.307064	0.287052
С	-3.212393	-0.899912	0.694900
Н	-3.307195	1.024553	-0.278798
S	2.004843	-1.770909	-1.594632
S	-2.005065	-1.770590	1.595036
С	0.849196	-0.491176	-1.431995
С	-0.849347	-0.490935	1.432271
С	-0.497265	-0.621373	-2.073344
Н	-1.156222	-1.279132	-1.494867

 Table S12. Cartesian coordinates of 5a optimized at the M06-2X/6-31G(d) level.

Η	-0.977338	0.358329	-2.139289
Н	-0.409540	-1.028909	-3.084621
С	0.497103	-0.621117	2.073644
Н	1.156003	-1.279058	1.495307
Н	0.977264	0.358554	2.139381
Н	0.409346	-1.028434	3.085008
F	2.427816	3.044895	-1.193612
F	1.223557	5.358797	-0.596004
F	-1.223279	5.358961	0.595599
F	-2.427716	3.045221	1.193478
С	4.524188	-1.478451	-0.456176
С	5.188784	-2.430061	-1.180557
С	6.467420	-2.750363	-0.637873
Н	4.783275	-2.870003	-2.085315
С	6.772370	-2.045559	0.489821
Н	7.146316	-3.474778	-1.074387
С	-4.524298	-1.478221	0.456309
С	-5.189178	-2.429426	1.180958
С	-6.467692	-2.749878	0.638070
Н	-4.783952	-2.868964	2.086039
С	-6.772276	-2.045577	-0.490040
Н	-7.146761	-3.474043	1.074732

С	-8.019624	-2.108611	-1.316290
Н	-8.698498	-2.854385	-0.895429
Н	-8.540985	-1.146180	-1.333429
Н	-7.804812	-2.390471	-2.351942
С	8.019936	-2.108309	1.315766
Н	8.698636	-2.854331	0.895063
Н	8.541382	-1.145915	1.332319
Н	7.805376	-2.389675	2.351604
S	-5.471600	-0.979237	-0.916025
S	5.471900	-0.978914	0.915661

Atom	X/Å	Y/Å	Z/Å
С	-0.003217	-0.739112	1.797720
С	0.003217	0.739112	1.797720
С	0.104648	1.395598	3.079397
С	0.060594	0.715732	4.243184
С	-0.060594	-0.715732	4.243184
С	-0.104648	-1.395598	3.079397
С	0.109011	-1.429910	0.612020
С	0.076152	-2.834713	0.346276
С	0.058240	-3.159265	-0.977138
Н	0.050332	-3.588278	1.122394
С	-0.109011	1.429910	0.612020
С	-0.076152	2.834713	0.346276
С	-0.058240	3.159265	-0.977138
Н	-0.050332	3.588278	1.122394
S	0.033045	-1.762250	-2.059560
С	0.426110	-0.634074	-0.652012
С	-0.426110	0.634074	-0.652012
С	1.946374	-0.366696	-0.666534
Н	2.247565	0.147750	-1.580510
Н	2.233570	0.242701	0.195241

 Table S13. Cartesian coordinates of 5b optimized at the M06-2X/6-31G(d) level.

Н	2.467408	-1.325495	-0.610174
С	-1.946374	0.366696	-0.666534
Н	-2.247565	-0.147750	-1.580510
Н	-2.233570	-0.242701	0.195241
Н	-2.467408	1.325495	-0.610174
F	-0.201742	-2.730457	3.124098
F	-0.125849	-1.330486	5.422066
F	0.125849	1.330486	5.422066
F	0.201742	2.730457	3.124098
S	-0.033045	1.762250	-2.059560
С	0.038276	-4.482971	-1.553443
С	0.084851	-4.820649	-2.883303
С	0.049333	-6.223685	-3.104267
Н	0.153979	-4.081949	-3.674556
С	-0.023737	-6.952513	-1.950244
Н	0.079378	-6.684009	-4.085538
С	-0.038276	4.482971	-1.553443
С	-0.084851	4.820649	-2.883303
С	-0.049333	6.223685	-3.104267
Н	-0.153979	4.081949	-3.674556
С	0.023737	6.952513	-1.950244
Н	-0.079378	6.684009	-4.085538

S	-0.049333	-5.914414	-0.562679
S	0.049333	5.914414	-0.562679
С	0.080526	8.440632	-1.797263
Н	1.010415	8.760032	-1.316107
Н	0.027258	8.911479	-2.781849
Н	-0.753253	8.814761	-1.194914
С	-0.080526	-8.440632	-1.797263
Н	-0.027258	-8.911479	-2.781849
Н	0.753253	-8.814761	-1.194914
Н	-1.010415	-8.760032	-1.316107

Atom	X/Å	Y/Å	Z/Å
С	0.635212	1.865161	0.324418
С	-0.635222	1.865170	-0.324453
С	-1.224100	3.083997	-0.624799
С	-0.615738	4.299243	-0.312671
С	0.615739	4.299235	0.312671
С	1.224095	3.083982	0.624782
С	1.316281	0.590981	0.608983
С	2.669078	0.341280	0.385600
С	3.029334	-0.998425	0.469726
Н	3.378366	1.117262	0.115005
С	-1.316298	0.590998	-0.609040
С	-2.669091	0.341295	-0.385640
С	-3.029352	-0.998408	-0.469794
Н	-3.378373	1.117273	-0.115017
S	1.646679	-1.986274	0.886428
S	-1.646707	-1.986248	-0.886547
С	0.524807	-0.600720	0.832969
С	-0.524829	-0.600699	-0.833061
С	-0.511118	-0.637139	1.940661
Н	-0.003942	-0.669522	2.908466

 Table S14.
 Cartesian coordinates of transition state of 5 optimized at the M06-2X/6-31G(d) level.

Η	-1.136655	0.257180	1.912994
Н	-1.154601	-1.518376	1.856209
С	0.511095	-0.637098	-1.940754
Н	0.003921	-0.669430	-2.908562
Н	1.136655	0.257205	-1.913050
Н	1.154557	-1.518353	-1.856337
F	2.410617	3.134647	1.239127
F	1.214845	5.445783	0.618920
F	-1.214837	5.445799	-0.618904
F	-2.410621	3.134676	-1.239143
С	4.308436	-1.591871	0.207882
С	4.652821	-2.924524	0.216792
С	6.020065	-3.150262	-0.096077
Н	3.942969	-3.714150	0.438710
С	6.722276	-2.004207	-0.341125
Н	6.476195	-4.133321	-0.139286
С	-4.308446	-1.591858	-0.207924
С	-4.652855	-2.924505	-0.216954
С	-6.020075	-3.150255	0.096012
Н	-3.943040	-3.714118	-0.439031
С	-6.722242	-2.004215	0.341259
Н	-6.476220	-4.133309	0.139144

S	5.697673	-0.610975	-0.193130
S	-5.697628	-0.610985	0.193334
С	8.170106	-1.859796	-0.691835
Н	8.710778	-1.274544	0.058990
Н	8.631476	-2.848826	-0.748282
Н	8.304468	-1.366598	-1.659847
С	-8.170039	-1.859820	0.692115
Н	-8.710777	-1.274503	-0.058612
Н	-8.631411	-2.848851	0.748524
Н	-8.304307	-1.366699	1.660179

Atom	X/Å	Y/Å	Z/Å
С	-0.592761	2.109981	0.385603
С	0.592756	2.109931	-0.385574
С	1.160275	3.336854	-0.728779
С	0.588904	4.547211	-0.365012
С	-0.588830	4.547260	0.364847
С	-1.160241	3.336950	0.728710
С	-1.278004	0.877651	0.841976
С	-2.674006	0.651814	0.611106
С	-3.116362	-0.554260	1.074629
Н	-3.320354	1.375654	0.125454
С	1.277964	0.877548	-0.841854
С	2.673969	0.651711	-0.611009
С	3.116304	-0.554392	-1.074479
Н	3.320341	1.375579	-0.125429
S	-1.811435	-1.431155	1.819544
S	1.811335	-1.431340	-1.819258
С	-0.678870	-0.155558	1.517448
С	0.678806	-0.155688	-1.517264
С	0.736494	-0.293157	1.985480
Н	1.323675	-0.929837	1.313257

 Table S15. Cartesian coordinates of 6a optimized at the M06-2X/6-31G(d) level.

Н	1.216152	0.688607	2.017285
Н	0.776214	-0.726044	2.989152
С	-0.736564	-0.293286	-1.985282
Н	-1.323769	-0.929864	-1.312984
Н	-1.216183	0.688493	-2.017209
Н	-0.776302	-0.726296	-2.988900
F	-2.283718	3.383958	1.450316
F	-1.154115	5.695952	0.720721
F	1.154229	5.695857	-0.720973
F	2.283757	3.383767	-1.450383
С	4.452995	-1.118442	-1.010740
С	4.991402	-2.136806	-1.754363
С	6.346347	-2.409835	-1.426840
Н	4.440772	-2.652078	-2.534108
С	6.841194	-1.600654	-0.437755
Н	6.950617	-3.153200	-1.934203
С	-4.453050	-1.118316	1.010859
С	-4.991500	-2.136621	1.754532
С	-6.346424	-2.409679	1.426948
Н	-4.440918	-2.651825	2.534355
С	-6.841207	-1.600592	0.437754
Н	-6.950725	-3.153005	1.934332

С	8.191839	-1.586720	0.139097
С	8.746193	-0.410968	0.660152
С	8.954804	-2.761712	0.170795
С	10.028316	-0.409624	1.196745
Н	8.174409	0.512613	0.625340
С	10.240571	-2.755056	0.697415
Н	8.524743	-3.686916	-0.201468
С	10.782382	-1.580187	1.214537
Н	10.442436	0.512055	1.593673
Н	10.817934	-3.674318	0.714932
Н	11.784953	-1.578119	1.630503
С	-8.191809	-1.586725	-0.139200
С	-8.746147	-0.411018	-0.660375
С	-8.954749	-2.761734	-0.170876
С	-10.028228	-0.409736	-1.197066
Н	-8.174382	0.512576	-0.625581
С	-10.240476	-2.755138	-0.697594
Н	-8.524697	-3.686903	0.201485
С	-10.782270	-1.580315	-1.214838
Н	-10.442336	0.511908	-1.594089
Н	-10.817819	-3.674413	-0.715093
Н	-11.784809	-1.578294	-1.630880

S	-5.616834	-0.500493	-0.120841
S	5.616842	-0.500533	0.120846

Atom	X/Å	Y/Å	Z/Å
С	0.739229	2.106424	-0.052268
С	-0.738242	2.107037	-0.047753
С	-1.395419	3.386007	-0.169780
С	-0.715067	4.550586	-0.154723
С	0.716903	4.552478	-0.045542
С	1.396923	3.389242	0.016396
С	1.428981	0.917293	-0.142668
С	2.832728	0.652572	-0.108471
С	3.157974	-0.670775	-0.061709
Н	3.586130	1.429223	-0.097755
С	-1.428735	0.923612	0.095191
С	-2.833007	0.658853	0.079103
С	-3.158979	-0.664998	0.095123
Н	-3.585942	1.435081	0.041398
S	1.761176	-1.752692	-0.010349
С	0.630863	-0.353297	-0.426375
С	-0.630958	-0.333389	0.434871
С	0.352850	-0.401376	-1.944103
Н	-0.164794	-1.320997	-2.221780
Н	-0.257232	0.454872	-2.246057

 Table S16.
 Cartesian coordinates of 6b optimized at the M06-2X/6-31G(d) level.

Н	1.308032	-0.357902	-2.472905
С	-0.352431	-0.313884	1.953191
Н	0.163966	-1.221154	2.270841
Н	0.259203	0.553740	2.217037
Н	-1.307285	-0.245730	2.479973
F	2.732545	3.435686	0.100439
F	1.332556	5.731829	-0.009803
F	-1.330639	5.727620	-0.238089
F	-2.730984	3.429204	-0.256347
S	-1.763062	-1.748803	0.082338
С	-4.482885	-1.238533	0.099951
С	-4.821273	-2.569239	0.184232
С	-6.952068	-1.634423	0.068218
С	-6.219245	-2.791627	0.165867
Н	-4.082057	-3.357315	0.278304
Н	-6.675986	-3.770252	0.257072
С	4.481802	-1.243325	-0.029970
С	4.820026	-2.576022	0.011956
С	6.218078	-2.796484	0.042020
Н	4.080517	-3.369529	0.026053
С	6.951598	-1.635718	0.022449
Н	6.672832	-3.778013	0.108587

S	-5.909338	-0.249104	-0.011509
S	5.909786	-0.249000	-0.041793
С	8.412091	-1.486960	0.044745
С	9.019713	-0.350544	0.592940
С	9.225635	-2.496595	-0.486298
С	10.404160	-0.228438	0.611341
Н	8.402671	0.432547	1.025733
С	10.609436	-2.376431	-0.457203
Н	8.765866	-3.367137	-0.944505
С	11.204394	-1.241732	0.090154
Н	10.858429	0.658093	1.042658
Н	11.225782	-3.166609	-0.874810
Н	12.285478	-1.146644	0.107285
С	-8.412308	-1.488038	0.026219
С	-9.041925	-0.334110	0.509090
С	-9.203520	-2.517953	-0.499345
С	-10.426169	-0.214664	0.469331
Н	-8.443124	0.465274	0.937673
С	-10.587577	-2.400047	-0.528379
Н	-8.725640	-3.403450	-0.907745
С	-11.204550	-1.247869	-0.045719
Н	-10.897482	0.685709	0.850913

Н	-11.186230	-3.206283	-0.941042
Н	-12.285583	-1.154823	-0.074200

Atom	X/Å	Y/Å	Z/Å
С	0.614781	2.204502	0.361705
С	-0.614785	2.204504	-0.361721
С	-1.186366	3.423242	-0.693997
С	-0.597379	4.638318	-0.346646
С	0.597374	4.638316	0.346648
С	1.186361	3.423237	0.693990
С	1.274981	0.929734	0.690806
С	2.638514	0.678260	0.562461
С	2.991199	-0.662179	0.680351
Н	3.366885	1.452765	0.343832
С	-1.274985	0.929739	-0.690829
С	-2.638518	0.678264	-0.562483
С	-2.991203	-0.662175	-0.680380
Н	-3.366889	1.452768	-0.343848
S	1.581073	-1.647241	0.998712
S	-1.581078	-1.647235	-0.998750
С	0.468588	-0.260284	0.867393
С	-0.468593	-0.260279	-0.867424
С	-0.640302	-0.292976	1.902090
Н	-0.200647	-0.337349	2.901843

 Table S17. Cartesian coordinates of transition state of 6 optimized at the M06-2X/6-31G(d) level.

Н	-1.253330	0.608045	1.838851
Н	-1.285199	-1.167069	1.767329
С	0.640297	-0.292963	-1.902123
Н	0.200641	-0.337335	-2.901875
Н	1.253321	0.608060	-1.838882
Н	1.285197	-1.167055	-1.767364
F	2.336183	3.474558	1.374592
F	1.178868	5.784524	0.684515
F	-1.178873	5.784529	-0.684505
F	-2.336187	3.474567	-1.374599
С	-4.284810	-1.256194	-0.524436
С	-4.634493	-2.585651	-0.642852
С	-6.012522	-2.822109	-0.429269
Н	-3.918805	-3.361820	-0.891876
С	-6.728362	-1.684320	-0.148163
Н	-6.474577	-3.798894	-0.515725
С	-8.165566	-1.558255	0.116435
С	-8.855436	-0.368473	-0.150059
С	-8.878185	-2.643881	0.644100
С	-10.218724	-0.268623	0.101955
Н	-8.323084	0.477154	-0.577806
С	-10.242781	-2.544864	0.884206

Н	-8.350058	-3.561005	0.887209
С	-10.919120	-1.356510	0.616278
Н	-10.736900	0.660740	-0.113214
Н	-10.777952	-3.395544	1.295125
Н	-11.984204	-1.278407	0.810140
S	-5.684596	-0.293326	-0.130990
С	4.284807	-1.256197	0.524410
С	4.634486	-2.585658	0.642803
С	6.012517	-2.822113	0.429235
Н	3.918792	-3.361831	0.891800
С	6.728363	-1.684320	0.148164
Н	6.474570	-3.798902	0.515677
С	8.165572	-1.558252	-0.116408
С	8.855440	-0.368478	0.150126
С	8.878197	-2.643868	-0.644088
С	10.218733	-0.268627	-0.101863
Н	8.323084	0.477140	0.577884
С	10.242797	-2.544850	-0.884168
Н	8.350070	-3.560984	-0.887228
С	10.919135	-1.356503	-0.616199
Н	10.736909	0.660729	0.113338
Н	10.777972	-3.395521	-1.295098

Н	11.984222	-1.278400	-0.810040
S	5.684600	-0.293323	0.131005